Immunomodulatory Activity of the Most Commonly Used Antihypertensive Drugs—Angiotensin Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers
Abstract
:1. Introduction
2. Angiotensin Converting Enzyme Inhibitors (ACEI)
2.1. Characteristics of the ACEI Drug Group
2.2. Captopril
2.3. Cilazapril, Delapril
2.4. Lisinopril
2.5. Enalapril
2.6. Perindopril
2.7. Benazepril
2.8. Fosinopril
2.9. Alacepril
2.10. Zofenopril
2.11. Ramipril
2.12. COVID-19
Drug | Immunological Mechanism (Reference) |
---|---|
Captopril | Reduction in:
|
Cilazapril | Reduction in:
|
Delapril | Reduction in:
|
Lisinopril | Reduction in: |
Enalapril | Reduction in:
|
Perindopril | Reduction in:
|
Benazepril | Reduction in: |
Fosinopril | Reduction in: |
Alacepril | Reduction in:
|
Zofenopril | Reduction in:Increase in:
|
Ramipril | Reduction in:
|
3. Angiotensin II Receptor Blockers (ARBs)
3.1. Characteristics of the ARB Drug Group
3.2. Valsartan, Losartan
3.3. Olmesartan, Telmisartan
3.4. Candesartan, Irbesartan
Drug | Immunological Mechanism (Reference) |
---|---|
Valsartan | Reduction in: |
Candesartan | Reduction in:
|
Losartan | Reduction in:
|
Olmesartan | Reduction in:
|
Eprosartan | Reduction in:
|
Telmisartan | Reduction in:
|
Irbesartan | Reduction in:
|
4. The Most Recent Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yoon, S.S.; Gu, Q.; Nwankwo, T.; Wright, J.D.; Hong, Y.; Burt, V. Trends in Blood Pressure among Adults with Hypertension: United States, 2003 to 2012. Hypertension 2015, 65, 54–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muntner, P.; Carey, R.M.; Gidding, S.; Jones, D.W.; Taler, S.J.; Wright, J.T.; Whelton, P.K. Potential US Population Impact of the 2017 ACC/AHA High Blood Pressure Guideline. Circulation 2018, 137, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018, 71, e13–e115. [Google Scholar] [CrossRef] [PubMed]
- Forman, J.P.; Stampfer, M.J.; Curhan, G.C. Diet and Lifestyle Risk Factors Associated with Incident Hypertension in Women. JAMA 2009, 302, 401–411. [Google Scholar] [CrossRef] [Green Version]
- Sonne-Holm, S.; Sørensen, T.I.; Jensen, G.; Schnohr, P. Independent Effects of Weight Change and Attained Body Weight on Prevalence of Arterial Hypertension in Obese and Non-Obese Men. BMJ 1989, 299, 767–770. [Google Scholar] [CrossRef] [Green Version]
- Staessen, J.A.; Wang, J.; Bianchi, G.; Birkenhäger, W.H. Essential Hypertension. Lancet 2003, 361, 1629–1641. [Google Scholar] [CrossRef]
- Wang, N.-Y.; Young, J.H.; Meoni, L.A.; Ford, D.E.; Erlinger, T.P.; Klag, M.J. Blood Pressure Change and Risk of Hypertension Associated with Parental Hypertension: The Johns Hopkins Precursors Study. Arch. Intern. Med. 2008, 168, 643–648. [Google Scholar] [CrossRef]
- Selassie, A.; Wagner, C.S.; Laken, M.L.; Ferguson, M.L.; Ferdinand, K.C.; Egan, B.M. Progression Is Accelerated from Prehypertension to Hypertension in Blacks. Hypertension 2011, 58, 579–587. [Google Scholar] [CrossRef] [Green Version]
- Carnethon, M.R.; Evans, N.S.; Church, T.S.; Lewis, C.E.; Schreiner, P.J.; Jacobs, D.R.; Sternfeld, B.; Sidney, S. Joint Associations of Physical Activity and Aerobic Fitness on the Development of Incident Hypertension: Coronary Artery Risk Development in Young Adults. Hypertension 2010, 56, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Warnes, C.A.; Williams, R.G.; Bashore, T.M.; Child, J.S.; Connolly, H.M.; Dearani, J.A.; Del Nido, P.; Fasules, J.W.; Graham, T.P.; Hijazi, Z.M.; et al. ACC/AHA 2008 Guidelines for the Management of Adults with Congenital Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines on the Management of Adults with Congenital Heart Disease). Developed in Collaboration with the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J. Am. Coll. Cardiol. 2008, 52, e143–e263. [Google Scholar] [CrossRef] [Green Version]
- Mancia, G.; Fagard, R.; Narkiewicz, K.; Redón, J.; Zanchetti, A.; Böhm, M.; Christiaens, T.; Cifkova, R.; De Backer, G.; Dominiczak, A.; et al. 2013 ESH/ESC Guidelines for the Management of Arterial Hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J. Hypertens. 2013, 31, 1281–1357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibbs, J.; Gaskin, E.; Ji, C.; Miller, M.A.; Cappuccio, F.P. The Effect of Plant-Based Dietary Patterns on Blood Pressure: A Systematic Review and Meta-Analysis of Controlled Intervention Trials. J. Hypertens. 2021, 39, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M.; Campos, H. Dietary Therapy in Hypertension. N. Engl. J. Med. 2010, 362, 2102–2112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appel, L.J.; Champagne, C.M.; Harsha, D.W.; Cooper, L.S.; Obarzanek, E.; Elmer, P.J.; Stevens, V.J.; Vollmer, W.M.; Lin, P.-H.; Svetkey, L.P.; et al. Effects of Comprehensive Lifestyle Modification on Blood Pressure Control: Main Results of the PREMIER Clinical Trial. JAMA 2003, 289, 2083–2093. [Google Scholar] [CrossRef]
- Nazimek, K.; Kozlowski, M.; Bryniarski, P.; Strobel, S.; Bryk, A.; Myszka, M.; Tyszka, A.; Kuszmiersz, P.; Nowakowski, J.; Filipczak-Bryniarska, I. Repeatedly Administered Antidepressant Drugs Modulate Humoral and Cellular Immune Response in Mice through Action on Macrophages. Exp. Biol. Med. 2016, 241, 1540–1550. [Google Scholar] [CrossRef] [PubMed]
- Nazimek, K.; Strobel, S.; Bryniarski, P.; Kozlowski, M.; Filipczak-Bryniarska, I.; Bryniarski, K. The Role of Macrophages in Anti-Inflammatory Activity of Antidepressant Drugs. Immunobiology 2017, 222, 823–830. [Google Scholar] [CrossRef]
- Migdalof, B.H.; Antonaccio, M.J.; McKinstry, D.N.; Singhvi, S.M.; Lan, S.J.; Egli, P.; Kripalani, K.J. Captopril: Pharmacology, Metabolism and Disposition. Drug Metab. Rev. 1984, 15, 841–869. [Google Scholar] [CrossRef]
- Serreau, R.; Luton, D.; Macher, M.-A.; Delezoide, A.-L.; Garel, C.; Jacqz-Aigrain, E. Developmental Toxicity of the Angiotensin II Type 1 Receptor Antagonists during Human Pregnancy: A Report of 10 Cases. BJOG Int. J. Obstet. Gynaecol. 2005, 112, 710–712. [Google Scholar] [CrossRef]
- Yusuf, S.; Teo, K.K.; Pogue, J.; Dyal, L.; Copland, I.; Schumacher, H.; Dagenais, G.; Sleight, P.; Anderson, C. Telmisartan, Ramipril, or Both in Patients at High Risk for Vascular Events. N. Engl. J. Med. 2008, 358, 1547–1559. [Google Scholar] [CrossRef]
- Israili, Z.H.; Hall, W.D. Cough and Angioneurotic Edema Associated with Angiotensin-Converting Enzyme Inhibitor Therapy. A Review of the Literature and Pathophysiology. Ann. Intern. Med. 1992, 117, 234–242. [Google Scholar] [CrossRef]
- Wood, R. Bronchospasm and Cough as Adverse Reactions to the ACE Inhibitors Captopril, Enalapril and Lisinopril. A Controlled Retrospective Cohort Study. Br. J. Clin. Pharmacol. 1995, 39, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Bangalore, S.; Kumar, S.; Messerli, F.H. Angiotensin-Converting Enzyme Inhibitor Associated Cough: Deceptive Information from the Physicians’ Desk Reference. Am. J. Med. 2010, 123, 1016–1030. [Google Scholar] [CrossRef] [PubMed]
- Isles, C.G.; Hodsman, G.P.; Robertson, J.I. Side-Effects of Captopril. Lancet 1983, 1, 355. [Google Scholar] [CrossRef]
- Kostis, J.B.; Packer, M.; Black, H.R.; Schmieder, R.; Henry, D.; Levy, E. Omapatrilat and Enalapril in Patients with Hypertension: The Omapatrilat Cardiovascular Treatment vs. Enalapril (OCTAVE) Trial. Am. J. Hypertens. 2004, 17, 103–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beltrami, L.; Zanichelli, A.; Zingale, L.; Vacchini, R.; Carugo, S.; Cicardi, M. Long-Term Follow-up of 111 Patients with Angiotensin-Converting Enzyme Inhibitor-Related Angioedema. J. Hypertens. 2011, 29, 2273–2277. [Google Scholar] [CrossRef] [PubMed]
- Reardon, L.C.; Macpherson, D.S. Hyperkalemia in Outpatients Using Angiotensin-Converting Enzyme Inhibitors. How Much Should We Worry? Arch. Intern. Med. 1998, 158, 26–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, S.P.; Xie, X.M. Captopril Inhibits the Production of Tumor Necrosis Factor-Alpha by Human Mononuclear Cells in Patients with Congestive Heart Failure. Clin. Chim. Acta 2001, 304, 85–90. [Google Scholar] [CrossRef]
- Schindler, R.; Dinarello, C.A.; Koch, K.M. Angiotensin-Converting-Enzyme Inhibitors Suppress Synthesis of Tumour Necrosis Factor and Interleukin 1 by Human Peripheral Blood Mononuclear Cells. Cytokine 1995, 7, 526–533. [Google Scholar] [CrossRef]
- Sheikhi, A.; Jaberi, Y.; Esmaeilzadeh, A.; Khani, M.; Moosaeefard, M.; Shafaqatian, M. The Effect of Cardiovascular Drugs on Pro-Inflammatory Cytokine Secretion and Natural Killer Activity of Peripheral Blood Mononuclear Cells of Patients with Chronic Heart Failure in Vitro. Pak. J. Biol. Sci. 2007, 10, 1580–1587. [Google Scholar] [CrossRef]
- Peeters, A.C.; Netea, M.G.; Kullberg, B.J.; Thien, T.; van der Meer, J.W. The Effect of Renin-Angiotensin System Inhibitors on pro- and Anti-Inflammatory Cytokine Production. Immunology 1998, 94, 376–379. [Google Scholar] [CrossRef]
- Nemati, F.; Rahbar-Roshandel, N.; Hosseini, F.; Mahmoudian, M.; Shafiei, M. Anti-Inflammatory Effects of Anti-Hypertensive Agents: Influence on Interleukin-1β Secretion by Peripheral Blood Polymorphonuclear Leukocytes from Patients with Essential Hypertension. Clin. Exp. Hypertens. 2011, 33, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Haas, M.J.; Jurado-Flores, M.; Hammoud, R.; Feng, V.; Gonzales, K.; Onstead-Haas, L.; Mooradian, A.D. The Effects of Known Cardioprotective Drugs on Proinflammatory Cytokine Secretion From Human Coronary Artery Endothelial Cells. Am. J. Ther. 2019, 26, e321–e332. [Google Scholar] [CrossRef] [PubMed]
- Miguel-Carrasco, J.L.; Zambrano, S.; Blanca, A.J.; Mate, A.; Vázquez, C.M. Captopril Reduces Cardiac Inflammatory Markers in Spontaneously Hypertensive Rats by Inactivation of NF-KB. J. Inflamm. 2010, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Amirshahrokhi, K.; Ghazi-khansari, M.; Mohammadi-Farani, A.; Karimian, G. Effect of Captopril on TNF-α and IL-10 in the Livers of Bile Duct Ligated Rats. Iran. J. Immunol. 2010, 7, 247–251. [Google Scholar] [PubMed]
- Albuquerque, D.; Nihei, J.; Cardillo, F.; Singh, R. The ACE Inhibitors Enalapril and Captopril Modulate Cytokine Responses in Balb/c and C57Bl/6 Normal Mice and Increase CD4(+)CD103(+)CD25(Negative) Splenic T Cell Numbers. Cell Immunol. 2010, 260, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wahab, B.A.; Metwally, M.E.; El-khawanki, M.M.; Hashim, A.M. Protective Effect of Captopril against Clozapine-Induced Myocarditis in Rats: Role of Oxidative Stress, Proinflammatory Cytokines and DNA Damage. Chem. Biol. Interact. 2014, 216, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Li, J.; Chai, R.; Guo, W.; Xu, L.; Han, Y.; Bai, X.; Wang, H. Combining Use of Captopril and Losartan Attenuates the Progress of Streptococcus Pneumoniae-Induced Tympanosclerosis through the Suppression of TGF-Β1 Expression. PLoS ONE 2014, 9, e111620. [Google Scholar] [CrossRef]
- Park, H.-S.; Han, A.; Yeo, H.-L.; Park, M.-J.; You, M.-J.; Choi, H.J.; Hong, C.-W.; Lee, S.-H.; Kim, S.H.; Kim, B.; et al. Chronic High Dose of Captopril Induces Depressive-like Behaviors in Mice: Possible Mechanism of Regulatory T Cell in Depression. Oncotarget 2017, 8, 72528–72543. [Google Scholar] [CrossRef] [Green Version]
- Sepehri, Z.; Masoumi, M.; Ebrahimi, N.; Kiani, Z.; Nasiri, A.A.; Kohan, F.; Sheikh Fathollahi, M.; Kazemi Arababadi, M.; Asadikaram, G. Atorvastatin, Losartan and Captopril Lead to Upregulation of TGF-β, and Downregulation of IL-6 in Coronary Artery Disease and Hypertension. PLoS ONE 2016, 11, e0168312. [Google Scholar] [CrossRef]
- Akbari, H.; Asadikaram, G.; Jafari, A.; Nazari-Robati, M.; Ebrahimi, G.; Ebrahimi, N.; Masoumi, M. Atorvastatin, Losartan and Captopril May Upregulate IL-22 in Hypertension and Coronary Artery Disease; the Role of Gene Polymorphism. Life Sci. 2018, 207, 525–531. [Google Scholar] [CrossRef]
- Gong, X.; Zhou, R.; Li, Q. Effects of Captopril and Valsartan on Ventricular Remodeling and Inflammatory Cytokines after Interventional Therapy for AMI. Exp. Ther. Med. 2018, 16, 3579–3583. [Google Scholar] [CrossRef] [PubMed]
- El-Ashmawy, N.E.; Khedr, N.F.; El-Bahrawy, H.A.; Hamada, O.B. Anti-Inflammatory and Antioxidant Effects of Captopril Compared to Methylprednisolone in L-Arginine-Induced Acute Pancreatitis. Dig. Dis. Sci. 2018, 63, 1497–1505. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Xu, H.; Liu, Y.; Li, B.; Zhou, F. Effect of Captopril on Radiation-Induced TGF-Β1 Secretion in EA.Hy926 Human Umbilical Vein Endothelial Cells. Oncotarget 2017, 8, 20842–20850. [Google Scholar] [CrossRef] [Green Version]
- Abareshi, A.; Hosseini, M.; Beheshti, F.; Norouzi, F.; Khazaei, M.; Sadeghnia, H.R.; Boskabady, M.H.; Shafei, M.N.; Anaeigoudari, A. The Effects of Captopril on Lipopolysaccharide Induced Learning and Memory Impairments and the Brain Cytokine Levels and Oxidative Damage in Rats. Life Sci. 2016, 167, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-Q.; Zhang, Q.; Chen, L.; Yin, C.-S.; Chen, P.; Tang, J.; Rong, R.; Li, T.-T.; Hu, L.-Q. Captopril Inhibits Maturation of Dendritic Cells and Maintains Their Tolerogenic Property in Atherosclerotic Rats. Int. Immunopharmacol. 2015, 28, 715–723. [Google Scholar] [CrossRef]
- Abd Alla, J.; Langer, A.; Elzahwy, S.S.; Arman-Kalcek, G.; Streichert, T.; Quitterer, U. Angiotensin-Converting Enzyme Inhibition down-Regulates the pro-Atherogenic Chemokine Receptor 9 (CCR9)-Chemokine Ligand 25 (CCL25) Axis. J. Biol. Chem. 2010, 285, 23496–23505. [Google Scholar] [CrossRef] [Green Version]
- Sugiyama, E.; Iwata, M.; Yamashita, N.; Yoshikawa, T.; Maruyama, M.; Yano, S. Immunosuppression by Captopril in Vitro: Inhibition of Human Natural Killer Activity by Copper-Dependent Generation of Hydrogen Peroxide. Jpn. J. Med. 1986, 25, 149–154. [Google Scholar] [CrossRef] [Green Version]
- Fukuzawa, M.; Satoh, J.; Sagara, M.; Muto, G.; Muto, Y.; Nishimura, S.; Miyaguchi, S.; Qiang, X.L.; Sakata, Y.; Nakazawa, T.; et al. Angiotensin Converting Enzyme Inhibitors Suppress Production of Tumor Necrosis Factor-Alpha in Vitro and in Vivo. Immunopharmacology 1997, 36, 49–55. [Google Scholar] [CrossRef]
- Sheth, T.; Parker, T.; Block, A.; Hall, C.; Adam, A.; Pfeffer, M.A.; Stewart, D.J.; Qian, C.; Rouleau, J.L.; IMPRESS Investigators. Comparison of the Effects of Omapatrilat and Lisinopril on Circulating Neurohormones and Cytokines in Patients with Chronic Heart Failure. Am. J. Cardiol. 2002, 90, 496–500. [Google Scholar] [CrossRef]
- Suzuki, M.; Teramoto, S.; Katayama, H.; Ohga, E.; Matsuse, T.; Ouchi, Y. Effects of Angiotensin-Converting Enzyme (ACE) Inhibitors on Oxygen Radical Production and Generation by Murine Lung Alveolar Macrophages. J. Asthma 1999, 36, 665–670. [Google Scholar] [CrossRef]
- Constantinescu, C.S.; Goodman, D.B.; Ventura, E.S. Captopril and Lisinopril Suppress Production of Interleukin-12 by Human Peripheral Blood Mononuclear Cells. Immunol. Lett. 1998, 62, 25–31. [Google Scholar] [CrossRef]
- Stenvinkel, P.; Andersson, P.; Wang, T.; Lindholm, B.; Bergström, J.; Palmblad, J.; Heimbürger, O.; Cederholm, T. Do ACE-Inhibitors Suppress Tumour Necrosis Factor-Alpha Production in Advanced Chronic Renal Failure? J. Intern. Med. 1999, 246, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Navarro, J.F.; Milena, F.J.; Mora, C.; León, C.; Claverie, F.; Flores, C.; García, J. Tumor Necrosis Factor-Alpha Gene Expression in Diabetic Nephropathy: Relationship with Urinary Albumin Excretion and Effect of Angiotensin-Converting Enzyme Inhibition. Kidney Int. Suppl. 2005, S98–S102. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-H.; Verma, S.; Hsieh, I.-C.; Chen, Y.-J.; Kuo, L.-T.; Yang, N.-I.; Wang, S.-Y.; Wu, M.-Y.; Hsu, C.-M.; Cheng, C.-W.; et al. Enalapril Increases Ischemia-Induced Endothelial Progenitor Cell Mobilization through Manipulation of the CD26 System. J. Mol. Cell. Cardiol. 2006, 41, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Almeida, L.C.; Muraro, L.S.; Albuquerque, D.A. Enhancement of Anti-OVA IgG2c Production in Vivo by Enalapril. Braz. J. Med. Biol. Res. 2016, 49. [Google Scholar] [CrossRef] [Green Version]
- Keller, K.; Kane, A.; Heinze-Milne, S.; Grandy, S.A.; Howlett, S.E. Chronic Treatment with the ACE Inhibitor Enalapril Attenuates the Development of Frailty and Differentially Modifies Pro- and Anti-Inflammatory Cytokines in Aging Male and Female C57BL/6 Mice. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 1149–1157. [Google Scholar] [CrossRef]
- Lee, C.; Chun, J.; Hwang, S.W.; Kang, S.J.; Im, J.P.; Kim, J.S. Enalapril Inhibits Nuclear Factor-ΚB Signaling in Intestinal Epithelial Cells and Peritoneal Macrophages and Attenuates Experimental Colitis in Mice. Life Sci. 2014, 95, 29–39. [Google Scholar] [CrossRef]
- Hernández-Fonseca, J.P.; Durán, A.; Valero, N.; Mosquera, J. Losartan and Enalapril Decrease Viral Absorption and Interleukin 1 Beta Production by Macrophages in an Experimental Dengue Virus Infection. Arch. Virol. 2015, 160, 2861–2865. [Google Scholar] [CrossRef]
- Cucak, H.; Nielsen Fink, L.; Højgaard Pedersen, M.; Rosendahl, A. Enalapril Treatment Increases T Cell Number and Promotes Polarization towards M1-like Macrophages Locally in Diabetic Nephropathy. Int. Immunopharmacol. 2015, 25, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Sueyoshi, R.; Ignatoski, K.M.W.; Daignault, S.; Okawada, M.; Teitelbaum, D.H. Angiotensin Converting Enzyme-Inhibitor Reduces Colitis Severity in an IL-10 Knockout Model. Dig. Dis. Sci. 2013, 58, 3165–3177. [Google Scholar] [CrossRef] [Green Version]
- Salmenkari, H.; Pasanen, L.; Linden, J.; Korpela, R.; Vapaatalo, H. Beneficial Anti-Inflammatory Effect of Angiotensin-Converting Enzyme Inhibitor and Angiotensin Receptor Blocker in the Treatment of Dextran Sulfate Sodium-Induced Colitis in Mice. J. Physiol. Pharmacol. 2018, 69, 4. [Google Scholar] [CrossRef]
- Zamani, P.; Ganz, P.; Libby, P.; Sutradhar, S.C.; Rifai, N.; Nicholls, S.J.; Nissen, S.E.; Kinlay, S. Relationship of Antihypertensive Treatment to Plasma Markers of Vascular Inflammation and Remodeling in the Comparison of Amlodipine versus Enalapril to Limit Occurrences of Thrombosis Study. Am. Heart J. 2012, 163, 735–740. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, B.; Dan, Q.; Yang, X.; Meng, B.; Zhang, Y. Effects of enalapril on IL-1beta, IL-6 expression in rat lung exposure to acrolein. Sichuan Da Xue Xue Bao Yi Xue Ban 2010, 41, 1003–1007, 1038. [Google Scholar] [PubMed]
- Krysiak, R.; Okopień, B. Different Effects of Perindopril and Enalapril on Monocyte Cytokine Release in Coronary Artery Disease Patients with Normal Blood Pressure. Pharmacol. Rep. 2012, 64, 1466–1475. [Google Scholar] [CrossRef]
- Shalkami, A.-G.S.; Hassan, M.I.A.; Abd El-Ghany, A.A. Perindopril Regulates the Inflammatory Mediators, NF-ΚB/TNF-α/IL-6, and Apoptosis in Cisplatin-Induced Renal Dysfunction. Naunyn Schmiedebergs Arch. Pharmacol. 2018, 391, 1247–1255. [Google Scholar] [CrossRef]
- Madej, A.; Buldak, L.; Basiak, M.; Szkrobka, W.; Dulawa, A.; Okopien, B. The Effects of 1 Month Antihypertensive Treatment with Perindopril, Bisoprolol or Both on the Ex Vivo Ability of Monocytes to Secrete Inflammatory Cytokines. Int. J. Clin. Pharmacol. Ther. 2009, 47, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Madej, A.; Dąbek, J.; Majewski, M.; Szuta, J. Effect of Perindopril and Bisoprolol on IL-2, INF-γ, Hs-CRP and T-Cell Stimulation and Correlations with Blood Pressure in Mild and Moderate Hypertension. Int. J. Clin. Pharmacol. Ther. 2018, 56, 393–399. [Google Scholar] [CrossRef]
- Gilowski, W.; Krysiak, R.; Marek, B.; Okopień, B. The Effect of Short-Term Perindopril and Telmisartan Treatment on Circulating Levels of Anti-Inflammatory Cytokines in Hypertensive Patients. Endokrynol. Pol. 2018, 69, 667–674. [Google Scholar] [CrossRef]
- Lizakowski, S.; Tylicki, L.; Renke, M.; Rutkowski, P.; Heleniak, Z.; Sławińska-Morawska, M.; Aleksandrowicz-Wrona, E.; Małgorzewicz, S.; Rutkowski, B. Aliskiren and Perindopril Reduce the Levels of Transforming Growth Factor-β in Patients with Non-Diabetic Kidney Disease. Am. J. Hypertens. 2012, 25, 636–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, M.-K.; Jan, R.-L.; Lin, C.-H.; Kuo, C.-H.; Yang, S.-N.; Chen, H.-N.; Huang, M.-Y.; Hung, C.-H. Suppressive Effects of Imidapril on Th1- and Th2-Related Chemokines in Monocytes. J. Investig. Med. 2011, 59, 1141–1146. [Google Scholar] [CrossRef]
- Siragy, H.M.; Xue, C.; Webb, R.L. Beneficial Effects of Combined Benazepril-Amlodipine on Cardiac Nitric Oxide, CGMP, and TNF-Alpha Production after Cardiac Ischemia. J. Cardiovasc. Pharmacol. 2006, 47, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, Y.; Zhou, Z.; Tian, F.; Yang, H.; Yan, J. Combination of Leflunomide and Benazepril Reduces Renal Injury of Diabetic Nephropathy Rats and Inhibits High-Glucose Induced Cell Apoptosis through Regulation of NF-ΚB, TGF-β and TRPC6. Ren Fail. 2019, 41, 899–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, S.-H.; Zhao, N.-W.; Zhu, X.-X.; Wang, Q.; Wang, H.-D.; Fu, R.; Sun, Y.; Li, Q.-Y. Benazepril Inhibited the NF-ΚB and TGF-β Networking on LV Hypertrophy in Rats. Immunol. Lett. 2013, 152, 126–134. [Google Scholar] [CrossRef]
- Wei, M.; Gu, S.; Zhang, Y.; Wu, Y.; Wu, Z. Effects of pravastatin, fosinopril and their combination on myocardium TNF-alpha expression and ventricular remodeling after myocardial infarction in rats. Zhonghua Xin Xue Guan Bing Za Zhi 2005, 33, 444–447. [Google Scholar]
- Berezin, A.E. Effect of fosinopril on the rate of neurohumoral and proinflammatory activation in patients with heart failure. Klin. Med. 2004, 82, 29–32. [Google Scholar]
- Shimozawa, M.; Naito, Y.; Manabe, H.; Uchiyama, K.; Katada, K.; Kuroda, M.; Nakabe, N.; Yoshida, N.; Yoshikawa, T. The Inhibitory Effect of Alacepril, an Angiotensin-Converting Enzyme Inhibitor, on Endothelial Inflammatory Response Induced by Oxysterol and TNF-Alpha. Redox Rep. 2004, 9, 354–359. [Google Scholar] [CrossRef]
- Monti, M.; Terzuoli, E.; Ziche, M.; Morbidelli, L. H2S Dependent and Independent Anti-Inflammatory Activity of Zofenoprilat in Cells of the Vascular Wall. Pharmacol. Res. 2016, 113, 426–437. [Google Scholar] [CrossRef]
- Scribner, A.W.; Loscalzo, J.; Napoli, C. The Effect of Angiotensin-Converting Enzyme Inhibition on Endothelial Function and Oxidant Stress. Eur. J. Pharmacol. 2003, 482, 95–99. [Google Scholar] [CrossRef]
- Del Fiorentino, A.; Cianchetti, S.; Celi, A.; Pedrinelli, R. Aliskiren, a Renin Inhibitor, Downregulates TNF-α-Induced Tissue Factor Expression in HUVECS. J. Renin Angiotensin Aldosterone Syst. 2010, 11, 243–247. [Google Scholar] [CrossRef] [Green Version]
- Gamboa, J.L.; Pretorius, M.; Todd-Tzanetos, D.R.; Luther, J.M.; Yu, C.; Ikizler, T.A.; Brown, N.J. Comparative Effects of Angiotensin-Converting Enzyme Inhibition and Angiotensin-Receptor Blockade on Inflammation during Hemodialysis. J. Am. Soc. Nephrol. 2012, 23, 334–342. [Google Scholar] [CrossRef] [Green Version]
- Brili, S.; Tousoulis, D.; Antoniades, C.; Vasiliadou, C.; Karali, M.; Papageorgiou, N.; Ioakeimidis, N.; Marinou, K.; Stefanadi, E.; Stefanadis, C. Effects of Ramipril on Endothelial Function and the Expression of Proinflammatory Cytokines and Adhesion Molecules in Young Normotensive Subjects with Successfully Repaired Coarctation of Aorta: A Randomized Cross-over Study. J. Am. Coll. Cardiol. 2008, 51, 742–749. [Google Scholar] [CrossRef] [Green Version]
- Sandmann, S.; Li, J.; Fritzenkötter, C.; Spormann, J.; Tiede, K.; Fischer, J.W.; Unger, T. Differential Effects of Olmesartan and Ramipril on Inflammatory Response after Myocardial Infarction in Rats. Blood Press. 2006, 15, 116–128. [Google Scholar] [CrossRef]
- Janickova Zdarska, D.; Zavadova, E.; Kvapil, M. The Effect of Ramipril Therapy on Cytokines and Parameters of Incipient Diabetic Nephropathy in Patients with Type 1 Diabetes Mellitus. J. Int. Med. Res. 2007, 35, 374–383. [Google Scholar] [CrossRef] [Green Version]
- Marcinkiewicz, J.; Witkowski, J.M.; Olszanecki, R. Dual role of the immune system in a course of COVID-19. The fatal impact of aging immune system. Cent. Eur. J. Immunol. 2021, 46, 1–9. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Nakajima, T.; Kuba, K.; Kimura, A. Losartan Inhibits LPS-Induced Inflammatory Signaling through a PPARgamma-Dependent Mechanism in Human THP-1 Macrophages. Hypertens. Res. 2010, 33, 831–835. [Google Scholar] [CrossRef] [Green Version]
- Kaynar, K.; Ulusoy, S.; Ovali, E.; Vanizor, B.; Dikmen, T.; Gul, S. TGF-Beta and TNF-Alpha Producing Effects of Losartan and Amlodipine on Human Mononuclear Cell Culture. Nephrology 2005, 10, 478–482. [Google Scholar] [CrossRef] [PubMed]
- El-Agroudy, A.E.; Hassan, N.A.; Foda, M.A.; Ismail, A.M.; El-Sawy, E.A.; Mousa, O.; Ghoneim, M.A. Effect of Angiotensin II Receptor Blocker on Plasma Levels of TGF-Beta 1 and Interstitial Fibrosis in Hypertensive Kidney Transplant Patients. Am. J. Nephrol. 2003, 23, 300–306. [Google Scholar] [CrossRef]
- Park, H.C.; Xu, Z.G.; Choi, S.; Goo, Y.S.; Kang, S.W.; Choi, K.H.; Ha, S.K.; Lee, H.Y.; Han, D.S. Effect of Losartan and Amlodipine on Proteinuria and Transforming Growth Factor-Beta1 in Patients with IgA Nephropathy. Nephrol. Dial. Transplant. 2003, 18, 1115–1121. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, P.R.G.; Matias, K.A.; Dantas, A.T.; Marques, C.D.L.; Pereira, M.C.; Duarte, A.L.B.P.; de Melo Rego, M.J.B.; da Rocha Pitta, I.; da Rocha Pitta, M.G. Losartan, but Not Enalapril and Valsartan, Inhibits the Expression of IFN-γ, IL-6, IL-17F and IL-22 in PBMCs from Rheumatoid Arthritis Patients. Open Rheumatol. J. 2018, 12, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Subeq, Y.-M.; Ke, C.-Y.; Lin, N.-T.; Lee, C.-J.; Chiu, Y.-H.; Hsu, B.-G. Valsartan Decreases TGF-Β1 Production and Protects against Chlorhexidine Digluconate-Induced Liver Peritoneal Fibrosis in Rats. Cytokine 2011, 53, 223–230. [Google Scholar] [CrossRef]
- Jiao, B.; Wang, Y.S.; Cheng, Y.N.; Gao, J.J.; Zhang, Q.Z. Valsartan Attenuated Oxidative Stress, Decreased MCP-1 and TGF-Β1 Expression in Glomerular Mesangial and Epithelial Cells Induced by High-Glucose Levels. Biosci. Trends 2011, 5, 173–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Hu, H.; Wang, Y.; Xue, M.; Li, X.; Cheng, W.; Xuan, Y.; Yin, J.; Yang, N.; Yan, S. Valsartan Attenuates KIR2.1 by Downregulating the Th1 Immune Response in Rats Following Myocardial Infarction. J. Cardiovasc. Pharmacol. 2016, 67, 252–259. [Google Scholar] [CrossRef]
- Iwashita, M.; Sakoda, H.; Kushiyama, A.; Fujishiro, M.; Ohno, H.; Nakatsu, Y.; Fukushima, T.; Kumamoto, S.; Tsuchiya, Y.; Kikuchi, T.; et al. Valsartan, Independently of AT1 Receptor or PPARγ, Suppresses LPS-Induced Macrophage Activation and Improves Insulin Resistance in Cocultured Adipocytes. Am. J. Physiol. Endocrinol. Metab. 2012, 302, E286–E296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Q.; Wang, Y.; Sun, Z.; Yang, T. Effects of Valsartan and Indapamide on Plasma Cytokines in Essential Hypertension. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2006, 31, 629–634. [Google Scholar] [PubMed]
- Hepworth, M.L.; Passey, S.L.; Seow, H.J.; Vlahos, R. Losartan Does Not Inhibit Cigarette Smoke-Induced Lung Inflammation in Mice. Sci. Rep. 2019, 9, 15053. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Huang, L.; Peng, Z.-Z.; Tang, Y.-T.; Lu, M.-M.; Peng, Y.; Mel, W.-J.; Wu, L.; Mo, Z.-H.; Meng, J.; et al. Losartan Inhibits LPS + ATP-Induced IL-1beta Secretion from Mouse Primary Macrophages by Suppressing NALP3 Inflammasome. Pharmazie 2014, 69, 680–684. [Google Scholar]
- Suganuma, E.; Niimura, F.; Matsuda, S.; Ukawa, T.; Nakamura, H.; Sekine, K.; Kato, M.; Aiba, Y.; Koga, Y.; Hayashi, K.; et al. Losartan Attenuates the Coronary Perivasculitis through Its Local and Systemic Anti-Inflammatory Properties in a Murine Model of Kawasaki Disease. Pediatr. Res. 2017, 81, 593–600. [Google Scholar] [CrossRef]
- Kim, E.; Hwang, S.-H.; Kim, H.-K.; Abdi, S.; Kim, H.K. Losartan, an Angiotensin II Type 1 Receptor Antagonist, Alleviates Mechanical Hyperalgesia in a Rat Model of Chemotherapy-Induced Neuropathic Pain by Inhibiting Inflammatory Cytokines in the Dorsal Root Ganglia. Mol. Neurobiol. 2019, 56, 7408–7419. [Google Scholar] [CrossRef]
- Yamamoto, S.; Zhong, J.; Yancey, P.G.; Zuo, Y.; Linton, M.F.; Fazio, S.; Yang, H.; Narita, I.; Kon, V. Atherosclerosis Following Renal Injury Is Ameliorated by Pioglitazone and Losartan via Macrophage Phenotype. Atherosclerosis 2015, 242, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Xiao, C.; Zhou, Q.; Li, X.; Li, H.; Zhong, Y.; Meng, T.; Zhu, M.; Sun, H.; Liu, S.; Tang, R.; et al. Losartan and Dexamethasone May Inhibit Chemotaxis to Reduce the Infiltration of Th22 Cells in IgA Nephropathy. Int. Immunopharmacol. 2017, 42, 203–208. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, P.-S.; Yu, Q.; Liu, L.; Yang, Y.; Guo, F.-M.; Qiu, H.-B. Losartan Inhibits Conventional Dendritic Cell Maturation and Th1 and Th17 Polarization Responses: Novel Mechanisms of Preventive Effects on Lipopolysaccharide-Induced Acute Lung Injury. Int. J. Mol. Med. 2012, 29, 269–276. [Google Scholar] [CrossRef]
- Wang, X.; Chen, X.; Huang, W.; Zhang, P.; Guo, Y.; Körner, H.; Wu, H.; Wei, W. Losartan Suppresses the Inflammatory Response in Collagen-Induced Arthritis by Inhibiting the MAPK and NF-ΚB Pathways in B and T Cells. Inflammopharmacology 2019, 27, 487–502. [Google Scholar] [CrossRef] [PubMed]
- Aki, K.; Shimizu, A.; Masuda, Y.; Kuwahara, N.; Arai, T.; Ishikawa, A.; Fujita, E.; Mii, A.; Natori, Y.; Fukunaga, Y.; et al. ANG II Receptor Blockade Enhances Anti-Inflammatory Macrophages in Anti-Glomerular Basement Membrane Glomerulonephritis. Am. J. Physiol. Renal Physiol. 2010, 298, F870–F882. [Google Scholar] [CrossRef] [PubMed]
- Takagi, H.; Mizuno, Y.; Yamamoto, H.; Goto, S.; Umemoto, T.; All-Literature Investigation of Cardiovascular Evidence Group. Effects of Telmisartan Therapy on Interleukin-6 and Tumor Necrosis Factor-Alpha Levels: A Meta-Analysis of Randomized Controlled Trials. Hypertens. Res. 2013, 36, 368–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Zhang, J.; Lu, F.; Ma, M.; Wang, J.; Suo, A.; Bai, Y.; Liu, H. Effects of telmisartan on the level of Aβ1-42, interleukin-1β, tumor necrosis factor α and cognition in hypertensive patients with Alzheimer’s disease. Zhonghua Yi Xue Za Zhi 2012, 92, 2743–2746. [Google Scholar]
- Justin, A.; Sathishkumar, M.; Sudheer, A.; Shanthakumari, S.; Ramanathan, M. Non-Hypotensive Dose of Telmisartan and Nimodipine Produced Synergistic Neuroprotective Effect in Cerebral Ischemic Model by Attenuating Brain Cytokine Levels. Pharmacol. Biochem. Behav. 2014, 122, 61–73. [Google Scholar] [CrossRef]
- Pang, T.; Wang, J.; Benicky, J.; Sánchez-Lemus, E.; Saavedra, J.M. Telmisartan Directly Ameliorates the Neuronal Inflammatory Response to IL-1β Partly through the JNK/c-Jun and NADPH Oxidase Pathways. J. Neuroinflamm. 2012, 9, 102. [Google Scholar] [CrossRef] [Green Version]
- Walcher, D.; Hess, K.; Heinz, P.; Petscher, K.; Vasic, D.; Kintscher, U.; Clemenz, M.; Hartge, M.; Raps, K.; Hombach, V.; et al. Telmisartan Inhibits CD4-Positive Lymphocyte Migration Independent of the Angiotensin Type 1 Receptor via Peroxisome Proliferator-Activated Receptor-Gamma. Hypertension 2008, 51, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, T.; Kinoshita, H.; Ishii, N.; Fukuda, K.; Motoshima, H.; Senokuchi, T.; Taketa, K.; Kawasaki, S.; Nishimaki-Mogami, T.; Kawada, T.; et al. Telmisartan Exerts Antiatherosclerotic Effects by Activating Peroxisome Proliferator-Activated Receptor-γ in Macrophages. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 1268–1275. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.-S.; He, S.-L.; Zhang, Y.-M. The Effects of Telmisartan on the Nuclear Factor of Activated T Lymphocytes Signalling Pathway in Hypertensive Patients. J. Renin Angiotensin Aldosterone Syst. 2016, 17, 1470320316655005. [Google Scholar] [CrossRef] [Green Version]
- Guerra, G.C.B.; Araújo, A.A.; Lira, G.A.; Melo, M.N.; Souto, K.K.O.; Fernandes, D.; Silva, A.L.; Araújo Júnior, R.F. Telmisartan Decreases Inflammation by Modulating TNF-α, IL-10, and RANK/RANKL in a Rat Model of Ulcerative Colitis. Pharmacol. Rep. 2015, 67, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-Y.; Li, X.; Tian, Y. Telmisartan Reduces Arrhythmias through Increasing Cardiac Connexin43 by Inhibiting IL-17 after Myocardial Infarction in Rats. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 5283–5289. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, H.; Murakami, R.; Numaguchi, Y.; Okumura, K.; Murohara, T. Angiotensin II Type 1 Receptor Blockers Prevent Tumor Necrosis Factor-Alpha-Mediated Endothelial Nitric Oxide Synthase Reduction and Superoxide Production in Human Umbilical Vein Endothelial Cells. Eur. J. Pharmacol. 2010, 636, 36–41. [Google Scholar] [CrossRef] [PubMed]
- de Araújo, A.A.; Borba, P.B.; de Souza, F.H.D.; Nogueira, A.C.; Saldanha, T.S.; Araújo, T.E.F.; da Silva, A.I.; de Araújo Júnior, R.F. In a Methotrexate-Induced Model of Intestinal Mucositis, Olmesartan Reduced Inflammation and Induced Enteropathy Characterized by Severe Diarrhea, Weight Loss, and Reduced Sucrose Activity. Biol. Pharm. Bull. 2015, 38, 746–752. [Google Scholar] [CrossRef] [Green Version]
- Sagawa, K.; Nagatani, K.; Komagata, Y.; Yamamoto, K. Angiotensin Receptor Blockers Suppress Antigen-Specific T Cell Responses and Ameliorate Collagen-Induced Arthritis in Mice. Arthritis Rheum. 2005, 52, 1920–1928. [Google Scholar] [CrossRef] [PubMed]
- Uramatsu, T.; Nishino, T.; Obata, Y.; Sato, Y.; Furusu, A.; Koji, T.; Miyazaki, T.; Kohno, S. Involvement of Apoptosis Inhibitor of Macrophages in a Rat Hypertension Model with Nephrosclerosis: Possible Mechanisms of Action of Olmesartan and Azelnidipine. Biol. Pharm. Bull. 2013, 36, 1271–1277. [Google Scholar] [CrossRef] [Green Version]
- de Araújo, R.F.; Reinaldo, M.P.O.D.; Brito, G.A.D.; Cavalcanti, P.D.; Freire, M.A.D.; de Medeiros, C.A.X.; de Araújo, A.A. Olmesartan Decreased Levels of IL-1β and TNF-α, down-Regulated MMP-2, MMP-9, COX-2, RANK/RANKL and up-Regulated SOCs-1 in an Intestinal Mucositis Model. PLoS ONE 2014, 9, e114923. [Google Scholar] [CrossRef]
- Nagib, M.M.; Tadros, M.G.; ElSayed, M.I.; Khalifa, A.E. Anti-Inflammatory and Anti-Oxidant Activities of Olmesartan Medoxomil Ameliorate Experimental Colitis in Rats. Toxicol. Appl. Pharmacol. 2013, 271, 106–113. [Google Scholar] [CrossRef]
- Suh, S.H.; Choi, H.S.; Kim, C.S.; Kim, I.J.; Ma, S.K.; Scholey, J.W.; Kim, S.W.; Bae, E.H. Olmesartan Attenuates Kidney Fibrosis in a Murine Model of Alport Syndrome by Suppressing Tubular Expression of TGFβ. Int. J. Mol. Sci. 2019, 20, 3843. [Google Scholar] [CrossRef] [Green Version]
- Araújo, A.A.; Lopes de Souza, G.; Souza, T.O.; de Castro Brito, G.A.; Sabóia Aragão, K.; Xavier de Medeiros, C.A.; Lourenço, Y.; do Socorro Costa Feitosa Alves, M.; Fernandes de Araújo, R. Olmesartan Decreases IL-1β and TNF-α Levels; Downregulates MMP-2, MMP-9, COX-2, and RANKL and Upregulates OPG in Experimental Periodontitis. Naunyn Schmiedebergs Arch. Pharmacol. 2013, 386, 875–884. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-C.; Yu, H.-Y.; Wang, X.-X.; Zhang, M.; Wang, J.-P. Olmesartan Medoxomil Reverses Left Ventricle Hypertrophy and Reduces Inflammatory Cytokine IL-6 in the Renovascular Hypertensive Rats. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 3318–3322. [Google Scholar] [PubMed]
- Rahman, S.T.; Lauten, W.B.; Khan, Q.A.; Navalkar, S.; Parthasarathy, S.; Khan, B.V. Effects of Eprosartan versus Hydrochlorothiazide on Markers of Vascular Oxidation and Inflammation and Blood Pressure (Renin-Angiotensin System Antagonists, Oxidation, and Inflammation). Am. J. Cardiol. 2002, 89, 686–690. [Google Scholar] [CrossRef] [PubMed]
- Behr, T.M.; Willette, R.N.; Coatney, R.W.; Berova, M.; Angermann, C.E.; Anderson, K.; Sackner-Bernstein, J.D.; Barone, F.C. Eprosartan Improves Cardiac Performance, Reduces Cardiac Hypertrophy and Mortality and Downregulates Myocardial Monocyte Chemoattractant Protein-1 and Inflammation in Hypertensive Heart Disease. J. Hypertens. 2004, 22, 583–592. [Google Scholar] [CrossRef]
- Yu, Y.; Jiang, H.; Niu, Y.; Zhang, X.; Zhang, Y.; Liu, X.I.; Qi, T.; Yu, C. Candesartan Inhibits Inflammation through an Angiotensin II Type 1 Receptor Independent Way in Human Embryonic Kidney Epithelial Cells. An. Acad. Bras. Cienc. 2019, 91, e20180699. [Google Scholar] [CrossRef]
- Kim, M.-J.; Im, D.-S. Suppressive Effects of Type I Angiotensin Receptor Antagonists, Candesartan and Irbesartan on Allergic Asthma. Eur. J. Pharmacol. 2019, 852, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Khuman, M.W.; Harikumar, S.K.; Sadam, A.; Kesavan, M.; Susanth, V.S.; Parida, S.; Singh, K.P.; Sarkar, S.N. Candesartan Ameliorates Arsenic-Induced Hypertensive Vascular Remodeling by Regularizing Angiotensin II and TGF-Beta Signaling in Rats. Toxicology 2016, 374, 29–41. [Google Scholar] [CrossRef]
- Tawinwung, S.; Petpiroon, N.; Chanvorachote, P. Blocking of Type 1 Angiotensin II Receptor Inhibits T-Lymphocyte Activation and IL-2 Production. In Vivo 2018, 32, 1353–1359. [Google Scholar] [CrossRef] [Green Version]
- Barakat, W.; Safwet, N.; El-Maraghy, N.N.; Zakaria, M.N.M. Candesartan and Glycyrrhizin Ameliorate Ischemic Brain Damage through Downregulation of the TLR Signaling Cascade. Eur. J. Pharmacol. 2014, 724, 43–50. [Google Scholar] [CrossRef]
- Benicky, J.; Sánchez-Lemus, E.; Honda, M.; Pang, T.; Orecna, M.; Wang, J.; Leng, Y.; Chuang, D.-M.; Saavedra, J.M. Angiotensin II AT1 Receptor Blockade Ameliorates Brain Inflammation. Neuropsychopharmacology 2011, 36, 857–870. [Google Scholar] [CrossRef] [Green Version]
- Larrayoz, I.M.; Pang, T.; Benicky, J.; Pavel, J.; Sánchez-Lemus, E.; Saavedra, J.M. Candesartan Reduces the Innate Immune Response to Lipopolysaccharide in Human Monocytes. J. Hypertens. 2009, 27, 2365–2376. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.-Q.; Huang, J.-L.; Yu, Y.; Lu, Y.; Fu, L.-J.; Wang, J.-L.; Wang, Y.-D.; Yu, C. Candesartan Inhibits LPS-Induced Expression Increase of Toll-like Receptor 4 and Downstream Inflammatory Factors Likely via Angiotensin II Type 1 Receptor Independent Pathway in Human Renal Tubular Epithelial Cells. Sheng Li Xue Bao 2013, 65, 623–630. [Google Scholar] [PubMed]
- Xing, G.; Wei, M.; Xiu, B.; Ma, Y.; Liu, T. Irbesartan reduces inflammatory response of central nervous system in a rat model of fluid percussion brain injury. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2016, 32, 917–920. [Google Scholar]
- Kato, Y.; Kamiya, H.; Koide, N.; Odkhuu, E.; Komatsu, T.; Watarai, A.; Kondo, M.; Kato, K.; Nakamura, J.; Yokochi, T. Irbesartan Attenuates Production of High-Mobility Group Box 1 in Response to Lipopolysaccharide via Downregulation of Interferon-β Production. Int. Immunopharmacol. 2015, 26, 97–102. [Google Scholar] [CrossRef]
- Zhao, Y.; Watanabe, A.; Zhao, S.; Kobayashi, T.; Fukao, K.; Tanaka, Y.; Nakano, T.; Yoshida, T.; Takemoto, H.; Tamaki, N.; et al. Suppressive Effects of Irbesartan on Inflammation and Apoptosis in Atherosclerotic Plaques of ApoE-/- Mice: Molecular Imaging with 14C-FDG and 99mTc-Annexin A5. PLoS ONE 2014, 9, e89338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, J.; Huang, H.-Q.; Lü, L.-L.; Zheng, M.; Liu, B.-C. Influence of Irbesartan on the Urinary Excretion of Cytokines in Patients with Chronic Kidney Disease. Chin. Med. J. 2012, 125, 1147–1152. [Google Scholar] [PubMed]
- Tu, X.; Chen, X.; Xie, Y.; Shi, S.; Wang, J.; Chen, Y.; Li, J. Anti-Inflammatory Renoprotective Effect of Clopidogrel and Irbesartan in Chronic Renal Injury. J. Am. Soc. Nephrol. 2008, 19, 77–83. [Google Scholar] [CrossRef]
- Kabel, A.M.; Salama, S.A.; Alghorabi, A.A.; Estfanous, R.S. Amelioration of Cyclosporine-Induced Testicular Toxicity by Carvedilol and/or Alpha-Lipoic Acid: Role of TGF-Β1, the Proinflammatory Cytokines, Nrf2/HO-1 Pathway and Apoptosis. Clin. Exp. Pharmacol. Physiol. 2020, 47, 1169–1181. [Google Scholar] [CrossRef]
- Ye, X.-L.; Huang, W.-C.; Zheng, Y.-T.; Liang, Y.; Gong, W.-Q.; Yang, C.-M.; Liu, B. Irbesartan ameliorates cardiac inflammation in type 2 diabetic db/db mice. Nan Fang Yi Ke Da Xue Xue Bao 2016, 37, 505–511. [Google Scholar]
- Zhao, X.; Yang, D.; Xu, W.; Xu, W.; Guo, Z. Effect of Irbesartan on Oxidative Stress and Serum Inflammatory Factors in Renal Tissues of Type 2 Diabetic Rats. J. Coll. Physicians Surg. Pak. 2019, 29, 422–425. [Google Scholar] [CrossRef]
- Jiang, Y.; Jiang, L.-L.I.; Maimaitirexiati, X.-M.Z.Y.; Zhang, Y.; Wu, L. Irbesartan Attenuates TNF-α-Induced ICAM-1, VCAM-1, and E-Selectin Expression through Suppression of NF-ΚB Pathway in HUVECs. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 3295–3302. [Google Scholar]
- Tsuruoka, S.; Kai, H.; Usui, J.; Morito, N.; Saito, C.; Yoh, K.; Yamagata, K. Effects of Irbesartan on Inflammatory Cytokine Concentrations in Patients with Chronic Glomerulonephritis. Intern. Med. 2013, 52, 303–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryniarski, P.; Nazimek, K.; Marcinkiewicz, J. Anti-Inflammatory Activities of Captopril and Diuretics on Macrophage Activity in Mouse Humoral Immune Response. Int. J. Mol. Sci. 2021, 22, 11374. [Google Scholar] [CrossRef] [PubMed]
- Bryniarski, P.; Nazimek, K.; Marcinkiewicz, J. Captopril Combined with Furosemide or Hydrochlorothiazide Affects Macrophage Functions in Mouse Contact Hypersensitivity Response. Int. J. Mol. Sci. 2021, 23, 74. [Google Scholar] [CrossRef]
- Bryniarski, P.; Nazimek, K.; Marcinkiewicz, J. Immunomodulatory Potential of Diuretics. Biology 2021, 10, 1315. [Google Scholar] [CrossRef]
- Wożakowska-Kapłon, B.; Filipiak, K.J.; Czarnecka, D.; Dzida, G.; Mamcarz, A.; Tykarski, A.; Widecka, K.; Narkiewicz, K. Combination therapy in the management of hypertension—current problem in Poland. Expert consensus statement of the Polish Society of Hypertension and Polish Cardiac Society Working Group on Cardiovascular Pharmacotherapy. Kardiol. Pol. 2013, 71, 433–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bryniarski, P.; Nazimek, K.; Marcinkiewicz, J. Immunomodulatory Activity of the Most Commonly Used Antihypertensive Drugs—Angiotensin Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers. Int. J. Mol. Sci. 2022, 23, 1772. https://doi.org/10.3390/ijms23031772
Bryniarski P, Nazimek K, Marcinkiewicz J. Immunomodulatory Activity of the Most Commonly Used Antihypertensive Drugs—Angiotensin Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers. International Journal of Molecular Sciences. 2022; 23(3):1772. https://doi.org/10.3390/ijms23031772
Chicago/Turabian StyleBryniarski, Paweł, Katarzyna Nazimek, and Janusz Marcinkiewicz. 2022. "Immunomodulatory Activity of the Most Commonly Used Antihypertensive Drugs—Angiotensin Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers" International Journal of Molecular Sciences 23, no. 3: 1772. https://doi.org/10.3390/ijms23031772
APA StyleBryniarski, P., Nazimek, K., & Marcinkiewicz, J. (2022). Immunomodulatory Activity of the Most Commonly Used Antihypertensive Drugs—Angiotensin Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers. International Journal of Molecular Sciences, 23(3), 1772. https://doi.org/10.3390/ijms23031772