Spliceosomal Protein Gene BmSPX Regulates Reproductive Organ Development in Bombyx mori
<p>Establishment and phenotypic observation of Over-BmSPX transgenic strains. (<b>A</b>) Structure of piggyBac-BmSPX recombinant vector. 3xP3 and A4 promoters were used in the recombinant vector. The SV40 terminator was used to stop the transcription. pBacL and pBacR indicate the left and right terminal inverted repeats. 3xP3 indicate a hyperactive promoter containing three binding sites for Pax-6 homodimers in front of a TATA box. DsRed, <span class="html-italic">Discosoma</span> sp. Red Fluorescent Protein. SV40, Terminator of <span class="html-italic">Simian virus 40</span>. A4, Actin 4 promotor of <span class="html-italic">B. mori</span>. (<b>B</b>) The process of screening transgenic strains. The signal of DsRed in transgenic strain is indicated with red triangles. The positions without DsRed in Wild-type strain are indicated with white triangles. (<b>C</b>) Real-time PCR of <span class="html-italic">BmSpx</span> to confirm <span class="html-italic">BmSpx</span> over-expression. A value of <span class="html-italic">p</span> < 0.05 was considered to be statistically significant (* <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001). (<b>D</b>) Phenotypic and gonad observations of Over-BmSPX strains. Wild-type-M and Wild-type-F indicate the male and female of wild type silkworm, respectively. Over-BmSPX-M and Over-BmSPX-F indicate the male and female of Over-BmSPX transgenic strains, respectively. An unknown thin needle rod in the middle of the gonad in Over-BmSPX-M is indicated with a blue arrow. Two sharp claspers in Over-BmSPX-M are indicated with a red arrow. The developmental disorders of two parts of alluring gland in Over-BmSPX-F are indicated with purple and green arrows.</p> "> Figure 2
<p>Expression levels of key factors in sex determination of Over-BmSPX transgenic strains. A value of <span class="html-italic">p</span> < 0.05 was considered to be statistically significant (* <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001). (<b>A</b>) <span class="html-italic">BmMasc</span> expression level in Over-BmSPX transgenic strains. (<b>B</b>) <span class="html-italic">BmImp</span> expression level in Over-BmSPX transgenic strains. (<b>C</b>) Expression level of female-specific splicing of <span class="html-italic">Bmdsx</span> in Over-BmSPX transgenic strains. Wild-type-M and Wild-type-F indicate the male and female of wild type silkworm, respectively. Over-BmSPX-M and Over-BmSPX-F indicate the male and female of Over-BmSPX transgenic strains, respectively.</p> "> Figure 3
<p>BmSPX may participate in alternative splicing of <span class="html-italic">Bmdsx</span> as a splicing factor. (<b>A</b>) Co-immunoprecipitation (CO-IP) experiment between BmSPX and BmPSI. IP:Myc indicates that CO-IP experiment was carried out with Myc antibody. WB:Myc and WB:Flag indicate that Western Blot experiments were carried out with Myc antibody and Flag antibody, respectively. WCL, Whole cell lysate. (<b>B</b>) Sequence alignment of the RRM domain between BmSPX and its homologous protein SF3B4. RRM, RNA recognition motif. Black and grey indicate identical and similar amino acids, respectively. (<b>C</b>) The tertiary structure of BmSPX and SF3B4. (<b>D</b>) The electrophoretic mobility shift assay (EMSA) experiment between BmPSI and RNA probe CE1. MBP, Maltose binding protein.</p> "> Figure 4
<p>Expression levels of key factors in gonad development of Over-BmSPX transgenic strains. A value of <span class="html-italic">p</span> < 0.05 was considered to be statistically significant (* <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001). (<b>A</b>) <span class="html-italic">BmTGIF</span> expression level in Over-BmSPX transgenic strains. (<b>B</b>) <span class="html-italic">BmAbd-B</span> expression level in Over-BmSPX transgenic strains. (<b>C</b>) Expression level of key factors, including in RTK, in Over-BmSPX transgenic strains. (<b>D</b>) Expression level of cyclin genes in Over-BmSPX transgenic strains. Wild-type-M and Wild-type-F indicate the male and female of wild type silkworm, respectively. Over-BmSPX-M and Over-BmSPX-F indicate the male and female of Over-BmSPX transgenic strains, respectively.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Construction of BmSPX Overexpression Transgenic Line and Phenotype
2.2. Over-Expression of BmSPX Influences Expression Level of Key Genes in Sex Determination Pathway
2.3. BmSPX Probably Acts as a Spliceosomal Component to Regulate Alternative Splicing of Bmdsx
2.4. Transgenic Line Over-BmSPX Alters Expression of Genes Involved in Sex Differentiation
3. Discussion
4. Materials and Methods
4.1. Silkworm Strain and Cell
4.2. Construction of Recombinant Vectors
4.3. Establishment of Over-BmSPX Transgenic Strains
4.4. Quantitative Real-Time PCR (qPCR)
4.5. Three-Dimensional Structure Prediction of BmSPX
4.6. Co-Immunoprecipitation between BmSPX and BmPSI
4.7. Construction of Recombinant Expression Vectors
4.8. Preparation of Single Stranded RNA
4.9. The Overexpression and Purification of MBP-BmPSI and MBP
4.10. Electrophoretic Mobility Shift Assay
4.11. Quantification and Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
Abbreviations
dsx | Doublesex |
tra | Transformer |
Masc | Masculinizer |
Abd-B | Abdominal-B |
SV40 | Terminator of Simian virus 40 |
M-MLV | Moloney Murine Leukemia Virus |
CDS | Coding sequence |
snRNP | Small nuclear ribonucleoprotein |
PCR | Polymerase Chain Reaction |
MBP | Maltose binding protein |
DsRed | Discosoma sp. Red Fluorescent Protein |
BmE | Embryonic cells of silkworm |
PSI | P-element somatic inhibitor |
EGFP | Enhanced green fluorescent protein |
Co-IP | Co-immunoprecipitation assay |
SPX | Spliceosomal protein on the X chromosome |
hrs | Hepatocyte growth factor-regulated tyrosine kinase substrate |
rho | Rhodopsin |
spi | spitz |
cbl | Cbl proto-oncogene |
TGIF | TGFB-induced factor homeobox |
Sxl | Sex lethal |
EGFR | Epidermal Growth Factor Receptor |
FGFR | Fibroblast Growth Factor Receptor |
RTK | Receptor Tyrosine Kinase |
qPCR | Quantitative Real-Time PCR |
EMSA | Electrophoretic mobility shift assay |
References
- Verhulst, E.C.; van de Zande, L.; Beukeboom, L.W. Insect sex determination: It all evolves around transformer. Curr. Opin. Genet. Dev. 2010, 20, 376–383. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, M.G. Sex determination: Insights from the silkworm. J. Genet. 2010, 89, 357–363. [Google Scholar] [CrossRef]
- Cho, S.; Huang, Z.Y.; Zhang, J. Sex-specific splicing of the honeybee doublesex gene reveals 300 million years of evolution at the bottom of the insect sex-determination pathway. Genetics 2007, 177, 1733–1741. [Google Scholar] [CrossRef] [Green Version]
- Salz, H.K.; Erickson, J.W. Sex determination in Drosophila: The view from the top. Fly 2010, 4, 60–70. [Google Scholar] [CrossRef] [Green Version]
- Shearman, D.C. The evolution of sex determination systems in dipteran insects other than Drosophila. Genetica 2002, 116, 25–43. [Google Scholar] [CrossRef]
- Ohbayashi, F.; Suzuki, M.G.; Mita, K.; Okano, K.; Shimada, T. A homologue of the Drosophila doublesex gene is transcribed into sex-specific mRNA isoforms in the silkworm, Bombyx mori. Comp. Biochem. Phys. B 2001, 128, 145–158. [Google Scholar] [CrossRef]
- Fujii, T.; Shimada, T. Sex determination in the silkworm, Bombyx mori: A female determinant on the W chromosome and the sex-determining gene cascade. Semin. Cell Dev. Biol. 2007, 18, 379–388. [Google Scholar] [CrossRef]
- Papagiannouli, F.; Lohmann, I. Stage-specific control of stem cell niche architecture in the Drosophila testis by the posterior Hox gene Abd-B. Comput. Struct. Biotechnol. J. 2015, 13, 122–130. [Google Scholar] [CrossRef] [Green Version]
- Ronshaugen, M.; Levine, M. Visualization of trans-homolog enhancer-promoter interactions at the Abd-B Hox locus in the Drosophila embryo. Dev. Cell 2004, 7, 925–932. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Q.; Wan, Q.X.; Wang, K.X.; Zha, X.F. P-element Somatic Inhibitor Protein Binding a Target Sequence in dsx Pre-mRNA Conserved in Bombyx mori and Spodoptera litura. Int. J. Mol. Sci. 2019, 20, 2361. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, M.G.; Ohbayashi, F.; Mita, K.; Shimada, T. The mechanism of sex-specific splicing at the doublesex gene is different between Drosophila melanogaster and Bombyx mori. Insect Biochem. Mol. Biol. 2001, 31, 1201–1211. [Google Scholar] [CrossRef]
- Suzuki, M.G.; Imanishi, S.; Dohmae, N.; Nishimura, T.; Shimada, T.; Matsumoto, S. Establishment of a novel in vivo sex-specific splicing assay system to identify a trans-acting factor that negatively regulates splicing of Bombyx mori dsx female exons. Mol. Cell. Biol. 2008, 28, 333–343. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Chen, S.; Zeng, B.; James, A.A.; Tan, A.; Huang, Y. Bombyx mori P-element Somatic Inhibitor (BmPSI) Is a Key Auxiliary Factor for Silkworm Male Sex Determination. PLoS. Genet. 2017, 13, e1006576. [Google Scholar] [CrossRef]
- Suzuki, M.G.; Kobayashi, S.; Aoki, F. Male-specific splicing of the silkworm Imp gene is maintained by an autoregulatory mechanism. Mech. Dev. 2014, 131, 47–56. [Google Scholar] [CrossRef]
- Katsuma, S.; Sugano, Y.; Kiuchi, T.; Shimada, T. Two Conserved Cysteine Residues Are Required for the Masculinizing Activity of the Silkworm Masc Protein. J. Biol. Chem. 2015, 290, 26114–26124. [Google Scholar] [CrossRef] [Green Version]
- Shimada, T. [Sex determination mechanism in the silkworm, Bombyx mori, compared with that in Drosophila]. Tanpakushitsu Kakusan Koso. 2004, 49, 108–115. [Google Scholar]
- Kawaoka, S.; Kadota, K.; Arai, Y.; Suzuki, Y.; Fujii, T.; Abe, H.; Yasukochi, Y.; Mita, K.; Sugano, S.; Shimizu, K.; et al. The silkworm W chromosome is a source of female-enriched piRNAs. RNA 2011, 17, 2144–2151. [Google Scholar] [CrossRef] [Green Version]
- Kiuchi, T.; Koga, H.; Kawamoto, M.; Shoji, K.; Sakai, H.; Arai, Y.; Ishihara, G.; Kawaoka, S.; Sugano, S.; Shimada, T.; et al. A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature 2014, 509, 633–636. [Google Scholar] [CrossRef]
- Hara, K.; Fujii, T.; Suzuki, Y.; Sugano, S.; Shimada, T.; Katsuma, S.; Kawaoka, S. Altered expression of testis-specific genes, piRNAs, and transposons in the silkworm ovary masculinized by a W chromosome mutation. BMC Genom. 2012, 13, 119. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Li, J.; Wen, M.Y.; Wang, H.; Wang, Y.; Wang, K.X.; Wan, Q.X.; Zha, X.F. A Novel Splice Variant of the Masculinizing Gene Masc with piRNA-Cleavage-Site Defect Functions in Female External Genital Development in the Silkworm, Bombyx mori. Biomolecules 2019, 9, 318. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.-Z.; Sun, X.; Zhang, B.; Pu, J.; Jiang, Z.-Y.; Li, M.; Fan, Y.-J.; Xu, Y.-Z. Alternative splicing regulation of doublesex gene by RNA-binding proteins in the silkworm Bombyx mori. RNA Biol. 2019, 16, 809–820. [Google Scholar] [CrossRef]
- Zha, X.F.; Zhao, M.; Zhou, C.Y.; Guo, H.Z.; Zhao, P.; Xiang, Z.H.; Xia, Q.Y. Analysis of interaction between Bmhrp28 and BmPSI in sex-specific splicing of Bombyx mori Bmdsx gene. Genet. Mol. Res. 2014, 13, 5452–5462. [Google Scholar] [CrossRef]
- Devotta, A.; Juraver-Geslin, H.; Gonzalez, J.A.; Hong, C.S.; Saint-Jeannet, J.P. Sf3b4-depleted Xenopus embryos: A model to study the pathogenesis of craniofacial defects in Nager syndrome. Dev. Biol. 2016, 415, 371–382. [Google Scholar] [CrossRef]
- Bernier, F.P.; Caluseriu, O.; Ng, S.; Schwartzentruber, J.; Buckingham, K.J.; Innes, A.M.; Jabs, E.W.; Innis, J.W.; Schuette, J.L.; Gorski, J.L.; et al. Haploinsufficiency of SF3B4, a component of the pre-mRNA spliceosomal complex, causes Nager syndrome. Am. J. Hum. Genet. 2012, 90, 925–933. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Cao, G.; Sheng, J.; Xue, R.; Gong, C. BmTGIF, a Bombyx mori homolog of Drosophila DmTGIF, regulates progression of spermatogenesis. PLoS ONE 2012, 7, e47861. [Google Scholar] [CrossRef] [Green Version]
- Papagiannouli, F.; Schardt, L.; Grajcarek, J.; Ha, N.; Lohmann, I. The Hox gene Abd-B controls stem cell niche function in the Drosophila testis. Dev. Cell 2014, 28, 189–202. [Google Scholar] [CrossRef] [Green Version]
- Casali, A.; Casanova, J. The spatial control of Torso RTK activation: A C-terminal fragment of the Trunk protein acts as a signal for Torso receptor in the Drosophila embryo. Development 2001, 128, 1709–1715. [Google Scholar]
- Tsai, H.F.; Huang, C.W.; Chang, H.F.; Chen, J.J.; Lee, C.H.; Cheng, J.Y. Evaluation of EGFR and RTK signaling in the electrotaxis of lung adenocarcinoma cells under direct-current electric field stimulation. PLoS ONE 2013, 8, e73418. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.F.; Zhou, X.L.; Zhang, Q.; Chen, P.; Lu, C.; Pan, M.H. Bombyx mori cyclin-dependent kinase inhibitor is involved in regulation of the silkworm cell cycle. Insect Mol. Biol. 2018, 27, 404–413. [Google Scholar] [CrossRef]
- Salvaing, J.; Mouchel-Vielh, E.; Bloyer, S.; Preiss, A.; Peronnet, F. Regulation of Abd-B expression by Cyclin G and Corto in the abdominal epithelium of Drosophila. Hereditas 2008, 145, 138–146. [Google Scholar] [CrossRef]
- Wang, K.; Yin, C.; Du, X.; Chen, S.; Wang, J.; Zhang, L.; Wang, L.; Yu, Y.; Chi, B.; Shi, M.; et al. A U2-snRNP-independent role of SF3b in promoting mRNA export. Proc. Natl. Acad. Sci. USA 2019, 116, 7837–7846. [Google Scholar] [CrossRef] [Green Version]
- Martelly, W.; Fellows, B.; Senior, K.; Marlowe, T.; Sharma, S. Identification of a noncanonical RNA binding domain in the U2 snRNP protein SF3A1. RNA 2019, 25, 1509–1521. [Google Scholar] [CrossRef]
- van der Feltz, C.; Hoskins, A.A. Structural and functional modularity of the U2 snRNP in pre-mRNA splicing. Crit. Rev. Biochem. Mol. Biol. 2019, 54, 443–465. [Google Scholar] [CrossRef]
- Jiang, L.; Cheng, T.; Zhao, P.; Yang, Q.; Wang, G.; Jin, S.; Lin, P.; Xiao, Y.; Xia, Q. Resistance to BmNPV via overexpression of an exogenous gene controlled by an inducible promoter and enhancer in transgenic silkworm, Bombyx mori. PloS ONE 2012, 7, e41838. [Google Scholar] [CrossRef] [Green Version]
Transgenic Line | Sequence of Insertion Sites | Chromosome (nscaf) |
---|---|---|
Over-BmSPX | CCATATTGTTTTAA-piggyBac-TTAAAATCTACGAC | 11 (16) |
Name | Primers |
---|---|
Flag-BmSpx | 5′-cgcggatccatggattacaaggatgacgacgataaggcagcggggcctatt-3′ |
5′ataagaatgcggccgctcaataattatagtttgg-3′ | |
Myc-EGFP | 5′-cgcggatccatggagcagaaactcatctctgaagaggatctggtgagcaagggcgagga-3′ |
5′-ataagaatgcggccgcttacttgtacagctcgtccatg-3′ | |
Flag-EGFP | 5′-cgcggatccatggattacaaggatgacgacgataaggtgagcaagggcgagga-3′ |
5′-ataagaatgcggccgcttacttgtacagctcgtccatg-3′ | |
Myc-BmPsi | 5′-cgcggatccatggagcagaaactcatctctgaagaggatctgagtgattattcttctatggct-3′ |
5′-ataagaatgcggccgctcactgctggtggtcggagccggc-3′ |
Name (Gene Acc. No.) | Primers |
---|---|
qPCR-BmSpx (NM_001044181.1) | 5′-atcagggctatggatttg-3′, 5′-ccaaatgcagagaatgtg-3′ |
qPCR-BmMasc (NM_001309577.1) | 5′-atggcaaaactggatgacgc-3′, 5′-cccttttgacaccacatgct-3′ |
qPCR-BmImp (XM_004929851.3 _) | 5′-aggcgcagtatcttatctttga-3′, 5′-ccacgacaatttccacaatcag-3′ |
qPCR-Bmdsx-F (NM_001043406.1) | 5′-aaccatgccaccactgataccaac-3′, 5′-gcacaacgaatactgctgcaatcg-3′ |
qPCR-BmAbd-B (NM_001146228.1) | 5′-ctatcctccagatgctcccg-3′, 5′-accctgatgacagcctccat-3′ |
qPCR-BmTGIF (XM_012688716.2) | 5′-cggagctgatgttgagaatg-3′, 5′-accgcactggaggagtagcc-3′ |
qPCR-Bmspi (XM_004926152.2) | 5′-actgtgagtgtcaaagcgggtat-3′, 5′-ggacgcagtctccatcatcag-3′ |
qPCR-Bmrho(XM_004932433.3) | 5′-gagatcggaagtattatcaggagc-3′, 5′-ccaactctaacagtgtaacgcaga-3′ |
qPCR-Bmcbl (XM_021347118.1) | 5′-cgaaaacgacaaggacatcag-3′, 5′-aatcaatttgccacgcagtg-3′ |
qPCR-Bmhrs (XM_021352179.1) | 5′-gaccggaactattgggagca-3′, 5′-gttggaggcagtggaagcag-3′ |
qPCR-BmcyclinA (NM_001160187.1) | 5′-gggagaccacttacaaacctttt-3′, 5′-tcacattttcagcagcagcattcac-3′ |
qPCR-BmcyclinB (NM_001043878.2) | 5′-cgggaaaggtaatggagcc-3′, 5′-gtactacgccacggtttaggg-3′ |
qPCR-BmcyclinD (NM_001257007.1) | 5′-gctccagaggttgaattggc-3′, 5;-agaagttaaggtgagggcgtgt-3′ |
qPCR-BmcyclinL (NM_001161717.1) | 5′-caaaaccaaccgaagtctaacaa-3′, 5′-gagcgtcaaaactatcttcccata-3′ |
Group | Vector 1 (Tag) | Vector 2 (Tag) |
---|---|---|
Control | pSL1180-BmPSI (Myc) | pSL1180-EGFP (Flag) |
Experiment | pSL1180-BmPSI (Myc) | pSL1180-BmSPX (Flag) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, J.; Wan, Q.-X.; Zhao, Q.; Wang, K.-X.; Zha, X.-F. Spliceosomal Protein Gene BmSPX Regulates Reproductive Organ Development in Bombyx mori. Int. J. Mol. Sci. 2020, 21, 2579. https://doi.org/10.3390/ijms21072579
Wang Y, Li J, Wan Q-X, Zhao Q, Wang K-X, Zha X-F. Spliceosomal Protein Gene BmSPX Regulates Reproductive Organ Development in Bombyx mori. International Journal of Molecular Sciences. 2020; 21(7):2579. https://doi.org/10.3390/ijms21072579
Chicago/Turabian StyleWang, Yao, Juan Li, Qiu-Xing Wan, Qin Zhao, Kai-Xuan Wang, and Xing-Fu Zha. 2020. "Spliceosomal Protein Gene BmSPX Regulates Reproductive Organ Development in Bombyx mori" International Journal of Molecular Sciences 21, no. 7: 2579. https://doi.org/10.3390/ijms21072579
APA StyleWang, Y., Li, J., Wan, Q.-X., Zhao, Q., Wang, K.-X., & Zha, X.-F. (2020). Spliceosomal Protein Gene BmSPX Regulates Reproductive Organ Development in Bombyx mori. International Journal of Molecular Sciences, 21(7), 2579. https://doi.org/10.3390/ijms21072579