Biomineralization of Collagen-Based Materials for Hard Tissue Repair
<p>Typical transmission electron microscopy (TEM) images of (<b>a</b>) highly oriented intrafibrillar (showing clear D-banding) and (<b>b</b>) extrafibrillar mineralized collagen fibrils. Images are modified from [<a href="#B24-ijms-22-00944" class="html-bibr">24</a>] with permission. Copyright @ John Wiley & Sons, Inc., Hoboken, NJ, USA.</p> "> Figure 2
<p>Schematic illustration of non-collagenous proteins (NCPs)-regulated collagen biomineralization with both intrafibrillar and extrafibrillar mineralization according to the non-classical theory.</p> ">
Abstract
:1. Introduction
2. Biomineralization of Collagen
3. Intrafibrillar Mineralization Mechanisms
3.1. Capillary Action
3.2. Electrostatic Attraction
3.3. Size Exclusion
3.4. Gibbs-Donnan Equilibrium
3.5. Interfacial Energy Guided Mineralization
4. Biomimetic Intrafibrillar Mineralization Strategies for Hard Tissue Repair
4.1. NCPs
4.2. Polymer Analogs
4.3. Small Molecules and Fluid Shear Stress
5. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
HA | Hydroxyapatite |
Pro | Proline |
Hyp | Hydroxyproline |
Gly | Glycyl |
ECM | Extracellular matrix |
Col-HA | Collagen-hydroxyapatite |
CaP | Calcium phosphate |
NCPs | Non-collagenous proteins |
ACP | Amorphous calcium phosphate |
PILP | Polymer induced liquid precursor |
ACC | Amorphous calcium carbonate |
PASP | Polyaspartic acid |
cyro-TEM | Cryogenic transmission electron microscopy |
AFM | Atomic force microscopy |
NMR | Nuclear magnetic resonance |
PAA | Polyacrylic acid |
SEM | Scanning electron microscopy |
TEM | Transmission electron microscopy |
XRD | X-ray diffraction |
PAH | Polyallyamine hydrochloride |
OCN | Osteocalcin |
BGP | Bone Gla protein |
OPN | Osteopontin |
BSP | Bone sialoprotein |
PEG-COOH | Carboxylated polyethylene glycol terpolymer |
PEG-PAA | Polyethylene glycol/polyacrylic acid copolymer |
SAXS | Small-angle X-ray scattering |
WAXS | Wide-angle X-ray scattering |
PDA | Polydopamine |
TPP | Sodium tripolyphosphate |
CMC | Carboxymethyl chitosan |
m-SBF | Modified-simulated body fluid |
Pchi | Phosphorylated chitosan |
PAMAM | Polyamidoamine dendrimer |
CS | Chondroitin sulfate |
3D | Three-dimensional |
FSS | Fluid shear stress |
References
- Thrivikraman, G.; Athirasala, A.; Gordon, R.; Zhang, L.; Bergan, R.; Keene, D.R.; Jones, J.M.; Xie, H.; Chen, Z.; Tao, J. Rapid fabrication of vascularized and innervated cell-laden bone models with biomimetic intrafibrillar collagen mineralization. Nat. Commun. 2019, 10, 3520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, R.; Brown, W. Biological Mineralization and Demineralization; Springer: Berlin/Heidelberg, Germany, 1982. [Google Scholar]
- Chang, H.-H.; Chien, M.-J.; Kao, C.-C.; Chao, Y.-J.; Yu, P.-T.; Chang, C.-Y.; Huang, S.-J.; Lee, Y.-L.; Chan, J.C. Structural characterization of fluoride species in shark teeth. Chem. Commun. 2017, 53, 3838–3841. [Google Scholar] [CrossRef] [PubMed]
- Zilm, M.E.; Yu, L.; Hines, W.A.; Wei, M. Magnetic properties and cytocompatibility of transition-metal-incorporated hydroxyapatite. Mater. Sci. Eng. C 2018, 87, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.-J.; Dong, L.; Lu, Y.; Zhang, L.-C.; An, D.; Gao, H.-L.; Yang, D.-M.; Hu, W.; Sui, C.; Xu, W.-P. Magnetic hydroxyapatite nanoworms for magnetic resonance diagnosis of acute hepatic injury. Nanoscale 2016, 8, 1684–1690. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Manivasagan, P.; Bharathiraja, S.; Moorthy, M.S.; Kim, H.H.; Seo, H.; Lee, K.D.; Oh, J. Magnetic hydroxyapatite: A promising multifunctional platform for nanomedicine application. Int. J. Nanomed. 2017, 12, 8389. [Google Scholar] [CrossRef] [Green Version]
- Shoulders, M.D.; Raines, R.T. Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929–958. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.; Zhang, D.; Macedo, M.H.; Cui, W.; Sarmento, B.; Shen, G. Advanced Collagen-Based Biomaterials for Regenerative Biomedicine. Adv. Funct. Mater. 2019, 29, 1804943. [Google Scholar] [CrossRef]
- Ottani, V.; Martini, D.; Franchi, M.; Ruggeri, A.; Raspanti, M. Hierarchical structures in fibrillar collagens. Micron 2002, 33, 587–596. [Google Scholar] [CrossRef]
- Ferreira, A.M.; Gentile, P.; Chiono, V.; Ciardelli, G. Collagen for bone tissue regeneration. Acta Biomater. 2012, 8, 3191–3200. [Google Scholar] [CrossRef] [PubMed]
- O’leary, L.E.; Fallas, J.A.; Bakota, E.L.; Kang, M.K.; Hartgerink, J.D. Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel. Nat. Chem. 2011, 3, 821. [Google Scholar] [CrossRef]
- Lutolf, M.P.; Gilbert, P.M.; Blau, H.M. Designing materials to direct stem-cell fate. Nature 2009, 462, 433–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, T.K.; Han, S.-H.; Han, J. Protective effects of biodegradable collagen implants on thinned sclera after strabismus surgery: A paired-eye study. J. Am. Assoc. Pediatric Ophthalmol. Strabismus 2017, 21, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Di Martino, A.; Liverani, L.; Rainer, A.; Salvatore, G.; Trombetta, M.; Denaro, V. Electrospun scaffolds for bone tissue engineering. Musculoskelet. Surg. 2011, 95, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Kim, M.; Kim, G.H. 3D-printed biomimetic scaffold simulating microfibril muscle structure. Adv. Funct. Mater. 2018, 28, 1800405. [Google Scholar] [CrossRef]
- Featherstone, J.D. Dental caries: A dynamic disease process. Aust. Dent. J. 2008, 53, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Li, Q.-L.; Cao, Y.; Fang, H.; Xia, R.; Zhang, Z.-H. In vivo remineralization of dentin using an agarose hydrogel biomimetic mineralization system. Sci. Rep. 2017, 7, 41955. [Google Scholar] [CrossRef] [Green Version]
- Habibah, T.U.; Salisbury, H.G. StatPearls [Internet]; StatPearls Publishing: Petersburg, FL, USA, 2019. [Google Scholar]
- Cölfen, H. A crystal-clear view. Nat. Mater. 2010, 9, 960–961. [Google Scholar] [CrossRef]
- Azpiazu, D.; Gonzalo, S.; González-Parra, E.; Egido, J.; Villa-Bellosta, R. Role of pyrophosphate in vascular calcification in chronic kidney disease. Nefrologia 2018, 38, 250–257. [Google Scholar] [CrossRef]
- Bhadada, S.K.; Rao, S.D. Role of phosphate in biomineralization. Calcif. Tissue Int. 2020, 108, 32–40. [Google Scholar] [CrossRef]
- Ziegler, S.G.; Ferreira, C.R.; MacFarlane, E.G.; Riddle, R.C.; Tomlinson, R.E.; Chew, E.Y.; Martin, L.; Ma, C.-T.; Sergienko, E.; Pinkerton, A.B. Ectopic calcification in pseudoxanthoma elasticum responds to inhibition of tissue-nonspecific alkaline phosphatase. Sci. Transl. Med. 2017, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Lee, B.; Thomopoulos, S.; Jun, Y.-S. The role of confined collagen geometry in decreasing nucleation energy barriers to intrafibrillar mineralization. Nat. Commun. 2018, 9, 962. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Zilm, M.; Wei, M. Fabrication of intrafibrillar and extrafibrillar mineralized collagen/apatite scaffolds with a hierarchical structure. J. Biomed. Mater. Res. Part A 2016, 104, 1153–1161. [Google Scholar] [CrossRef] [PubMed]
- Weiner, S.; Addadi, L. Crystallization pathways in biomineralization. Annu. Rev. Mater. Res. 2011, 41, 21–40. [Google Scholar] [CrossRef]
- Gebauer, D.; Völkel, A.; Cölfen, H. Stable prenucleation calcium carbonate clusters. Science 2008, 322, 1819–1822. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, N.; Qi, Y.p.; Dai, L.; Bryan, T.E.; Mao, J.; Pashley, D.H.; Tay, F.R. Intrafibrillar collagen mineralization produced by biomimetic hierarchical nanoapatite assembly. Adv. Mater. 2011, 23, 975–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, C.; Zhang, L.; Wei, M. Development of biomimetic scaffolds with both intrafibrillar and extrafibrillar mineralization. ACS Biomater. Sci. Eng. 2015, 1, 669–676. [Google Scholar] [CrossRef]
- Jee, S.-S.; Thula, T.T.; Gower, L.B. Development of bone-like composites via the polymer-induced liquid-precursor (PILP) process. Part 1: Influence of polymer molecular weight. Acta Biomater. 2010, 6, 3676–3686. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Gu, L.-S.; Bryan, T.E.; Kim, J.R.; Chen, L.; Liu, Y.; Yoon, J.C.; Breschi, L.; Pashley, D.H.; Tay, F.R. Mineralisation of reconstituted collagen using polyvinylphosphonic acid/polyacrylic acid templating matrix protein analogues in the presence of calcium, phosphate and hydroxyl ions. Biomaterials 2010, 31, 6618–6627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nudelman, F.; Pieterse, K.; George, A.; Bomans, P.H.; Friedrich, H.; Brylka, L.J.; Hilbers, P.A.; de With, G.; Sommerdijk, N.A. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat. Mater. 2010, 9, 1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Jacquet, R.; Lowder, E.; Landis, W.J. Refinement of collagen–mineral interaction: A possible role for osteocalcin in apatite crystal nucleation, growth and development. Bone 2015, 71, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Thula, T.T.; Rodriguez, D.E.; Lee, M.H.; Pendi, L.; Podschun, J.; Gower, L.B. In vitro mineralization of dense collagen substrates: A biomimetic approach toward the development of bone-graft materials. Acta Biomater. 2011, 7, 3158–3169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silver, F.H.; Landis, W.J. Deposition of apatite in mineralizing vertebrate extracellular matrices: A model of possible nucleation sites on type I collagen. Connect. Tissue Res. 2011, 52, 242–254. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Yang, Y.; Zhao, W.; Wang, Z.; Landis, W.J.; Cui, Q.; Sahai, N. Molecular mechanisms for intrafibrillar collagen mineralization in skeletal tissues. Biomaterials 2015, 39, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lee, B.; Thomopoulos, S.; Jun, Y.-S. In situ evaluation of calcium phosphate nucleation kinetics and pathways during intra-and extrafibrillar mineralization of collagen matrices. Cryst. Growth Des. 2016, 16, 5359–5366. [Google Scholar] [CrossRef] [Green Version]
- Qu, H.; Xia, Z.; Knecht, D.A.; Wei, M. Synthesis of dense collagen/apatite composites using a biomimetic method. J. Am. Ceram. Soc. 2008, 91, 3211–3215. [Google Scholar] [CrossRef]
- Hu, C.; Yu, L.; Wei, M. Sectioning studies of biomimetic collagen-hydroxyapatite coatings on Ti-6Al-4V substrates using focused ion beam. Appl. Surf. Sci. 2018, 444, 590–597. [Google Scholar] [CrossRef]
- Gebauer, D.; Cölfen, H. Prenucleation clusters and non-classical nucleation. Nano Today 2011, 6, 564–584. [Google Scholar] [CrossRef] [Green Version]
- Habraken, W.J.; Tao, J.; Brylka, L.J.; Friedrich, H.; Bertinetti, L.; Schenk, A.S.; Verch, A.; Dmitrovic, V.; Bomans, P.H.; Frederik, P.M. Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat. Commun. 2013, 4, 1507. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, A.S.; Beniash, E. Bioinspired synthesis of mineralized collagen fibrils. Cryst. Growth Des. 2008, 8, 3084–3090. [Google Scholar] [CrossRef] [Green Version]
- Gower, L.; Tirrell, D. Calcium carbonate films and helices grown in solutions of poly (aspartate). J. Cryst. Growth 1998, 191, 153–160. [Google Scholar] [CrossRef]
- Gower, L.B.; Odom, D.J. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. J. Cryst. Growth 2000, 210, 719–734. [Google Scholar] [CrossRef]
- Olszta, M.J.; Cheng, X.; Jee, S.S.; Kumar, R.; Kim, Y.-Y.; Kaufman, M.J.; Douglas, E.P.; Gower, L.B. Bone structure and formation: A new perspective. Mater. Sci. Eng. R Rep. 2007, 58, 77–116. [Google Scholar] [CrossRef]
- Xu, Y.; Tijssen, K.C.; Bomans, P.H.; Akiva, A.; Friedrich, H.; Kentgens, A.P.; Sommerdijk, N.A. Microscopic structure of the polymer-induced liquid precursor for calcium carbonate. Nat. Commun. 2018, 9, 2582. [Google Scholar] [CrossRef] [Green Version]
- Wolf, S.L.; Caballero, L.; Melo, F.; Cölfen, H. Gel-like calcium carbonate precursors observed by in situ AFM. Langmuir 2017, 33, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.-X.; Hoff, S.E.; Huang, X.-Q.; Liu, J.; Wan, Q.-Q.; Song, Q.; Gu, J.-T.; Heinz, H.; Tay, F.R.; Niu, L.-N. Involvement of prenucleation clusters in calcium phosphate mineralization of collagen. Acta Biomater. 2020, 120, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Garcia, N.A.; Malini, R.I.; Freeman, C.L.; Demichelis, R.; Raiteri, P.; Sommerdijk, N.A.; Harding, J.H.; Gale, J.D. Simulation of calcium phosphate prenucleation clusters in aqueous solution: Association beyond ion pairing. Cryst. Growth Des. 2019, 19, 6422–6430. [Google Scholar] [CrossRef] [PubMed]
- Sugawara-Narutaki, A.; Nakamura, J.; Ohtsuki, C. Bioceramics; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Olszta, M.; Douglas, E.; Gower, L. Scanning electron microscopic analysis of the mineralization of type I collagen via a polymer-induced liquid-precursor (PILP) process. Calcif. Tissue Int. 2003, 72, 583–591. [Google Scholar] [CrossRef]
- Olszta, M.J.; Douglas, E.P.; Gower, L.B. Intrafibrillar mineralization of collagen using a liquid-phase mineral precursor. MRS Online Proc. Libr. Arch. 2003, 774. [Google Scholar] [CrossRef]
- Olszta, M.J.; Odom, D.J.; Douglas, E.P.; Gower, L.B. A new paradigm for biomineral formation: Mineralization via an amorphous liquid-phase precursor. Connect. Tissue Res. 2003, 44, 326–334. [Google Scholar] [CrossRef]
- Jee, S.S.; Culver, L.; Li, Y.; Douglas, E.P.; Gower, L.B. Biomimetic mineralization of collagen via an enzyme-aided PILP process. J. Cryst. Growth 2010, 312, 1249–1256. [Google Scholar] [CrossRef]
- Jee, S.S.; Kasinath, R.K.; DiMasi, E.; Kim, Y.-Y.; Gower, L. Oriented hydroxyapatite in turkey tendon mineralized via the polymer-induced liquid-precursor (PILP) process. CrystEngComm 2011, 13, 2077–2083. [Google Scholar] [CrossRef]
- França, C.M.; Thrivikraman, G.; Athirasala, A.; Tahayeri, A.; Gower, L.B.; Bertassoni, L.E. The influence of osteopontin-guided collagen intrafibrillar mineralization on pericyte differentiation and vascularization of engineered bone scaffolds. J. Biomed. Mater. Res. Part B Appl. Biomater. 2019, 107, 1522–1532. [Google Scholar] [CrossRef] [PubMed]
- Saxena, N.; Cremer, M.A.; Dolling, E.S.; Nurrohman, H.; Habelitz, S.; Marshall, G.W.; Gower, L.B. Influence of fluoride on the mineralization of collagen via the polymer-induced liquid-precursor (PILP) process. Dent. Mater. 2018, 34, 1378–1390. [Google Scholar] [CrossRef]
- James, B.D.; Guerin, P.; Iverson, Z.; Allen, J.B. Mineralized DNA-collagen complex-based biomaterials for bone tissue engineering. Int. J. Biol. Macromol. 2020, 161, 1127–1139. [Google Scholar] [CrossRef] [PubMed]
- Li, S.T.; Katz, E.P. An electrostatic model for collagen fibrils. The interaction of reconstituted collagen with Ca++, Na+, and Cl−. Biopolym. Orig. Res. Biomol. 1976, 15, 1439–1460. [Google Scholar] [CrossRef] [PubMed]
- Nudelman, F.; Lausch, A.J.; Sommerdijk, N.A.; Sone, E.D. In vitro models of collagen biomineralization. J. Struct. Biol. 2013, 183, 258–269. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Azaïs, T.; Robin, M.; Vallée, A.; Catania, C.; Legriel, P.; Pehau-Arnaudet, G.; Babonneau, F.; Giraud-Guille, M.-M.; Nassif, N. The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite. Nat. Mater. 2012, 11, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Gu, L.; Huang, Z.; Sun, Q.; Chen, H.; Ling, J.; Mai, S. Intrafibrillar mineralization of polyacrylic acid-bound collagen fibrils using a two-dimensional collagen model and Portland cement-based resins. Eur. J. Oral Sci. 2017, 125, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, D.E.; Thula-Mata, T.; Toro, E.J.; Yeh, Y.-W.; Holt, C.; Holliday, L.S.; Gower, L.B. Multifunctional role of osteopontin in directing intrafibrillar mineralization of collagen and activation of osteoclasts. Acta Biomater. 2014, 10, 494–507. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Griffanti, G.; Tamimi, F.; McKee, M.D.; Nazhat, S.N. Multiscale structural evolution of citrate-triggered intrafibrillar and interfibrillar mineralization in dense collagen gels. J. Struct. Biol. 2020, 212, 107592. [Google Scholar] [CrossRef]
- Yu, L.; Martin, I.J.; Kasi, R.M.; Wei, M. Enhanced intrafibrillar mineralization of collagen fibrils induced by brushlike polymers. ACS Appl. Mater. Interfaces 2018, 10, 28440–28449. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Rowe, D.W.; Perera, I.P.; Zhang, J.; Suib, S.L.; Xin, X.; Wei, M. Intrafibrillar Mineralized Collagen-Hydroxyapatite-Based Scaffolds for Bone Regeneration. ACS Appl. Mater. Interfaces 2020, 12, 18235–18249. [Google Scholar] [CrossRef]
- Hu, C.; Yu, L.; Wei, M. Biomimetic intrafibrillar silicification of collagen fibrils through a one-step collagen self-assembly/silicification approach. RSC Adv. 2017, 7, 34624–34632. [Google Scholar] [CrossRef] [Green Version]
- Kerns, J.G.; Buckley, K.; Churchwell, J.; Parker, A.W.; Matousek, P.; Goodship, A.E. Is the collagen primed for mineralization in specific regions of the turkey tendon? An investigation of the protein–mineral interface using Raman spectroscopy. Anal. Chem. 2016, 88, 1559–1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, K.; Niu, L.N.; Ma, C.F.; Huang, X.Q.; Pei, D.D.; Luo, T.; Huang, Q.; Chen, J.H.; Tay, F.R. Complementarity and uncertainty in intrafibrillar mineralization of collagen. Adv. Funct. Mater. 2016, 26, 6858–6875. [Google Scholar] [CrossRef]
- Li, Y.; Rodriguez-Cabello, J.C.; Aparicio, C. Intrafibrillar mineralization of self-assembled elastin-like recombinamer fibrils. ACS Appl. Mater. Interfaces 2017, 9, 5838–5846. [Google Scholar] [CrossRef]
- Niu, L.-N.; Jee, S.E.; Jiao, K.; Tonggu, L.; Li, M.; Wang, L.; Yang, Y.-D.; Bian, J.-H.; Breschi, L.; Jang, S.S. Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality. Nat. Mater. 2017, 16, 370–378. [Google Scholar] [CrossRef] [Green Version]
- Song, Q.; Jiao, K.; Tonggu, L.; Wang, L.; Zhang, S.; Yang, Y.; Zhang, L.; Bian, J.; Hao, D.; Wang, C. Contribution of biomimetic collagen-ligand interaction to intrafibrillar mineralization. Sci. Adv. 2019, 5, eaav9075. [Google Scholar] [CrossRef] [Green Version]
- Toroian, D.; Lim, J.E.; Price, P.A. The size exclusion characteristics of type I collagen implications for the role of noncollagenous bone constituents in mineralization. J. Biol. Chem. 2007, 282, 22437–22447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, P.A.; Toroian, D.; Lim, J.E. Mineralization by inhibitor exclusion the calcification of collagen with fetuin. J. Biol. Chem. 2009, 284, 17092–17101. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Gill, G.; Kaur, H.; Amhmed, M.; Jakhu, H. Role of osteopontin in bone remodeling and orthodontic tooth movement: A review. Prog. Orthod. 2018, 19, 18. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ustriyana, P.; Chen, K.; Zhao, W.; Xu, Z.; Sahai, N. Towards the Understanding of Small Protein-Mediated Collagen Intrafibrillar Mineralization. ACS Biomater. Sci. Eng. 2020. [Google Scholar] [CrossRef]
- Cai, M.M.; Smith, E.R.; Holt, S.G. The role of fetuin-A in mineral trafficking and deposition. BoneKEy Rep. 2015, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ping, H.; Xie, H.; Su, B.-L.; Cheng, Y.-B.; Wang, W.; Wang, H.; Wang, Y.; Zhang, J.; Zhang, F.; Fu, Z. Organized intrafibrillar mineralization, directed by a rationally designed multi-functional protein. J. Mater. Chem. B 2015, 3, 4496–4502. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Wu, H.; Luo, X.-J. Biomineralization Precursor Carrier System Based on Carboxyl-Functionalized Large Pore Mesoporous Silica Nanoparticles. Curr. Med. Sci. 2020, 40, 155–167. [Google Scholar] [CrossRef]
- Du, T.; Niu, X.; Hou, S.; Li, Z.; Li, P.; Fan, Y. Apatite minerals derived from collagen phosphorylation modification induce the hierarchical intrafibrillar mineralization of collagen fibers. J. Biomed. Mater. Res. Part A 2019, 107, 2403–2413. [Google Scholar] [CrossRef] [PubMed]
- Marbach, S.; Bocquet, L. Osmosis, from molecular insights to large-scale applications. Chem. Soc. Rev. 2019, 48, 3102–3144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quan, B.D.; Sone, E.D. The effect of polyaspartate chain length on mediating biomimetic remineralization of collagenous tissues. J. R. Soc. Interface 2018, 15, 20180269. [Google Scholar] [CrossRef] [Green Version]
- Zou, Z.; Tang, T.; Macías-Sánchez, E.; Sviben, S.; Landis, W.J.; Bertinetti, L.; Fratzl, P. Three-dimensional structural interrelations between cells, extracellular matrix, and mineral in normally mineralizing avian leg tendon. Proc. Natl. Acad. Sci. USA 2020. [Google Scholar] [CrossRef]
- Hor, J.L.; Wang, H.; Fakhraai, Z.; Lee, D. Effect of Physical Nanoconfinement on the Viscosity of Unentangled Polymers during Capillary Rise Infiltration. Macromolecules 2018, 51, 5069–5078. [Google Scholar] [CrossRef]
- Vinay, T.V.; Banuprasad, T.N.; George, S.D.; Varghese, S.; Varanakkottu, S.N. Additive-Free Tunable Transport and Assembly of Floating Objects at Water-Air Interface Using Bubble-Mediated Capillary Forces. Adv. Mater. Interfaces 2017, 4, 1601231. [Google Scholar] [CrossRef]
- Feng, J.; Song, Q.; Zhang, B.; Wu, Y.; Wang, T.; Jiang, L. Large-Scale, Long-Range-Ordered Patterning of Nanocrystals via Capillary-Bridge Manipulation. Adv. Mater. 2017, 29, 1703143. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.; Zhao, R.; Jiang, S.; Yao, S.; Wu, Z.; Jin, B.; Yang, Y.; Pan, H.; Tang, R. Citrate improves collagen mineralization via interface wetting: A physicochemical understanding of biomineralization control. Adv. Mater. 2018, 30, 1704876. [Google Scholar] [CrossRef]
- Qu, Y.; Gu, T.; Du, Q.; Shao, C.; Wang, J.; Jin, B.; Kong, W.; Sun, J.; Chen, C.; Pan, H. Polydopamine Promotes Dentin Remineralization via Interfacial Control. ACS Biomater. Sci. Eng. 2020, 6, 3327–3334. [Google Scholar] [CrossRef]
- He, L.; Hao, Y.; Zhen, L.; Liu, H.; Shao, M.; Xu, X.; Liang, K.; Gao, Y.; Yuan, H.; Li, J. Biomineralization of dentin. J. Struct. Biol. 2019, 207, 115–122. [Google Scholar] [CrossRef]
- Wang, X.; Yang, J.; Andrei, C.M.; Soleymani, L.; Grandfield, K. Biomineralization of calcium phosphate revealed by in situ liquid-phase electron microscopy. Commun. Chem. 2018, 1, 80. [Google Scholar] [CrossRef] [Green Version]
- Yi, H.; Rehman, F.U.; Zhao, C.; Liu, B.; He, N. Recent advances in nano scaffolds for bone repair. Bone Res. 2016, 4, 16050. [Google Scholar] [CrossRef]
- Zou, L.; Zhang, Y.; Liu, X.; Chen, J.; Zhang, Q. Biomimetic mineralization on natural and synthetic polymers to prepare hybrid scaffolds for bone tissue engineering. Colloids Surf. B Biointerfaces 2019, 178, 222–229. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, D.; Kou, X.X.; Wang, X.D.; Tay, F.R.; Sha, Y.L.; Gan, Y.H.; Zhou, Y.H. Hierarchical intrafibrillar nanocarbonated apatite assembly improves the nanomechanics and cytocompatibility of mineralized collagen. Adv. Funct. Mater. 2013, 23, 1404–1411. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Z.; Zhang, C.; Liu, J.; Bai, Y.; Li, S.; Zhang, C. Biomimetic intrafibrillar mineralized collagen promotes bone regeneration via activation of the Wnt signaling pathway. Int. J. Nanomed. 2018, 13, 7503. [Google Scholar] [CrossRef] [Green Version]
- Chien, Y.-C.; Tao, J.; Saeki, K.; Chin, A.F.; Lau, J.L.; Chen, C.-L.; Zuckermann, R.N.; Marshall, S.J.; Marshall, G.W.; De Yoreo, J.J. Using biomimetic polymers in place of noncollagenous proteins to achieve functional remineralization of dentin tissues. ACS Biomater. Sci. Eng. 2017, 3, 3469–3479. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Jin, R.; Li, X.; Fang, X.; Yuan, D.; Chen, Z.; Yao, S.; Tang, R.; Chen, Z. Biomimetic remineralization of artificial caries dentin lesion using Ca/P-PILP. Dent. Mater. 2020, 36, 1397–1406. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Jiang, T.; Wang, Y. Biomimetic regulation of dentine remineralization by amino acid in vitro. Dent. Mater. 2019, 35, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Barbosa-Martins, L.F.; Sousa, J.P.d.; Alves, L.A.; Davies, R.P.W.; Puppin-Rontanti, R.M. Biomimetic mineralizing agents recover the micro tensile bond strength of demineralized dentin. Materials 2018, 11, 1733. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.Y.; Mei, M.L.; Li, Q.-L.; Lo, E.C.M.; Chu, C.H. Methods for biomimetic remineralization of human dentine: A systematic review. Int. J. Mol. Sci. 2015, 16, 4615–4627. [Google Scholar] [CrossRef]
- Zoch, M.L.; Clemens, T.L.; Riddle, R.C. New insights into the biology of osteocalcin. Bone 2016, 82, 42–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, P.; Grüner, D.; Worch, H.; Pompe, W.; Lichte, H.; El Khassawna, T.; Heiss, C.; Wenisch, S.; Kniep, R. First evidence of octacalcium phosphate@ osteocalcin nanocomplex as skeletal bone component directing collagen triple–helix nanofibril mineralization. Sci. Rep. 2018, 8, 13696. [Google Scholar] [CrossRef]
- Moriishi, T.; Ozasa, R.; Ishimoto, T.; Nakano, T.; Hasegawa, T.; Miyazaki, T.; Liu, W.; Fukuyama, R.; Wang, Y.; Komori, H. Osteocalcin is necessary for the alignment of apatite crystallites, but not glucose metabolism, testosterone synthesis, or muscle mass. PLoS Genet. 2020, 16, e1008586. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Chen, Q.; Alam, A.; Cui, J.; Suen, K.C.; Soo, A.P.; Eguchi, S.; Gu, J.; Ma, D. The role of osteopontin in the progression of solid organ tumour. Cell Death Dis. 2018, 9, 356. [Google Scholar] [CrossRef]
- Zuo, Q.; Yao, J.; Lu, S.; Du, Z.; Li, S.; Lin, F.; Shi, W.; Zhang, Y.; Xiao, Y. The role of organic phosphate in the spatial control of periodontium complex bio-mineralization: An in vitro study. J. Mater. Chem. B 2019, 7, 5956–5965. [Google Scholar] [CrossRef]
- Ling, Z.; He, Y.; Huang, H.; Xie, X.; Li, Q.-l.; Cao, C.Y. Effects of oligopeptide simulating DMP-1/mineral trioxide aggregate/agarose hydrogel biomimetic mineralisation model for the treatment of dentine hypersensitivity. J. Mater. Chem. B 2019, 7, 5825–5833. [Google Scholar] [CrossRef] [PubMed]
- Brylka, L.; Jahnen-Dechent, W. The role of fetuin-A in physiological and pathological mineralization. Calcified Tissue Int. 2013, 93, 355–364. [Google Scholar] [CrossRef]
- Qi, Y.; Ye, Z.; Fok, A.; Holmes, B.N.; Espanol, M.; Ginebra, M.-P.; Aparicio, C. Effects of molecular weight and concentration of poly (acrylic acid) on biomimetic mineralization of collagen. ACS Biomater. Sci. Eng. 2018, 4, 2758–2766. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Van Manh, N.; Wang, H.; Zhong, X.; Zhang, X.; Li, C. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects. Int. J. Nanomed. 2016, 11, 2053. [Google Scholar]
- Liu, H.; Lin, M.; Liu, X.; Zhang, Y.; Luo, Y.; Pang, Y.; Chen, H.; Zhu, D.; Zhong, X.; Ma, S. Doping bioactive elements into a collagen scaffold based on synchronous self-assembly/mineralization for bone tissue engineering. Bioact. Mater. 2020, 5, 844–858. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Mao, C.; Gu, T.; Pan, H.; Shao, C.; Sun, J.; Chen, C.; Tang, R.; Gu, X. Phosphorylated chitosan to promote biomimetic mineralization of type I collagen as a strategy for dentin repair and bone tissue engineering. New J. Chem. 2019, 43, 2002–2010. [Google Scholar] [CrossRef]
- Lin, X.; Xie, F.; Ma, X.; Hao, Y.; Qin, H.; Long, J. Fabrication and characterization of dendrimer-functionalized nano-hydroxyapatite and its application in dentin tubule occlusion. J. Biomater. Sci. Polym. Ed. 2017, 28, 846–863. [Google Scholar] [CrossRef] [PubMed]
- Bapat, R.A.; Dharmadhikari, S.; Chaubal, T.V.; Amin, M.C.I.M.; Bapat, P.; Gorain, B.; Choudhury, H.; Vincent, C.; Kesharwani, P. The potential of dendrimer in delivery of therapeutics for dentistry. Heliyon 2019, 5, e02544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, H.; Shao, C.; Mu, Z.; Mao, C.; Sun, J.; Chen, C.; Tang, R.; Gu, X. Promotion effect of immobilized chondroitin sulfate on intrafibrillar mineralization of collagen. Carbohydr. Polym. 2020, 229, 115547. [Google Scholar] [CrossRef]
- Su, W.; Ma, L.; Ran, Y.; Ma, X.; Yi, Z.; Chen, G.; Chen, X.; Li, X. Alginate-Assisted Mineralization of Collagen by Collagen Reconstitution and Calcium Phosphate Formation. ACS Biomater. Sci. Eng. 2020, 6, 3275–3286. [Google Scholar] [CrossRef]
- Sun, J.-L.; Jiao, K.; Niu, L.-N.; Jiao, Y.; Song, Q.; Shen, L.-J.; Tay, F.R.; Chen, J.-H. Intrafibrillar silicified collagen scaffold modulates monocyte to promote cell homing, angiogenesis and bone regeneration. Biomaterials 2017, 113, 203–216. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Huang, Z.; Liu, N.; Tang, X.; Dusabe, E.; Zhou, B.; Mao, J. The Role of Genetically Engineered Peptides in Inducing Intrafibrillar Mineralization Using Calcium Phosphate Precursors. Sci. Adv. Mater. 2016, 8, 2204–2215. [Google Scholar] [CrossRef]
- Gungormus, M.; Tulumbaci, F. Peptide-assisted pre-bonding remineralization of dentin to improve bonding. J. Mech. Behav. Biomed. Mater. 2020, 113, 104119. [Google Scholar] [CrossRef]
- Mukherjee, K.; Visakan, G.; Phark, J.-H.; Moradian-Oldak, J. Enhancing Collagen Mineralization with Amelogenin Peptide: Toward the Restoration of Dentin. ACS Biomater. Sci. Eng. 2020, 6, 2251–2262. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Tian, X.; Kim, J.P.; Xie, D.; Ao, X.; Shan, D.; Lin, Q.; Hudock, M.R.; Bai, X.; Yang, J. Citrate-based materials fuel human stem cells by metabonegenic regulation. Proc. Natl. Acad. Sci. USA 2018, 115, E11741–E11750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Wang, Y.; Dai, H.; Tian, X.; Cui, Z.-K.; Chen, Z.; Hu, L.; Song, Q.; Liu, A.; Zhang, Z. Bone and plasma citrate is reduced in osteoporosis. Bone 2018, 114, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Olson, T.Y.; Orme, C.A.; Han, T.Y.-J.; Worsley, M.A.; Rose, K.A.; Satcher, J.H.; Kuntz, J.D. Shape control synthesis of fluorapatite structures based on supersaturation: Prismatic nanowires, ellipsoids, star, and aggregate formation. CrystEngComm 2012, 14, 6384–6389. [Google Scholar] [CrossRef]
- Pajor, K.; Pajchel, L.; Kolmas, J. Hydroxyapatite and fluorapatite in conservative dentistry and oral implantology—A review. Materials 2019, 12, 2683. [Google Scholar] [CrossRef] [Green Version]
- Niu, X.; Fan, R.; Guo, X.; Du, T.; Yang, Z.; Feng, Q.; Fan, Y. Shear-mediated orientational mineralization of bone apatite on collagen fibrils. J. Mater. Chem. B 2017, 5, 9141–9147. [Google Scholar] [CrossRef]
- Du, T.; Niu, X.; Hou, S.; Xu, M.; Li, Z.; Li, P.; Fan, Y. Highly aligned hierarchical intrafibrillar mineralization of collagen induced by periodic fluid shear stress. J. Mater. Chem. B 2020, 8, 2562–2572. [Google Scholar] [CrossRef]
Polymers | Major Findings | Ref. |
---|---|---|
PAA | Systematically investigated the effect of molecular weight and concentration of PAA on the rate and pattern of collagen intrafibrillar mineralization. Decreasing PAA molecular weight (2 kDa) and increasing PAA concentration (50 mg/L) resulted in increased stability of ACP solution and therefore enhanced intrafibrillar mineralization. | [106] |
PAA or carboxyl-rich brush-like polymers; TPP | Two brush-like polymers derived from PEG were synthesized and modified with enriched carboxylic groups. Sodium tripolyphosphate (TPP) was used as a templating analog. The mineralization degree of collagen fibrils induced by brush-like polymers was higher than those induced by linear PAA. Therefore, the formation of intrafibrillarly mineralized apatite might be partially determined by the availability of carboxylic groups in the nucleation inhibitors. | [64] |
PAA; TPP | Intrafibrillarly mineralized collagen-based scaffolds were engineered into both cellular and lamellar structures. Fe and Mn were incorporated separately or jointly into the lamellar scaffold. Lamellar scaffolds were much better in supporting in vitro osteogenic differentiation and in vivo bone regeneration than cellular scaffolds. These promotion effects were further enhanced by the addition of both Fe and Mn ions. | [65] |
PASP | PASP chain length contributed to the effectiveness of mediating intrafibrillar mineralization. The process appeared to be associated with the inhibition of apatite crystallization by PASP through slowing the growth of ACP stabilizing this phase. | [81] |
CMC | Collagen scaffolds with both intrafibrillar and extrafibrillar mineralization were obtained using carboxymethyl chitosan (CMC) to stabilize ACP. Such prepared scaffolds exhibited increased modulus, in vitro cell proliferation and differentiation, and in vivo new bone regeneration compared to unmineralized collagen scaffolds as well as those fabricated using traditional modified-simulated body fluid (m-SBF) solution without CMC. | [107] |
CMC | Sr- and Ag-doped intrafibrillarly mineralized collagen scaffolds were developed. Ag-doped scaffolds showed enhanced antibacterial effect on S. aureus while Sr-doped scaffolds illustrated enhanced new bone regeneration. | [108] |
Pchi | Phosphorylated chitosan (Pchi) was used to promote collagen intrafibrillar mineralization through a biomimetic approach. It was found that Pchi significantly shortened the self-assembly process by accelerating the rate of crystallization due to the excellent ion chelating properties of chitosan derivatives and their ability to induce high-degree conglutination. | [109] |
PAMAM | Carboxyl-terminated hyperbranched polyamidoamine dendrimer (PAMAM) was used to induce biomimetic remineralization on dentine organic matrix. Such prepared material showed great potential to be used as a new therapeutic material for the treatment of dentin hypersensitivity. | [110,111] |
PDA | Dentine was successfully repaired using polydopamine (PDA), which promoted intrafibrillar mineralization by decreasing the interfacial energy between collagen matrix and ACP. The re-mineralized dentin exhibited comparable mechanical properties to natural dentin. | [87] |
CS | The immobilized chondroitin sulfate (CS) on collagen fibrils accelerated CaP nucleation and significantly promoted collagen intrafibrillar mineralization by providing specific sites for CaP nucleation within the collagen fibrils. Remarkably accelerated remineralization of CS immobilized demineralized dentin was achieved. | [112] |
Alginate | As an anionic polyelectrolyte with Ca-capturing capacity, alginate was used to successfully mediate intrafibrillar mineralization of collagen. The alginate-assisted mineralization of collagen resulted in an exquisite three-dimensional (3D) mineralized architecture with enhanced mechanical properties as well as excellent proliferation, adhesion, and differentiation of rat BMSCs. | [113] |
PAH; TPP | Intrafibrillarly silicified collagen scaffolds were prepared in the presence of PAH as a directing agent. The silicified scaffolds supported in vitro cell proliferation, in situ bone regeneration and angiogenesis via monocyte immunomodulation. | [66,114] |
Peptide | Various kinds of mineral-promoting peptides with different amino acid sequences were designed to mimic the functions of NCPs to enhance intrafibrillar mineralization of collagen. The obtained materials displayed: (1) stronger influence on biomineralization than traditional used PAA; (2) excellent ability for rapid remineralization of dentin; or (3) apparent improvement in restoring incipient enamel decay and mineralization defects localized in peripheral dentin. | [115,116,117] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Wei, M. Biomineralization of Collagen-Based Materials for Hard Tissue Repair. Int. J. Mol. Sci. 2021, 22, 944. https://doi.org/10.3390/ijms22020944
Yu L, Wei M. Biomineralization of Collagen-Based Materials for Hard Tissue Repair. International Journal of Molecular Sciences. 2021; 22(2):944. https://doi.org/10.3390/ijms22020944
Chicago/Turabian StyleYu, Le, and Mei Wei. 2021. "Biomineralization of Collagen-Based Materials for Hard Tissue Repair" International Journal of Molecular Sciences 22, no. 2: 944. https://doi.org/10.3390/ijms22020944
APA StyleYu, L., & Wei, M. (2021). Biomineralization of Collagen-Based Materials for Hard Tissue Repair. International Journal of Molecular Sciences, 22(2), 944. https://doi.org/10.3390/ijms22020944