The Class I HDAC Inhibitor, MS-275, Prevents Oxaliplatin-Induced Chronic Neuropathy and Potentiates Its Antiproliferative Activity in Mice
<p>Analysis of DEG in mouse lumbar dorsal root ganglia L4 to L6 following repeated oxaliplatin administration. (<b>A</b>) Experimental design: C57Bl/6J mice received oxaliplatin (3 mg/kg, i.p.) or vehicle (Glucose 5%) twice a week for 3 weeks. Both thermal cold (<b>B</b>) and mechanical (<b>C</b>) pain hypersensitivity developed as soon as after day 4 in oxaliplatin treated group. Values are mean ± SEM (n = nine per group). Statistical analysis was performed using a two-way repeated measure analysis of variance (RM ANOVA), detailed in <a href="#app1-ijms-23-00098" class="html-app">Supplementary Table S1</a>, and a Tukey’s multi-comparisons post hoc test; *, <span class="html-italic">p</span> < 0.05, **, <span class="html-italic">p</span> < 0.01, ***, <span class="html-italic">p</span> < 0.001, vehicle <span class="html-italic">versus</span> oxaliplatin. (<b>D</b>). Volcano plot of all DEGs following oxaliplatin administration showing the most highly upregulated (log2fold change > 1) or downregulated (log2fold change < −1) genes. Only genes with Padj < 0.05 and log2fold change greater than 1 or smaller than −1 were used for further analysis. (<b>E</b>) Oxaliplatin administration caused the upregulation of 342 DEGs and the downregulation of 399 DEGs.</p> "> Figure 1 Cont.
<p>Analysis of DEG in mouse lumbar dorsal root ganglia L4 to L6 following repeated oxaliplatin administration. (<b>A</b>) Experimental design: C57Bl/6J mice received oxaliplatin (3 mg/kg, i.p.) or vehicle (Glucose 5%) twice a week for 3 weeks. Both thermal cold (<b>B</b>) and mechanical (<b>C</b>) pain hypersensitivity developed as soon as after day 4 in oxaliplatin treated group. Values are mean ± SEM (n = nine per group). Statistical analysis was performed using a two-way repeated measure analysis of variance (RM ANOVA), detailed in <a href="#app1-ijms-23-00098" class="html-app">Supplementary Table S1</a>, and a Tukey’s multi-comparisons post hoc test; *, <span class="html-italic">p</span> < 0.05, **, <span class="html-italic">p</span> < 0.01, ***, <span class="html-italic">p</span> < 0.001, vehicle <span class="html-italic">versus</span> oxaliplatin. (<b>D</b>). Volcano plot of all DEGs following oxaliplatin administration showing the most highly upregulated (log2fold change > 1) or downregulated (log2fold change < −1) genes. Only genes with Padj < 0.05 and log2fold change greater than 1 or smaller than −1 were used for further analysis. (<b>E</b>) Oxaliplatin administration caused the upregulation of 342 DEGs and the downregulation of 399 DEGs.</p> "> Figure 2
<p>Cell type specific effect of oxaliplatin and enrichment analysis of the overlapping DEGs. (<b>A</b>) Cell type enrichment analysis (CTEN) of DEG in lumbar dorsal root ganglia L3 to L5 following repeated oxaliplatin administration. CTEN was performed using the CTen tool. The score is generated using one-sided, Fisher’s exact test for enrichment and it is shown as the -log10 of the Benjamini-Hochberg (BH) adjusted P values. Scores > 20 optimally minimize the false positive rate. (<b>B</b>,<b>C</b>) illustrate the GO enrichment analysis results: (<b>B</b>) biological process, (<b>C</b>) cellular components.</p> "> Figure 2 Cont.
<p>Cell type specific effect of oxaliplatin and enrichment analysis of the overlapping DEGs. (<b>A</b>) Cell type enrichment analysis (CTEN) of DEG in lumbar dorsal root ganglia L3 to L5 following repeated oxaliplatin administration. CTEN was performed using the CTen tool. The score is generated using one-sided, Fisher’s exact test for enrichment and it is shown as the -log10 of the Benjamini-Hochberg (BH) adjusted P values. Scores > 20 optimally minimize the false positive rate. (<b>B</b>,<b>C</b>) illustrate the GO enrichment analysis results: (<b>B</b>) biological process, (<b>C</b>) cellular components.</p> "> Figure 3
<p>MS-275 prevents oxaliplatin-induced chronic neuropathic pain in APC<sup>Min/+</sup> mice. (<b>A</b>) Experimental design: <span class="html-italic">APC<sup>Min/+</sup></span> mice received oxaliplatin (3 mg/kg, i.p.) or vehicle (Glucose 5%) twice a week for 3 weeks. MS-275 (15 mg/kg, p.o.) was administered half an hour before each oxaliplatin injection. MS-275 significantly prevented cold (<b>B</b>) and mechanical (<b>C</b>) pain hypersensitivity induced by oxaliplatin administration. Values are mean ± SEM (n = 5/7 per group). Statistical analysis was performed using a two-way repeated measure analysis of variance (RM ANOVA), detailed in <a href="#app1-ijms-23-00098" class="html-app">Supplementary Table S1</a>, and a Tukey’s multi-comparisons post hoc test; **, <span class="html-italic">p</span> < 0.01, ***, <span class="html-italic">p</span> < 0.001, vehicle versus oxaliplatin; ¤¤, <span class="html-italic">p</span> < 0.01, ¤¤¤, <span class="html-italic">p</span> < 0.001, oxaliplatin versus MS-275; °, <span class="html-italic">p</span> < 0.05, °°, <span class="html-italic">p</span> < 0.01, °°°, <span class="html-italic">p</span> < 0.001, oxaliplatin versus oxaliplatin + MS-275. General and hematologic toxicity profile of oxaliplatin and MS-275 combination. The body weight of animals was monitored twice a week during all the experimental procedure (<b>D</b>). Effect of oxaliplatin and/or MS-275 treatment on hematological parameters, red blood counts (<b>E</b>), white blood counts (<b>F</b>) and platelets counts (<b>G</b>) was done at end point (D21). Number of polyps in <span class="html-italic">APC<sup>Min/+</sup></span> at end-point (<b>H</b>). Values are mean ± SEM (n = 6/7 per group). Statistical analysis was performed using a two-way analysis of variance, detailed in <a href="#app1-ijms-23-00098" class="html-app">Supplementary Table S1</a>, and a Tukey’s multi-comparisons post hoc test; **, <span class="html-italic">p</span> < 0.01, ***, <span class="html-italic">p</span> < 0.001, versus the vehicle group; ° <span class="html-italic">p</span> < 0.05, °°, <span class="html-italic">p</span> < 0.01, °°°, <span class="html-italic">p</span> < 0.001, versus the oxaliplatin group.</p> "> Figure 4
<p>Oxaliplatin and MS-275 exert synergic antitumoral effect in a mouse model of orthotopic CRC. (<b>A</b>) Experimental design: BALB/c AnN mice, randomized for treatment, were treated 3 days after graft with oxaliplatin (3 mg/kg i.p.) and/or MS-275 (15 mg/kg, p.o.), twice a week for three weeks. MS-275 was administered half an hour before each oxaliplatin injection. (<b>B</b>) MS-275, either alone or combined with oxaliplatin strongly slowed cancer progression in this model. Bioluminescence results are shown until D10 because of the occurrence of death events at D12 in the vehicle group in which 100% animals died before D23 (<a href="#ijms-23-00098-f004" class="html-fig">Figure 4</a>C). Statistical analysis was performed using a two-way analysis of variance, detailed in <a href="#app1-ijms-23-00098" class="html-app">Supplementary Table S1</a>, and a Tukey’s multi-comparisons post hoc test: **, <span class="html-italic">p</span> < 0.01, ***, <span class="html-italic">p</span> < 0.001, <span class="html-italic">versus</span> the vehicle group. (<b>C</b>) Oxaliplatin and MS-275 improves the survival of mice, and drugs association demonstrated an increased benefit for survival as shown by their synergistic effect on mean and median survival (<a href="#app1-ijms-23-00098" class="html-app">Table S1</a>). Statistical analysis was performed using Kruskal–Wallis test, detailed in <a href="#app1-ijms-23-00098" class="html-app">Supplementary Table S1</a>, and a Dunn’s multi-comparisons post hoc test; **, <span class="html-italic">p</span> < 0.01, versus vehicle.</p> "> Figure 5
<p>Oxaliplatin and MS-275 effects on in human colon cancer cell lines viability and cell cycle. Oxaliplatin dose-dependently inhibited survival of T84 (<b>A</b>) and HT29 (<b>B</b>) colorectal cancer cells as measured by inhibition of mitochondrial dehydrogenase activity (MTT assay). MS-275 dose-dependently inhibited survival HT29 cells (<b>B</b>) while significantly decreasing T84 cell viability only at the highest dose tested (<b>B</b>). Combined effect of oxaliplatin (16 µM) and MS-275 (2.5 µM) on T84 (<b>C</b>) and on HT29 (<b>D</b>) cell viability and on T84 (<b>E</b>) and HT29 (<b>F</b>) cells cycles. The average results from at least three independent experiments are presented. Values are expressed as mean ± SEM. Statistical analysis was performed using two-way ANOVA, detailed in <a href="#app1-ijms-23-00098" class="html-app">Supplementary Table S1</a>, with Tukey’s multi-comparisons post-hoc test; * for <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, versus the vehicle group; ° for <span class="html-italic">p</span> < 0.05, °°° for <span class="html-italic">p</span> < 0.001, versus the oxaliplatin group; ¤¤ for <span class="html-italic">p</span> < 0.01, ¤¤¤ for <span class="html-italic">p</span> < 0.001, versus the MS-275 group.</p> "> Figure 5 Cont.
<p>Oxaliplatin and MS-275 effects on in human colon cancer cell lines viability and cell cycle. Oxaliplatin dose-dependently inhibited survival of T84 (<b>A</b>) and HT29 (<b>B</b>) colorectal cancer cells as measured by inhibition of mitochondrial dehydrogenase activity (MTT assay). MS-275 dose-dependently inhibited survival HT29 cells (<b>B</b>) while significantly decreasing T84 cell viability only at the highest dose tested (<b>B</b>). Combined effect of oxaliplatin (16 µM) and MS-275 (2.5 µM) on T84 (<b>C</b>) and on HT29 (<b>D</b>) cell viability and on T84 (<b>E</b>) and HT29 (<b>F</b>) cells cycles. The average results from at least three independent experiments are presented. Values are expressed as mean ± SEM. Statistical analysis was performed using two-way ANOVA, detailed in <a href="#app1-ijms-23-00098" class="html-app">Supplementary Table S1</a>, with Tukey’s multi-comparisons post-hoc test; * for <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, versus the vehicle group; ° for <span class="html-italic">p</span> < 0.05, °°° for <span class="html-italic">p</span> < 0.001, versus the oxaliplatin group; ¤¤ for <span class="html-italic">p</span> < 0.01, ¤¤¤ for <span class="html-italic">p</span> < 0.001, versus the MS-275 group.</p> "> Figure 6
<p>Oxaliplatin and MS-275 effects on apoptosis and cell death in T84 and HT29 cells. Annexin V and Propidium Iodide (PI) staining was performed on T84 (<b>A</b>) and HT29 (<b>D</b>) cell lines followed by flow cytometry analysis. Effects of oxaliplatin (16 µM) with or without MS-275 (2.5 µM) on T84 apoptosis (<b>B</b>) and cell death (<b>C</b>) and on HT29 apoptosis (<b>E</b>) and cell death (<b>F</b>). The average results from at least three independent experiments are presented. Values are expressed as mean ± SEM. Statistical analysis was performed using two-way ANOVA, detailed in <a href="#app1-ijms-23-00098" class="html-app">Supplementary Table S1</a>, with Tukey’s multi-comparisons post-hoc test; * for <span class="html-italic">p</span> < 0.05; ** for 0.01; *** <span class="html-italic">p</span> < 0.001, versus the vehicle group; °° for <span class="html-italic">p</span> < 0.01, °°° for <span class="html-italic">p</span> < 0.001, versus the oxaliplatin group; ¤ for <span class="html-italic">p</span> < 0.05, ¤¤ for <span class="html-italic">p</span> < 0.01, versus the MS-275 group.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Transcriptomic Changes Observed in DRG Neurons from Mice Treated with Repeated Oxaliplatin Administration
2.2. MS-275 Prevents Oxaliplatin-Induced Chronic Neuropathy in Mice
2.3. General and Hematologic Toxicity Profile of Oxaliplatin and MS-275 Combination
2.4. MS-275 and Oxaliplatin Antiproliferative Effects in Familial Adenomatous Polyposis (FAP) Mice and in CT26 Tumor-Bearing Mice
2.5. MS-275 and Oxaliplatin Effects on Human Cancer Cell Viability
2.6. MS-275 and Oxaliplatin Effects on Human Cancer Cells Cycle
2.7. Oxaliplatin and MS-275 Act Synergistically to Induce Apoptosis In Vitro
3. Discussion
4. Methods
4.1. Animals and Models
4.2. Materials
4.3. Evaluation of Pain Thresholds
4.4. Hematological Analysis
4.5. RNA Sequencing
4.6. Bioinformatics Analysis
4.7. Cell Culture
4.8. Cell Viability Analysis
4.9. Apoptosis Analysis
4.10. Cell Cycle Analysis
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Carrato, A. Adjuvant treatment of colorectal cancer. Gastrointest Cancer Res. 2008, 2 (Suppl. 4), S42–S46. [Google Scholar] [PubMed]
- Pachman, D.R.; Qin, R.; Seisler, D.K.; Smith, E.M.; Beutler, A.S.; Ta, L.E.; Lafky, J.M.; Wagner-Johnston, N.D.; Ruddy, K.J.; Dakhil, S.R.; et al. Clinical Course of Oxaliplatin-Induced Neuropathy: Results From the Randomized Phase III Trial N08CB (Alliance). J. Clin. Oncol. 2015, 33, 3416–3422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argyriou, A.A.; Polychronopoulos, P.; Iconomou, G.; Chroni, E.; Kalofonos, H.P. A review on oxaliplatin-induced peripheral nerve damage. Cancer Treat. Rev. 2008, 34, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Grothey, A. Clinical Management of Oxaliplatin-Associated Neurotoxicity. Clin. Color. Cancer 2005, 5 (Suppl. 1), S38–S46. [Google Scholar] [CrossRef]
- Beijers, A.J.; Mols, F.; Tjan-Heijnen, V.C.; Faber, C.G.; van de Poll-Franse, L.V.; Vreugdenhil, G. Peripheral neuropathy in colorectal cancer survivors: The influence of oxaliplatin administration. Results from the population-based PROFILES registry. Acta Oncol. 2015, 54, 463–469. [Google Scholar] [CrossRef] [Green Version]
- Hershman, D.L.; Lacchetti, C.; Dworkin, R.H.; Lavoie Smith, E.M.; Bleeker, J.; Cavaletti, G.; Chauhan, C.; Gavin, P.; Lavino, A.; Lustberg, M.B.; et al. Prevention and Management of Chemotherapy-Induced Peripheral Neuropathy in Survivors of Adult Cancers: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2014, 32, 1941–1967. [Google Scholar] [CrossRef] [Green Version]
- Loprinzi, C.L.; Lacchetti, C.; Bleeker, J.; Cavaletti, G.; Chauhan, C.; Hertz, D.L.; Kelley, M.R.; Lavino, A.; Lustberg, M.B.; Paice, J.A.; et al. Prevention and Management of Chemotherapy-Induced Peripheral Neuropathy in Survivors of Adult Cancers: ASCO Guideline Update. J. Clin. Oncol. 2020, 38, 3325–3348. [Google Scholar] [CrossRef]
- Gent, P.; Massey, K. An overview of chemotherapy-induced peripheral sensory neuropathy, focusing on oxaliplatin. Int. J. Palliat. Nurs. 2001, 7, 354–359. [Google Scholar] [CrossRef]
- Molassiotis, A.; Cheng, H.L.; Lopez, V.; Au, J.S.K.; Chan, A.; Bandla, A.; Leung, K.T.; Li, Y.C.; Wong, K.H.; Suen, L.K.P.; et al. Are we mis-estimating chemotherapy-induced peripheral neuropathy? Analysis of assessment methodologies from a prospective, multinational, longitudinal cohort study of patients receiving neurotoxic chemotherapy. BMC Cancer 2019, 19, 132. [Google Scholar] [CrossRef] [Green Version]
- Grolleau, F.; Gamelin, L.; Boisdron-Celle, M.; Lapied, B.; Pelhate, M.; Gamelin, E. A possible explanation for a neurotoxic effect of the anticancer agent oxaliplatin on neuronal voltage-gated sodium channels. J. Neurophysiol. 2001, 85, 2293–2297. [Google Scholar] [CrossRef]
- Gauchan, P.; Andoh, T.; Kato, A.; Kuraishi, Y. Involvement of increased expression of transient receptor potential melastatin 8 in oxaliplatin-induced cold allodynia in mice. Neurosci. Lett. 2009, 458, 93–95. [Google Scholar] [CrossRef]
- Nassini, R.; Gees, M.; Harrison, S.; De Siena, G.; Materazzi, S.; Moretto, N.; Failli, P.; Preti, D.; Marchetti, N.; Cavazzini, A.; et al. Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation. Pain 2011, 152, 1621–1631. [Google Scholar] [CrossRef]
- Zhao, M.; Isami, K.; Nakamura, S.; Shirakawa, H.; Nakagawa, T.; Kaneko, S. Acute Cold Hypersensitivity Characteristically Induced by Oxaliplatin is Caused by the Enhanced Responsiveness of TRPA1 in Mice. Mol. Pain 2012, 8, 55. [Google Scholar] [CrossRef] [Green Version]
- Trevisan, G.; Materazzi, S.; Fusi, C.; Altomare, A.; Aldini, G.; Lodovici, M.; Patacchini, R.; Geppetti, P.; Nassini, R. Novel Therapeutic Strategy to Prevent Chemotherapy-Induced Persistent Sensory Neuropathy By TRPA1 Blockade. Cancer Res. 2013, 73, 3120–3131. [Google Scholar] [CrossRef] [Green Version]
- Pereira, V.; Busserolles, J.; Christin, M.; Devilliers, M.; Poupon, L.; Legha, W.; Alloui, A.; Aissouni, Y.; Bourinet, E.; Lesage, F.; et al. Role of the TREK2 potassium channel in cold and warm thermosensation and in pain perception. Pain 2014, 155, 2534–2544. [Google Scholar] [CrossRef]
- Descoeur, J.; Pereira, V.; Pizzoccaro, A.; Francois, A.; Ling, B.; Maffre, V.; Couette, B.; Busserolles, J.; Courteix, C.; Noel, J.; et al. Oxaliplatin-induced cold hypersensitivity is due to remodelling of ion channel expression in nociceptors. EMBO Mol. Med. 2011, 3, 266–278. [Google Scholar] [CrossRef]
- Pereira, V.; Lamoine, S.; Cuménal, M.; Lolignier, S.; Aissouni, Y.; Pizzoccaro, A.; Prival, L.; Balayssac, D.; Eschalier, A.; Bourinet, E.; et al. Epigenetics Involvement in Oxaliplatin-Induced Potassium Channel Transcriptional Downregulation and Hypersensitivity. Mol. Neurobiol. 2021, 58, 3575–3587. [Google Scholar] [CrossRef]
- Cavaletti, G.; Tredici, G.; Petruccioli, M.G.; Dondè, E.; Tredici, P.; Marmiroli, P.; Minoia, C.; Ronchi, A.; Bayssas, M.; Etienne, G.G. Effects of different schedules of oxaliplatin treatment on the peripheral nervous system of the rat. Eur. J. Cancer 2001, 37, 2457–2463. [Google Scholar] [CrossRef]
- Jamieson, S.M.; Liu, J.; Connor, B.; McKeage, M. Oxaliplatin causes selective atrophy of a subpopulation of dorsal root ganglion neurons without inducing cell loss. Cancer Chemother. Pharmacol. 2005, 56, 391–399. [Google Scholar] [CrossRef]
- Xiao, W.; Zheng, H.; Bennett, G. Characterization of oxaliplatin-induced chronic painful peripheral neuropathy in the rat and comparison with the neuropathy induced by paclitaxel. Neuroscience 2012, 203, 194–206. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Xiao, W.H.; Bennett, G.J. Functional deficits in peripheral nerve mitochondria in rats with paclitaxel- and oxaliplatin-evoked painful peripheral neuropathy. Exp. Neurol. 2011, 232, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Warwick, R.; Hanani, M. The contribution of satellite glial cells to chemotherapy-induced neuropathic pain. Eur. J. Pain 2013, 17, 571–580. [Google Scholar] [CrossRef]
- Ferrier, J.; Bayet-Robert, M.; Pereira, B.; Daulhac, L.; Eschalier, A.; Pezet, D.; Moulinoux, J.-P.; Balayssac, D. A Polyamine-Deficient Diet Prevents Oxaliplatin-Induced Acute Cold and Mechanical Hypersensitivity in Rats. PLoS ONE 2013, 8, e77828. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, S.; Ushio, S.; Egashira, N.; Kawashiri, T.; Mitsuyasu, S.; Higuchi, H.; Ozawa, N.; Masuguchi, K.; Ono, Y.; Masuda, S. Excessive spinal glutamate transmission is involved in oxaliplatin-induced mechanical allodynia: A possibility for riluzole as a prophylactic drug. Sci. Rep. 2017, 7, 9661. [Google Scholar] [CrossRef] [Green Version]
- Falkenberg, K.J.; Johnstone, R.W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 2014, 13, 673–691. [Google Scholar] [CrossRef]
- Cao, L.-L.; Yue, Z.; Liu, L.; Pei, L.; Yin, Y.; Qin, L.; Zhao, J.; Liu, H.; Wang, H.; Jia, M. The expression of histone deacetylase HDAC1 correlates with the progression and prognosis of gastrointestinal malignancy. Oncotarget 2017, 8, 39241–39253. [Google Scholar] [CrossRef] [Green Version]
- Nemati, M.; Ajami, N.; Estiar, M.A.; Rezapour, S.; Gavgani, R.R.; Hashemzadeh, S.; Kafil, H.S.; Sakhinia, E. Deregulated expression of HDAC3 in colorectal cancer and its clinical significance. Adv. Clin. Exp. Med. 2018, 27, 305–311. [Google Scholar] [CrossRef] [Green Version]
- He, P.; Li, K.; Li, S.-B.; Hu, T.-T.; Guan, M.; Sun, F.-Y.; Liu, W.-W. Upregulation of AKAP12 with HDAC3 depletion suppresses the progression and migration of colorectal cancer. Int. J. Oncol. 2018, 52, 1305–1316. [Google Scholar] [CrossRef]
- Banks, C.A.S.; Zhang, Y.; Miah, S.; Hao, Y.; Adams, M.K.; Wen, Z.; Thornton, J.L.; Florens, L.; Washburn, M.P. Integrative Modeling of a Sin3/HDAC Complex Sub-structure. Cell Rep. 2020, 31, 107516. [Google Scholar] [CrossRef]
- Rampalli, S.; Pavithra, L.; Bhatt, A.; Kundu, T.K.; Chattopadhyay, S. Tumor suppressor SMAR1 mediates cyclin D1 repression by recruitment of the SIN3/histone deacetylase 1 complex. Mol. Cell Biol. 2005, 25, 8415–8429. [Google Scholar] [CrossRef] [Green Version]
- Shoemaker, J.E.; Lopes, T.J.S.; Ghosh, S.; Matsuoka, Y.; Kawaoka, Y.; Kitano, H. CTen: A web-based platform for identifying enriched cell types from heterogeneous microarray data. BMC Genom. 2012, 13, 460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaiopoulos, A.G.; Athanasoula, K.C.; Papavassiliou, A.G. Epigenetic modifications in colorectal cancer: Molecular insights and therapeutic challenges. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2014, 1842, 971–980. [Google Scholar] [CrossRef] [Green Version]
- Ikehata, M.; Ogawa, M.; Yamada, Y.; Tanaka, S.; Ueda, K.; Iwakawa, S. Different Effects of Epigenetic Modifiers on the Cytotoxicity Induced by 5-Fluorouracil, Irinotecan or Oxaliplatin in Colon Cancer Cells. Biol. Pharm. Bull. 2014, 37, 67–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moser, A.R.; Pitot, H.C.; Dove, W.F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 1990, 247, 322–324. [Google Scholar] [CrossRef] [PubMed]
- Fraczek, J.; Vanhaecke, T.; Rogiers, V. Toxicological and metabolic considerations for histone deacetylase inhibitors. Expert Opin. Drug Metab. Toxicol. 2013, 9, 441–457. [Google Scholar] [CrossRef] [PubMed]
- Shoemaker, A.R.; Moser, A.R.; Dove, W.F. N-ethyl-N-nitrosourea treatment of multiple intestinal neoplasia (Min) mice: Age-related effects on the formation of intestinal adenomas, cystic crypts, and epidermoid cysts. Cancer Res. 1995, 55, 4479–4485. [Google Scholar] [PubMed]
- Tseng, W.; Leong, X.; Engleman, E. Orthotopic Mouse Model of Colorectal Cancer. J. Vis. Exp. 2007, 15, e484. [Google Scholar] [CrossRef] [PubMed]
- Connolly, R.M.; Rudek, M.A.; Piekarz, R. Entinostat: A promising treatment option for patients with advanced breast cancer. Futur. Oncol. 2017, 13, 1137–1148. [Google Scholar] [CrossRef]
- Ehrsson, H.; Wallin, I.; Yachnin, J. Pharmacokinetics of Oxaliplatin in Humans. Med. Oncol. 2002, 19, 261–266. [Google Scholar] [CrossRef]
- Arango, D.; Wilson, A.J.; Shi, Q.; Corner, G.A.; Aranes, M.J.; Nicholas, C.; Lesser, M.; Mariadason, J.M.; Augenlicht, L.H. Molecular mechanisms of action and prediction of response to oxaliplatin in colorectal cancer cells. Br. J. Cancer 2004, 91, 1931–1946. [Google Scholar] [CrossRef] [Green Version]
- Kang, L.; Tian, Y.; Xu, S.; Chen, H. Oxaliplatin-induced peripheral neuropathy: Clinical features, mechanisms, prevention and treatment. J. Neurol. 2020, 268, 3269–3282. [Google Scholar] [CrossRef]
- Starobova, H.; Mueller, A.; Deuis, J.R.; Carter, D.A.; Vetter, I. Inflammatory and Neuropathic Gene Expression Signatures of Chemotherapy-Induced Neuropathy Induced by Vincristine, Cisplatin, and Oxaliplatin in C57BL/6J Mice. J. Pain 2020, 21, 182–194. [Google Scholar] [CrossRef]
- Housley, S.N.; Nardelli, P.; Carrasco, D.I.; Rotterman, T.M.; Pfahl, E.; Matyunina, L.V.; McDonald, J.F.; Cope, T.C. Cancer Exacerbates Chemotherapy-Induced Sensory Neuropathy. Cancer Res. 2020, 80, 2940–2955. [Google Scholar] [CrossRef]
- Danaher, R.J.; Zhang, L.; Donley, C.J.; A Laungani, N.A.; Hui, S.E.; Miller, C.S.; Westlund, K.N. Histone deacetylase inhibitors prevent persistent hypersensitivity in an orofacial neuropathic pain model. Mol. Pain 2018, 14, 1745691620968771. [Google Scholar] [CrossRef] [Green Version]
- Denk, F.; Huang, W.; Sidders, B.; Bithell, A.; Crow, M.; Grist, J.; Sharma, S.; Ziemek, D.; Rice, A.S.; Buckley, N.J.; et al. HDAC inhibitors attenuate the development of hypersensitivity in models of neuropathic pain. Pain 2013, 154, 1668–1679. [Google Scholar] [CrossRef] [Green Version]
- Raymond, E.; Chaney, S.G.; Taamma, A.; Cvitkovic, E. Oxaliplatin: A review of preclinical and clinical studies. Ann. Oncol. 1998, 9, 1053–1071. [Google Scholar] [CrossRef]
- Pendyala, L.; Creaven, P.J. In vitro cytotoxicity, protein binding, red blood cell partitioning, and biotransformation of oxaliplatin. Cancer Res. 1993, 53, 5970–5976. [Google Scholar]
- Garufi, C.; Vaglio, S.; Brienza, S.; Conti, L.; D’Attino, R.M.; Girelli, G.; Terzoli, E. Immunohemolytic anemia following oxaliplatin administration. Ann. Oncol. 2000, 11, 497. [Google Scholar] [CrossRef]
- Lees, J.G.; White, D.; Keating, B.A.; Barkl-Luke, M.E.; Makker, P.G.S.; Goldstein, D.; Moalem-Taylor, G. Oxaliplatin-induced haematological toxicity and splenomegaly in mice. PLoS ONE 2020, 15, e0238164. [Google Scholar] [CrossRef]
- Gojo, I.; Jiemjit, A.; Trepel, J.B.; Sparreboom, A.; Figg, W.D.; Rollins, S.; Tidwell, M.L.; Greer, J.; Chung, E.J.; Lee, M.-J.; et al. Phase 1 and pharmacologic study of MS-275, a histone deacetylase inhibitor, in adults with refractory and relapsed acute leukemias. Blood 2007, 109, 2781–2790. [Google Scholar] [CrossRef]
- Fournel, M.; Trachy-Bourget, M.-C.; Yan, P.T.; Kalita, A.; Bonfils, C.; Beaulieu, C.; Frechette, S.; Leit, S.; Abou-Khalil, E.; Woo, S.-H.; et al. Sulfonamide anilides, a novel class of histone deacetylase inhibitors, are antiproliferative against human tumors. Cancer Res. 2002, 62, 4325–4330. [Google Scholar] [PubMed]
- Zhu, P.; Huber, E.M.; Kiefer, F.; Göttlicher, M. Specific and Redundant Functions of Histone Deacetylases in Regulation of Cell Cycle and Apoptosis. Cell Cycle 2004, 3, 1240–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lees, A.; McIntyre, A.J.; Crawford, N.T.; Falcone, F.; McCann, C.; Holohan, C.; Quinn, G.P.; Roberts, J.Z.; Sessler, T.; Gallagher, P.F.; et al. The pseudo-caspase FLIP(L) regulates cell fate following p53 activation. Proc. Natl. Acad. Sci. USA 2020, 117, 17808–17819. [Google Scholar] [CrossRef] [PubMed]
- Belnap, L.P.; Cleveland, P.H.; Colmerauer, M.E.; Barone, R.M.; Pilch, Y.H. Immunogenicity of chemically induced murine colon cancers. Cancer Res. 1979, 39, 1174–1179. [Google Scholar]
- Kim, K.; Skora, A.D.; Li, Z.; Liu, Q.; Tam, A.J.; Blosser, R.L.; Diaz, L.A., Jr.; Papadopoulos, N.; Kinzler, K.W.; Vogelstein, B.; et al. Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc. Natl. Acad. Sci. USA 2014, 111, 11774–11779. [Google Scholar] [CrossRef] [Green Version]
- Yokoo, S.; Masuda, S.; Yonezawa, A.; Terada, T.; Katsura, T.; Inui, K.-I. Significance of Organic Cation Transporter 3 (SLC22A3) Expression for the Cytotoxic Effect of Oxaliplatin in Colorectal Cancer. Drug Metab. Dispos. 2008, 36, 2299–2306. [Google Scholar] [CrossRef] [Green Version]
- Sonnemann, J.; Marx, C.; Becker, S.; Wittig, S.; Palani, C.D.; Krämer, O.H.; Beck, J.F. p53-dependent and p53-independent anticancer effects of different histone deacetylase inhibitors. Br. J. Cancer 2014, 110, 656–667. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Bodmer, W.F. Analysis of P53 mutations and their expression in 56 colorectal cancer cell lines. Proc. Natl. Acad. Sci. USA 2006, 103, 976–981. [Google Scholar] [CrossRef] [Green Version]
- Haendler, B.; Bracker, T.U.; Sommer, A.; Fichtner, I.; Faus, H.; Hess-Stumpp, H. Efficacy of MS-275, a selective inhibitor of class I histone deacetylases, in human colon cancer models. Int. J. Oncol. 2009, 35, 909–920. [Google Scholar] [CrossRef] [Green Version]
- Kiweler, N.; Wünsch, D.; Wirth, M.; Mahendrarajah, N.; Schneider, G.; Stauber, R.H.; Brenner, W.; Butter, F.; Krämer, O.H. Histone deacetylase inhibitors dysregulate DNA repair proteins and antagonize metastasis-associated processes. J. Cancer Res. Clin. Oncol. 2020, 146, 343–356. [Google Scholar] [CrossRef] [Green Version]
- Kiweler, N.; Brill, B.; Wirth, M.; Breuksch, I.; Laguna, T.; Dietrich, C.; Strand, S.; Schneider, G.; Groner, B.; Butter, F.; et al. The histone deacetylases HDAC1 and HDAC2 are required for the growth and survival of renal carcinoma cells. Arch. Toxicol. 2018, 92, 2227–2243. [Google Scholar] [CrossRef]
- Zhan, Y.; Gong, K.; Chen, C.; Wang, H.; Li, W. P38 MAP kinase functions as a switch in MS-275-induced reactive oxygen species-dependent autophagy and apoptosis in Human colon Cancer cells. Free. Radic. Biol. Med. 2012, 53, 532–543. [Google Scholar] [CrossRef]
- Marx, C.; Sonnemann, J.; Beyer, M.; Maddocks, O.D.K.; Lilla, S.; Hauzenberger, I.; Piée-Staffa, A.; Siniuk, K.; Nunna, S.; Marx-Blümel, L.; et al. Mechanistic insights into p53-regulated cytotoxicity of combined entinostat and irinotecan against colorectal cancer cells. Mol. Oncol. 2021, 15, 3404–3429. [Google Scholar] [CrossRef]
- Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020, 18, e3000410. [Google Scholar]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Varet, H.; Brillet-Gueguen, L.; Coppee, J.Y.; Dillies, M.A. SARTools: A DESeq2- and EdgeR-Based R Pipeline for Comprehensive Differential Analysis of RNA-Seq Data. PLoS ONE 2016, 11, e0157022. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Wang, L.-G.; Han, Y.; He, Q.-Y. clusterProfiler: An R Package for Comparing Biological Themes Among Gene Clusters. OMICS J. Integr. Biol. 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone Deacetylase Inhibitors as Anticancer Drugs. Int. J. Mol. Sci. 2017, 18, 1414. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamoine, S.; Cumenal, M.; Barriere, D.A.; Pereira, V.; Fereyrolles, M.; Prival, L.; Barbier, J.; Boudieu, L.; Brasset, E.; Bertin, B.; et al. The Class I HDAC Inhibitor, MS-275, Prevents Oxaliplatin-Induced Chronic Neuropathy and Potentiates Its Antiproliferative Activity in Mice. Int. J. Mol. Sci. 2022, 23, 98. https://doi.org/10.3390/ijms23010098
Lamoine S, Cumenal M, Barriere DA, Pereira V, Fereyrolles M, Prival L, Barbier J, Boudieu L, Brasset E, Bertin B, et al. The Class I HDAC Inhibitor, MS-275, Prevents Oxaliplatin-Induced Chronic Neuropathy and Potentiates Its Antiproliferative Activity in Mice. International Journal of Molecular Sciences. 2022; 23(1):98. https://doi.org/10.3390/ijms23010098
Chicago/Turabian StyleLamoine, Sylvain, Mélissa Cumenal, David A. Barriere, Vanessa Pereira, Mathilde Fereyrolles, Laëtitia Prival, Julie Barbier, Ludivine Boudieu, Emilie Brasset, Benjamin Bertin, and et al. 2022. "The Class I HDAC Inhibitor, MS-275, Prevents Oxaliplatin-Induced Chronic Neuropathy and Potentiates Its Antiproliferative Activity in Mice" International Journal of Molecular Sciences 23, no. 1: 98. https://doi.org/10.3390/ijms23010098
APA StyleLamoine, S., Cumenal, M., Barriere, D. A., Pereira, V., Fereyrolles, M., Prival, L., Barbier, J., Boudieu, L., Brasset, E., Bertin, B., Renaud, Y., Miot-Noirault, E., Civiale, M.-A., Balayssac, D., Aissouni, Y., Eschalier, A., & Busserolles, J. (2022). The Class I HDAC Inhibitor, MS-275, Prevents Oxaliplatin-Induced Chronic Neuropathy and Potentiates Its Antiproliferative Activity in Mice. International Journal of Molecular Sciences, 23(1), 98. https://doi.org/10.3390/ijms23010098