Identification of Peritrophins and Antiviral Effect of Bm01504 against BmNPV in the Silkworm, Bombyx mori
<p>Phylogenetic analysis and multiple sequence alignment of CBDs in peritrophins. Species included <span class="html-italic">Aedes aegypti</span> (Aa), <span class="html-italic">Anopheles gambiae</span> (Ag), <span class="html-italic">Bombyx mori</span> (Bm), <span class="html-italic">Loxostege sticticalis Linne</span> (Lsti), <span class="html-italic">Lucilia cuprina</span> (Lc), <span class="html-italic">Mamestra configurata</span> (Mc), <span class="html-italic">Mayetiola destructor</span> (Md), <span class="html-italic">Phlebotomus papatasi</span> (Pp), <span class="html-italic">Spodoptera litura</span> (Sl), <span class="html-italic">Tribolium castaneum</span> (Tc), <span class="html-italic">Trichoplusia ni</span> (Tn). (<b>A</b>) Amino acid sequence alignment of first CBD in peritrophins. The CBD sequence comprised 52–56 amino acid residues, and a consensus of conserved cysteines (C) and spaces (X): CX<sub>11-15</sub>CX<sub>5</sub>CX<sub>9-14</sub>CX<sub>11-12</sub> CX<sub>6-7</sub>C. Black shading indicates cysteine and other conserved residues in CBDs. The less-conserved amino acids are shown in shades of gray; (<b>B</b>) Phylogenetic tree of CBDs from several species. <span class="html-italic">Bombyx mori</span> peritrophins include Bm01491 (red), Bm11851 (brown), Bm09641 (sky blue), Bm01504 (yellow), Bm00185 (lime), Bm07250 (yellow green), Bm01010 (fuchsia), Bm07902 (purple), Bm14488 (cyan), Bm01361 (dark red), Bm03115 (dark green). The accession numbers of all proteins are listed in <a href="#app1-ijms-21-07973" class="html-app">Table S3</a>.</p> "> Figure 2
<p>The expression levels of the 11 identified peritrophins in various tissues at 3rd day of the fifth instar larvae. <span class="html-italic">Bm03115</span>, <span class="html-italic">Bm07250</span>, <span class="html-italic">Bm07902</span>, and <span class="html-italic">Bm14488</span> were not detected in the midgut. <span class="html-italic">Bm01010</span>, <span class="html-italic">Bm01361</span> showed very low expression in the midgut. <span class="html-italic">Bm11851</span>, <span class="html-italic">Bm09641</span>, <span class="html-italic">Bm01504</span>, <span class="html-italic">Bm00185</span>, and <span class="html-italic">Bm01491</span> were highly or specifically expressed in the midgut. Actin 3 served as an internal control. EP, Epidermis; FB, Fat body; HE, Head; HM, Hemolymph; MG, Midgut; MT, Malpighian tubule; OV, Ovary, SG, Silk gland; TE, Testis; TR, Trachea.</p> "> Figure 3
<p>Temporal and spatial expression patterns of peritrophins in <span class="html-italic">Bombyx mori</span>. (<b>A</b>) Expression of peritrophins in different regions of the midgut. AM, Anterior midgut; FG, Foregut; HG, Hindgut; MM, Middle midgut; PM, Posterior midgut; (<b>B</b>) Expression of peritrophins in the midgut from the third instar to 7th day of the fifth instar. 3l, Third instar of larval stage; 4l, Fourth instar of larval stage; 5l, Fifth instar of larval stage; m, Molt; nd, Day n.</p> "> Figure 4
<p>Generation of Bm01504 overexpression (Bm01504-OE) transgenic silkworms. (<b>A</b>) The nucleotide sequence of cDNA for <span class="html-italic">Bm01504</span> and its deduced amino acid sequence. The black line indicates the signal peptide sequence, the red line indicates the four CBDs, and conserved cysteine residues are boxed; (<b>B</b>) Schematic diagram of the piggyBac (3×P3-Discosoma sp. red fluorescent protein (DsRed)-SV40+ Opie2-Bm01504-SV40) transgenic vector. <span class="html-italic">Bm01504</span> was driven by Opie2 promoter, DsRed was driven by the 3×P3 promoter and SV40 was used for transcription termination signals. Hyperactive promoter containing three binding sites for Pax-6 homodimers in front of TATA box are indicated by 3×P3 promoter. DsRed, <span class="html-italic">Discosoma</span> sp. Red Fluorescent Protein. Opie2 promoter, <span class="html-italic">Orgyia pseudotsugata multicapsid nucleopolyhedrovirus</span> (OpMNPV) immediate-early 2 (ie2) promoter. SV40, terminator of <span class="html-italic">Simian virus 40</span>. pBacL and pBacR indicate the left and right terminal inverted repeats, respectively; (<b>C</b>) Images of larvae and adults of transgenic silkworm with white light and red fluorescence. WT, Wild type. White arrows indicate positions of eyes in larvae and adults; (<b>D</b>) Insertion sites in Bm01504-OE transgenic silkworms analyzed using inverse PCR; (<b>E</b>) The messenger RNA (mRNA) level of <span class="html-italic">Bm01504</span> in Bm01504-OE transgenic silkworms was determined by qRT-PCR. Values with <span class="html-italic">p</span> < 0.05 were considered statistically significant (** <span class="html-italic">p</span> < 0.01); (<b>F</b>) The anterior peritrophic membrane (PM) permeability of Bm01504-OE transgenic silkworms was evaluated using Fluoresceine isothiocyanate (FITC)-dextran (150 kDa) using fluorescence microscopy (100×). In, Internal. Ex, External. White lines show the localization of the PM.</p> "> Figure 5
<p>Generation of Bm01504 knockout (Bm01504-KO) transgenic silkworms. (<b>A</b>) Schematic diagram of the piggyBac (3×P3-DsRed-SV40 + U6-Bm01504-sgRNA1 + U6-Bm01504-sgRNA2) transgenic vector. DsRed was driven using 3×P3 promoter and SV40 was used for termination signals of transcription. 3×P3 indicate a hyperactive promoter containing three binding sites for Pax-6 homodimers in front of a TATA box. DsRed, Discosoma sp. Red Fluorescent Protein. SV40, Terminator of <span class="html-italic">Simian virus 40</span>. U6 promoter regulated the expression of Bm01504-sgRNA. U6, U6 snRNA promoter in <span class="html-italic">Bombyx mori</span>. Bm01504-sgRNA, gRNA targets of <span class="html-italic">Bm01504</span> gene designed by CRISPR direct. pBacL and pBacR, left and right terminal inverted repeats. Protospacer adjacent motif (PAM) sequence is in green; (<b>B</b>) Images of transgenic silkworm in white light, green and red fluorescence. G1 generation of Cas9 and sgRNA lines screened by fluorescence microscopy. The G2 generation of four transgenic hybrid lines, namely, Cas9 (–) / sgRNA (–), Cas9 (+) / sgRNA (–), Cas9 (+) /sgRNA (–), and Cas9 (+) / sgRNA (+) generated by G1 hybridization. Cas9 (+) / sgRNA (+) is named Bm01504-KO; (<b>C</b>) Insertion sites in Bm01504-sgRNA transgenic silkworms analyzed using inverse PCR; (<b>D</b>) Knockout effect of <span class="html-italic">Bm01504</span> in Bm01504-KO transgenic silkworms. Sequence of <span class="html-italic">Bm01504</span> target site is labeled in red. Red dotted lines denote the deleted segments. Lengths of deletions/insertions is indicated on the left; (<b>E</b>) The permeability of the anterior PM of Bm01504-KO transgenic silkworm was evaluated using FITC-dextran (500 kDa) and fluorescence microscopy (100×). White lines show the localization of the PM. Ex, External; In, Internal.</p> "> Figure 6
<p>Economic characteristics of Bm01504-KO, Bm01504-OE, and WT. (<b>A</b>) Weight changes in the transgenic lines and WT from the third instar to 6th day of the fifth instar. The average weight of 30 larvae per group is shown. 3l, Third instar of larval stage; 4l, Fourth instar of larval stage; 5l, Fifth instar of larval stage; nd, Day n; (<b>B</b>) analysis of the cocoon shell rate of the transgenic lines and WT at pupal stage. Thirty cocoons of each silkworm strain were randomly selected on 3rd day in the pupal stage, and the cocoon shell rate was calculated. Each value represents the average of three repeated measurements. The experiments were repeated thrice.</p> "> Figure 7
<p>Anti-<span class="html-italic">B. mori nucleopolyhedrovirus</span> (BmNPV) activity of Bm01504-OE/ Bm01504-KO. (<b>A</b>) Paraffin sections of anterior midgut of transgenic silkworm infected with oral occlusion bodies (OBs) at different time. The midgut cells of Bm01504-OE, Bm01504-KO, and WT without oral OBs were orderly arranged and the PM structure was intact, and there was no difference among Bm01504-OE, Bm01504-KO, and WT. The structure of the midgut and PM did not change in Bm01504-OE, Bm01504-KO, and WT after oral OBs (0–24 h). However, the PM of Bm01504-KO was damaged in the following hours (48–120 h), with disordered midgut cells (48–72 h) and gradual nuclei loss (96–120 h). The PM of Bm01504-OE and WT were also damaged, but at later time points than Bm01504-KO (72–120 h), with similar disordered midgut cell arrangements being observed in both Bm01504-OE and WT (72–96 h). A smaller number of the nuclei were lost in WT compared with Bm01504-KO (120 h), and to an even lesser extent in Bm01504-OE than in WT. Black arrows show the location of the PM and red arrows show the exfoliated nuclei; (<b>B</b>) Survival rates of the transgenic silkworm larvae after infection with oral OBs. Each experiment included OB -infected or non-infected Bm01504-OE, Bm01504-KO, and WT silkworms (<span class="html-italic">n</span> = 30 per group); (<b>C</b>,<b>D</b>) Analysis of <span class="html-italic">p10</span> transcript levels in Bm01504-OE, Bm01504-KO and WT silkworms at 24, 48, and 72 h after infection with oral OBs d, Day; <span class="html-italic">p10</span>, late expressed gene in BmNPV. * <span class="html-italic">p</span> < 0.05, *** <span class="html-italic">p</span> < 0.001.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Identification and Bioinformatics Analysis of Peritrophins in Bombyx mori
2.2. Expression Patterns of Peritrophins in Silkworm, Bombyx mori
2.3. Generation of Bm01504 Overexpression (Bm01504-OE) in Transgenic Silkworms
2.4. Generation of Bm01504 Knockout (Bm01504-KO) in Transgenic Silkworms
2.5. Economic Characteristics of Transgenic Silkworm Lines
2.6. Transgenic Larvae have Different Levels of Resistance to BmNPV
3. Discussion
4. Materials and Methods
4.1. Silkworm Strain and Virus
4.2. Identification of Peritrophins in the Bombyx mori Genome Database
4.3. Phylogenetic Analysis and Multiple Sequence Alignment
4.4. Oral Inoculation of OBs
4.5. Semi-Quantitative RT-PCR and qRT-PCR
4.6. Vector Construction
4.7. Microinjection and sCreening
4.8. Analysis of Insertion Site
4.9. FITC-Dextran Permeability Assays
4.10. Analysis of Economic Characteristics
4.11. Paraffin Sectioning
4.12. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Bm01504-OE | Bm01504 overexpression |
Bm01504-KO | Bm01504 knockout |
WT | Wild type |
CBD | Chitin binding domain |
BmNPV | B. mori nucleopolyhedrovirus |
PM | Peritrophic membrane |
PMP | Peritrophic membrane protein |
CBM_14 | Carbohydrate Binding Module family14 |
ChtBD2 | Type 2 CBD |
CPAP | Cuticle proteins analogous to peritrophin |
CHT | Chitinase |
CDA | Chitin deacetylase |
MUC | Mucin |
MD | Mucin domain |
HMM | Hidden Markov model |
mRNA | Messenger RNA |
RT-PCR | Reverse transcription polymerase chain reaction |
qRT-PCR | Quantitative RT-PCR |
FITC | Fluoresceine isothiocyanate |
DsRed | Discosoma sp. red fluorescent protein |
Opie2 | Orgyia pseudotsugata multicapsid nucleopolyhedrovirus (OpMNPV) immediate-early 2 (ie2) |
SV40 | Terminator of Simian virus 40 |
PAM | Protospacer adjacent motif |
ODV | Occlusion-derived viruses |
BV | Budded virus |
OB | Occlusion body |
WSSV | White spot syndrome virus |
MUSCLE | Multiple sequence comparison by log-expectation |
CDS | Coding sequence |
References
- Hegedus, D.D.; Toprak, U.; Erlandson, M. Peritrophic matrix formation. J. Insect Physiol. 2019, 117, 103898. [Google Scholar] [CrossRef]
- Erlandson, M.A.; Toprak, U.; Hegedus, D.D. Role of the peritrophic matrix in insect-pathogen interactions. J. Insect Physiol. 2019, 117, 103894. [Google Scholar] [CrossRef]
- Traub-Csekö, Y.M.; Sadlova, J.; Homola, M.; Myskova, J.; Jancarova, M.; Volf, P. Refractoriness of Sergentomyia schwetzi to Leishmania spp. is mediated by the peritrophic matrix. PloS Negl. Trop. Dis. 2018, 12, e0006382. [Google Scholar]
- Hegedus, D.; Erlandson, M.; Gillott, C.; Toprak, U. New insights into peritrophic matrix synthesis, architecture, and function. Annu. Rev. Entomol. 2009, 54, 285–302. [Google Scholar] [CrossRef] [PubMed]
- Tellam, R.L.; Wijffels, G.; Willadsen, P. Peritrophic matrix proteins. Insect Biochem. Mol. Biol. 1999, 29, 87–101. [Google Scholar] [CrossRef]
- Elvin, C.M.; Vuocolo, T.; Pearson, R.D.; East, I.J.; Riding, G.A.; Eisemann, C.H.; Tellam, R.L. Characterization of a major peritrophic membrane protein, peritrophin-44, from the larvae of Lucilia cuprina cDNA and deduced amino acid sequences. J. Biol. Chem. 1996, 271, 8925–8935. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yang, J.; Yao, L.; Li, S.; Chen, Y.; Yang, H.; Fan, D. Chitin deacetylase: A potential target for Mythimna separata (Walker) control. Arch. Insect Biochem. Physiol. 2020, 104, e21666. [Google Scholar] [CrossRef]
- Rodríguez-de la Noval, C.; Rodríguez-Cabrera, L.; Izquierdo, L.; Espinosa, L.A.; Hernandez, D.; Ponce, M.; Moran-Bertot, I.; Tellez-Rodríguez, P.; Borras-Hidalgo, O.; Huang, S.; et al. Functional expression of a peritrophin A-like SfPER protein is required for larval development in Spodoptera frugiperda (Lepidoptera: Noctuidae). Sci. Rep. 2019, 9, 2630. [Google Scholar] [CrossRef]
- Liu, X.; Cooper, A.M.; Yu, Z.; Silver, K.; Zhang, J.; Zhu, K.Y. Progress and prospects of arthropod chitin pathways and structures as targets for pest management. Pestic. Biochem. Physiol. 2019, 161, 33–46. [Google Scholar] [CrossRef]
- Konno, K.; Mitsuhashi, W. The peritrophic membrane as a target of proteins that play important roles in plant defense and microbial attack. J. Insect Physiol. 2019, 117, 103912. [Google Scholar] [CrossRef]
- Sandoval-Mojica, A.F.; Scharf, M.E. Silencing gut genes associated with the peritrophic matrix of Reticulitermes flavipes (Blattodea: Rhinotermitidae) increases susceptibility to termiticides. Insect Mol. Biol. 2016, 25, 734–744. [Google Scholar] [CrossRef]
- Mohan, S.; Ma, P.W.K.; Pechan, T.; Bassford, E.R.; Williams, W.P.; Luthe, D.S. Degradation of the S. frugiperda peritrophic matrix by an inducible maize cysteine protease. J. Insect Physiol. 2006, 52, 21–28. [Google Scholar] [CrossRef]
- Liu, X.; Cooper, A.M.; Zhang, J.; Zhu, K.Y. Biosynthesis, modifications and degradation of chitin in the formation and turnover of peritrophic matrix in insects. J. Insect Physiol. 2019, 114, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; De Schutter, K.; Smargiasso, N.; De Pauw, E.; Van Damme, E.J.; Smagghe, G. The N-glycan profile of the peritrophic membrane in the Colorado potato beetle larva (Leptinotarsa decemlineata). J. Insect Physiol. 2019, 115, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Chamankhah, M.; Visal-Shah, S.; Hemmingsen, S.M.; Erlandson, M.; Braun, L.; Alting-Mees, M.; Khachatourians, G.G.; O’Grady, M.; Hegedus, D.D. Modeling the structure of the Type I peritrophic matrix: Characterization of a Mamestra configurata intestinal mucin and a novel peritrophin containing 19 chitin binding domains. Insect Biochem. Mol. Biol. 2004, 34, 1101–1115. [Google Scholar] [CrossRef] [PubMed]
- Toprak, U.; Erlandson, M.; Hegedus, D.D. Peritrophic matrix proteins. Trends Entomol. 2010, 6, 23–51. [Google Scholar]
- Tetreau, G.; Dittmer, N.T.; Cao, X.; Agrawal, S.; Chen, Y.-R.; Muthukrishnan, S.; Haobo, J.; Blissard, G.W.; Kanost, M.R.; Wang, P. Analysis of chitin-binding proteins from Manduca sexta provides new insights into evolution of peritrophin A-type chitin-binding domains in insects. Insect Biochem. Mol. Biol. 2015, 62, 127–141. [Google Scholar] [CrossRef] [Green Version]
- Jasrapuria, S.; Arakane, Y.; Osman, G.; Kramer, K.J.; Beeman, R.W.; Muthukrishnan, S. Genes encoding proteins with peritrophin A-type chitin-binding domains in Tribolium castaneum are grouped into three distinct families based on phylogeny, expression and function. Insect Biochem. Mol. Biol. 2010, 40, 214–227. [Google Scholar] [CrossRef]
- Toprak, U.; Erlandson, M.; Baldwin, D.; Karcz, S.; Wan, L.; Coutu, C.; Gillott, C.; Hegedus, D.D. Identification of the Mamestra configurata(Lepidoptera: Noctuidae) peritrophic matrix proteins and enzymes involved in peritrophic matrix chitin metabolism. Insect Sci. 2016, 23, 656–674. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.L.; Tian, S.; Yang, H.; Zhou, X.; Xu, S.P.; Zhang, Z.Y.; Gong, J.; Hou, Y.; Xia, Q.Y. Genome-wide identification of chitin-binding proteins and characterization of BmCBP1 in the silkworm. Bombyx mori. Insect Sci. 2019, 26, 400–412. [Google Scholar] [CrossRef] [Green Version]
- Park, M.J.; Kim, B.Y.; Jin, B.R. Molecular characterization of a chitin-binding protein with the peritrophin-A domain from the Asiatic honeybee Apis cerana. J. Asia-Pac. Entomol. 2016, 19, 963–968. [Google Scholar] [CrossRef]
- Yin, J.; Yang, S.; Li, K.; Guo, W.; Cao, Y. Identification and molecular characterization of a chitin-binding protein from the Beet Webworm, Loxostege sticticalis L. Int. J. Mol. Sci. 2014, 15, 19147–19161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.J.; Huang, L.X.; Hu, D.; Liu, L.Y.; Gu, J.; Huang, L.H.; Feng, Q.L. Cloning, expression and chitin-binding activity of two peritrophin-like protein genes in the common cutworm, Spodoptera litura. Insect Sci. 2014, 21, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Toprak, U.; Baldwin, D.; Erlandson, M.; Gillott, C.; Harris, S.; Hegedus, D.D. Expression patterns of genes encoding proteins with peritrophin A domains and protein localization in Mamestra configurata. J. Insect Physiol. 2010, 56, 1711–1720. [Google Scholar] [CrossRef]
- Mittapalli, O.; Sardesai, N.; Shukle, R.H. cDNA cloning and transcriptional expression of a peritrophin-like gene in the Hessian fly, Mayetiola destructor [Say]. Arch. Insect Biochem. Physiol. 2007, 64, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Devenport, M.; Alvarenga, P.H.; Shao, L.; Fujioka, H.; Jacobs-Lorena, M. Identification of the Aedes aegypti peritrophic matrix protein AeIMUCI as a heme-binding protein. Biochemistry 2006, 45, 9540–9549. [Google Scholar] [CrossRef]
- Shao, L.; Devenport, M.; Fujioka, H.; Ghosh, A.; Jacobs-Lorena, M. Identification and characterization of a novel peritrophic matrix protein, Ae-Aper50, and the microvillar membrane protein, AEG12, from the mosquito. Aedes aegypti. Insect Biochem. Mol. Biol. 2005, 35, 947–959. [Google Scholar] [CrossRef]
- Wang, P.; Li, G.; Granados, R.R. Identification of two new peritrophic membrane proteins from larval Trichoplusia ni: Structural characteristics and their functions in the protease rich insect gut. Insect Biochem. Mol. Biol. 2004, 34, 215–227. [Google Scholar] [CrossRef]
- Tellam, R.L.; Vuocolo, T.; Eisemann, C.; Briscoe, S.; Riding, G.; Elvin, C.; Pearson, R. Identification of an immuno-protective mucin-like protein, peritrophin-55, from the peritrophic matrix of Lucilia cuprina larvae. Insect Biochem. Mol. Biol. 2003, 33, 239–252. [Google Scholar] [CrossRef]
- Vuocolo, T.; Eisemann, C.H.; Pearson, R.D.; Willadsen, P.; Tellam, R.L. Identification and molecular characterisation of a peritrophin gene, peritrophin-48, from the myiasis fly Chrysomya bezziana. Insect Biochem. Mol. Biol. 2001, 31, 919–932. [Google Scholar] [CrossRef]
- Tellam, R.L.; Eisemann, C.; Casu, R.; Pearson, R. The intrinsic peritrophic matrix protein peritrophin-95 from larvae of Lucilia cuprina is synthesised in the cardia and regurgitated or excreted as a highly immunogenic protein. Insect Biochem. Mol. Biol. 2000, 30, 9–17. [Google Scholar] [CrossRef]
- Shen, Z.; Jacobs-Lorena, M.A. Type I peritrophic matrix protein from the malaria vector Anopheles gambiae binds to chitin. J. Biol. Chem. 1998, 273, 17665–17670. [Google Scholar] [CrossRef] [Green Version]
- Schorderet, S.; Pearson, R.D.; Vuocolo, T.; Eisemann, C.; Tellam, R.L. cDNA and deduced amino acid sequences of a peritrophic membrane glycoprotein, ‘peritrophin-48′, from the larvae of Lucilia cuprina. Insect Biochem. Mol. Biol. 1998, 28, 99–111. [Google Scholar] [CrossRef]
- Sandoval-Mojica, A.F.; Scharf, M.E. Gut genes associated with the peritrophic matrix in Reticulitermes flavipes (Blattodea: Rhinotermitidae): Identification and characterization. Arch. Insect Biochem. Physiol. 2016, 92, 127–142. [Google Scholar] [CrossRef] [PubMed]
- Devenport, M.; Fujioka, H.; Jacobs-Lorena, M. Storage and secretion of the peritrophic matrix protein Ag-Aper1 and trypsin in the midgut of Anopheles gambiae. Insect Mol. Biol. 2004, 13, 349–358. [Google Scholar] [CrossRef]
- Russell, C.J.; Xie, S.; Zhang, X.; Zhang, J.; Li, F.; Xiang, J. Envelope proteins of white spot syndrome virus (WSSV) Interact with Litopenaeus vannamei peritrophin-like protein (LvPT). PLoS ONE 2015, 10, e0144922. [Google Scholar]
- Huang, Y.; Ma, F.; Wang, W.; Ren, Q. Identification and molecular characterization of a peritrophin-like gene, involved in the antibacterial response in Chinese mitten crab, Eriocheir sinensis. Dev. Comp. Immunol. 2015, 50, 129–138. [Google Scholar] [CrossRef]
- Wang, L.; Li, F.; Wang, B.; Xiang, J. A new shrimp peritrophin-like gene from Exopalaemon carinicauda involved in white spot syndrome virus (WSSV) infection. Fish Shellfish Immunol. 2013, 35, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.Y.; Hsu, T.C.; Huang, P.Y.; Kang, S.T.; Lo, C.F.; Huang, W.P.; Chen, L.L. Penaeus monodon chitin-binding protein (PmCBP) is involved in white spot syndrome virus (WSSV) infection. Fish Shellfish Immunol. 2009, 27, 460–465. [Google Scholar] [CrossRef]
- Chen, L.; Lu, L.; Wu, W.; Lo, C.; Huang, W. White spot syndrome virus envelope protein VP53A interacts with Penaeus monodon chitin-binding protein (PmCBP). Dis. Aquat. Organ. 2007, 74, 171–178. [Google Scholar] [CrossRef]
- Agrawal, S.; Kelkenberg, M.; Begum, K.; Steinfeld, L.; Williams, C.E.; Kramer, K.J.; Beeman, R.W.; Park, Y.; Muthukrishnan, S.; Merzendorfer, H. Two essential peritrophic matrix proteins mediate matrix barrier functions in the insect midgut. Insect Biochem. Mol. Biol. 2014, 49, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Pimenta, P.F.; Coutinho-Abreu, I.V.; Sharma, N.K.; Robles-Murguia, M.; Ramalho-Ortigao, M. Characterization of Phlebotomus papatasi peritrophins, and the role of PpPer1 in Leishmania major survival in its natural vector. PLoS Negl. Trop. Dis. 2013, 7, e2132. [Google Scholar]
- Cheng, T.; Lin, P.; Huang, L.; Wu, Y.; Jin, S.; Liu, C.; Xia, Q. Genome-wide analysis of host responses to four different types of microorganisms in Bombyx mori (Lepidoptera: Bombycidae). J. Insect Sci. 2016, 16, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, A.H.; Fernandes, K.M.; Goncalves, W.G.; Zanuncio, J.C.; Serrao, J.E. A peritrophin mediates the peritrophic matrix permeability in the workers of the bees Melipona quadrifasciata and Apis mellifera. Arthropod Struct. Dev. 2019, 53, 100885. [Google Scholar] [CrossRef]
- Toprak, U.; Hegedus, D.D.; Baldwin, D.; Coutu, C.; Erlandson, M. Spatial and temporal synthesis of Mamestra configurata peritrophic matrix through a larval stadium. Insect Biochem. Mol. Biol. 2014, 54, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Mitsuhashi, W.; Miyamoto, K. Disintegration of the peritrophic membrane of silkworm larvae due to spindles of an entomopoxvirus. J. Invertebr. Pathol. 2003, 82, 34–40. [Google Scholar] [CrossRef]
- Kuraishi, T.; Binggeli, O.; Opota, O.; Buchon, N.; Lemaitre, B. Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2011, 108, 15966–15971. [Google Scholar] [CrossRef] [Green Version]
- Dimopoulos, G.; Rodgers, F.H.; Gendrin, M.; Wyer, C.A.; Christophides, G.K. Microbiota-induced peritrophic matrix regulates midgut homeostasis and prevents systemic infection of malaria vector mosquitoes. PLoS Pathog. 2017, 13, e1006391. [Google Scholar]
- Liu, T.H.; Dong, X.L.; Pan, C.X.; Du, G.Y.; Wu, Y.F.; Yang, J.G.; Chen, P.; Lu, C.; Pan, M.H. A newly discovered member of the Atlastin family, BmAtlastin-n, has an antiviral effect against BmNPV in Bombyx mori. Sci. Rep. 2016, 6, 28946. [Google Scholar] [CrossRef] [Green Version]
- Haase, S.; Sciocco-Cap, A.; Romanowski, V. Baculovirus Insecticides in Latin America: Historical Overview, Current Status and Future Perspectives. Viruses 2015, 7, 2230–2267. [Google Scholar] [CrossRef]
- Sudhir, K.; Glen, S.; Michael, L.; Christina, K.; Koichiro, T. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar]
Gene Name | Gene ID 1 | Gene ID 2 | Chr. | Protein Length (Number of aa) | Number of CBDs |
---|---|---|---|---|---|
Bm01504 | BGIBMGA001504 | KWMTBOMO12505 | 21 | 392 | 4 |
Bm00185 | BGIBMGA000185 | KWMTBOMO00962 | 2 | 1261 | 8 |
Bm03115 | BGIBMGA003115 | KWMTBOMO02225 | 4 | 561 | 6 |
Bm07250 | BGIBMGA007250 | KWMTBOMO10355 | 17 | 1527 | 11 |
Bm01491 | BGIBMGA001491 | KWMTBOMO12463 | 21 | 1878 | 16 |
Bm07902 | BGIBMGA007902 | KWMTBOMO08750 | 15 | 190 | 1 |
Bm09641 | BGIBMGA009641 | KWMTBOMO00941 | 2 | 225 | 2 |
Bm01361 | BGIBMGA001361 | KWMTBOMO00967 | 2 | 340 | 2 |
Bm14488 | BGIBMGA014488 | KWMTBOMO00966 | 2 | 282 | 1 |
Bm11851 | BGIBMGA011851 | KWMTBOMO06502 | 11 | 539 | 1 |
Bm01010 | BGIBMGA001010 | —— | 13 | 241 | 1 |
Name | Forward (5′→3′) | Reverse (5′→3′) | |
---|---|---|---|
Primers for semi-quantitative RT-PCR | Bm01504 | TGGCCTCAGAATGTCGACT | CAATAATCTAAAATCCATAATGCTAC |
Bm00185 | CATCCTCCCCTGGGCTCAC | CGTAATCAAGGTCATTTGTTCGC | |
Bm03115 | ACCTGTTATGAACCCGTTTGTGC | CGTTCACATTCTGGACCGCC | |
Bm07250 | TAACAGAGCAATCTACAAATCAAGC | TGGTGGTAGAAGATTCAGTGCC | |
Bm01491 | CGTCAATACTGGTCCTTGTAACTGT | GTAGTGTCTGATGTTTTGTCGTGC | |
Bm07902 | TCGGACCTCGCATAGCAGC | TTTCAGCGTAATCGCAGTAGCC | |
Bm09641 | ATGTTAGGTAAAGCCCTTAGTCTCTTG | CTAGTTTTTGTACACAATGAATTCGC | |
Bm01361 | CATCGGCGAGACAAGAGGT | AGTGCGAAGGCGGTATCC | |
Bm14488 | CATCGGCGAGACAAGAGGT | AGTGCGAAGGCGGTATCC | |
Bm11851 | CCTTGTGGCTCCTGTGTTG | CAGTATCAGTGCCTTCTTCGTC | |
Bm01010 | GGTCCGTATGGATTTATTTGCGA | ATGCCACTCCAGTTCTGTGTAAAAA | |
Actin3 | AACACCCCGTCCTGCTCACTG | GGGCGAGACGTGTGATTTCCT | |
Primers for qRT-PCR | Bm09641 | CTGAAGGTTCGGGCTTGGGT | TGTGCCTGCTGAGTCTGCTGTG |
Bm01504 | TGGCCTCAGAATGTCGACT | CAATAATCTAAAATCCATAATGCTAC | |
Bm00185 | CATCCTCCCCTGGGCTCAC | CGTAATCAAGGTCATTTGTTCGC | |
Bm11851 | GCAGAACAGGTTTGCGACTG | GCTCAGGCTCTTGTTCTGGT | |
Bm01491 | AAAGCTCCAGGGAGACAACG | TCCTCACCTGGAACGACTCT | |
sw22934 | TTCGTACTGGCTCTTCTCGT | CAAAGTTGATAGCAATTCCCT | |
p10 | TAGACGCCATTGCGGAAA | CGGGCAAACCGTCCAAA |
Name | Primer (5′→3′) |
---|---|
Bm01504 (cds)-F | gatccATGGAAAAATTTAAAGGTATTCTATTAGTATTATAC |
Bm01504 (cds)-R | gaattcCATGGAATAATTCTTGAACCGCAGT |
U6-F1 | ggatccAGGTTATGTAGTACACATT |
Bm01504-sgRNA1-R1 | GCTATTTCTAGCTCTAAAACTTTCCAGTGTTATCGTTTTCACTTGTAGAGCACGATATT |
U6-R2 | CAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAACA |
U6-R31 | gaattcAAAAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAG |
U6-F2 | gcggccgcAGGTTATGTAGTACACATT |
Bm01504-RNA2-R1 | GCTATTTCTAGCTCTAAAACCCAAATCTGTTGTATAATCCACTTGTAGAGCACGATATT |
U6-R32 | tctagaAAAAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zha, X.-L.; Yu, X.-B.; Zhang, H.-Y.; Wang, H.; Huang, X.-Z.; Shen, Y.-H.; Lu, C. Identification of Peritrophins and Antiviral Effect of Bm01504 against BmNPV in the Silkworm, Bombyx mori. Int. J. Mol. Sci. 2020, 21, 7973. https://doi.org/10.3390/ijms21217973
Zha X-L, Yu X-B, Zhang H-Y, Wang H, Huang X-Z, Shen Y-H, Lu C. Identification of Peritrophins and Antiviral Effect of Bm01504 against BmNPV in the Silkworm, Bombyx mori. International Journal of Molecular Sciences. 2020; 21(21):7973. https://doi.org/10.3390/ijms21217973
Chicago/Turabian StyleZha, Xu-Le, Xin-Bo Yu, Hong-Yan Zhang, Han Wang, Xian-Zhi Huang, Yi-Hong Shen, and Cheng Lu. 2020. "Identification of Peritrophins and Antiviral Effect of Bm01504 against BmNPV in the Silkworm, Bombyx mori" International Journal of Molecular Sciences 21, no. 21: 7973. https://doi.org/10.3390/ijms21217973
APA StyleZha, X.-L., Yu, X.-B., Zhang, H.-Y., Wang, H., Huang, X.-Z., Shen, Y.-H., & Lu, C. (2020). Identification of Peritrophins and Antiviral Effect of Bm01504 against BmNPV in the Silkworm, Bombyx mori. International Journal of Molecular Sciences, 21(21), 7973. https://doi.org/10.3390/ijms21217973