MiR-144: A New Possible Therapeutic Target and Diagnostic/Prognostic Tool in Cancers
<p>The structure and sequence of miR-144. Note: (<b>A</b>) Stem-loop structure of miR-144. (<b>B</b>) Two different mature sequences of miR-144.</p> "> Figure 2
<p>The critical role of miR-144 in different types of cancers. MicroRNAs (miRNAs) are a class of non-coding RNAs that play important roles in regulating gene expression in cancer patients. By targeting specific genes, MiR-144 acts as a tumor suppressor or oncogene. Mostly it downregulated in many types of cancers (see text for detail information). Abbreviations: Diffuse large B-cell lymphoma (DLBCL), Chronic myeloid leukemia (CML), Acute lymphoblastic leukemia (ALL), Cholangiocarcinoma (CCA), Primary central nervous system lymphoma (PCNSL), Follicular lymphoma (FL), Acute myeloid leukemia (AML), and Chronic lymphocytic leukemia (CLL).</p> "> Figure 3
<p>Biosynthesis of miRNAs. A miRNA precursor could be a mature miRNA by various physiological steps (see text for further information).</p> ">
Abstract
:1. Introduction
2. Biogenesis of miRNAs
3. MiR-144 in Lymphomas
3.1. MiR-144 in Non-Hodgkin’s Lymphomas
3.1.1. MiR-144 in Diffuse B Cell Lymphoma
3.1.2. MiR-144 in Follicular Lymphoma
3.1.3. MiR-144 in Splenic Marginal Zone Lymphoma
3.1.4. MiR-144 in the Lymphoma of the Primary Central Nervous System
4. MiR-144 in Leukemia
4.1. MiR-144 in Acute Myeloid Leukemia
4.2. MiR-144 in Acute Lymphoblastic Leukemia
4.3. MiR-144 in Chronic Myeloid Leukemia
4.4. MiR-144 in Chronic Lymphocytic Leukemia
5. MiR-144 in Gastrointestinal Cancers
5.1. MiR-144 in Gastric Cancer
5.2. MiR-144 in Colorectal Cancer
6. MiR-144 in Pancreatic Cancer
7. MiR-144 in Hepatocellular Carcinoma
8. MiR-144 in Cholangiocarcinoma
9. MiR-144 in Esophageal Cancer
10. MiR-144 in Genitourinary System
10.1. MiR-144 in Cervical Cancer
10.2. MiR-144 in Ovarian Cancer
10.3. MiR-144 in Prostate Cancer
10.4. MiR-144 in Renal Cell Carcinoma
10.5. MiR-144 in Bladder Cancer
11. MiR-144 in Lung Cancer
12. MiR-144 in Mesothelioma
13. MiR-144 in Breast Cancer
14. MiR-144 in Head and Neck Squamous Cell Carcinoma
14.1. MiR-144 in Nasopharyngeal Carcinoma
14.2. MiR-144 in Thyroid Cancer
14.3. MiR-144 in Glioblastoma
14.4. MiR-144 in Melanoma
14.5. MiR-144 in Osteosarcoma
15. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Pfeffer, S.R.; Yang, C.H.; Pfeffer, L.M. The role of mir-21 in cancer. Drug Dev. Res. 2015, 76, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Qin, C. General hallmarks of micrornas in brain evolution and development. RNA Biol. 2015, 12, 701–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahabi, A.; Naghili, B.; Ansarin, K.; Zarghami, N. The relationship between micrornas and rab family gtpases in human cancers. J. Cell. Physiol. 2019, 234, 12341–12352. [Google Scholar] [CrossRef]
- Mollaei, H.; Safaralizadeh, R.; Rostami, Z. Microrna replacement therapy in cancer. J. Cell. Physiol. 2019, 234, 12369–12384. [Google Scholar] [CrossRef]
- Mansoori, B.; Mohammadi, A.; Shirjang, S.; Baradaran, B. Micrornas in the diagnosis and treatment of cancer. Immunol. Investig. 2017, 46, 880–897. [Google Scholar] [CrossRef]
- Gilam, A.; Conde, J.; Weissglas-Volkov, D.; Oliva, N.; Friedman, E.; Artzi, N.; Shomron, N. Local microrna delivery targets palladin and prevents metastatic breast cancer. Nat. Commun 2016, 7, 12868. [Google Scholar] [CrossRef]
- Svoronos, A.A.; Engelman, D.M.; Slack, F.J. Oncomir or tumor suppressor? The duplicity of micrornas in cancer. Cancer Res. 2016, 76, 3666–3670. [Google Scholar] [CrossRef] [Green Version]
- Mansoori, B.; Mohammadi, A.; Shirjang, S.; Baradaran, B. Hmgi-c suppressing induces p53/caspase9 axis to regulate apoptosis in breast adenocarcinoma cells. Cell Cycle (Georget. Tex.) 2016, 15, 2585–2592. [Google Scholar] [CrossRef]
- Lee, Y.; Ahn, C.; Han, J.; Choi, H.; Kim, J.; Yim, J.; Lee, J.; Provost, P.; Radmark, O.; Kim, S.; et al. The nuclear rnase iii drosha initiates microrna processing. Nature 2003, 425, 415–419. [Google Scholar] [CrossRef]
- Koscianska, E.; Starega-Roslan, J.; Krzyzosiak, W.J. The role of dicer protein partners in the processing of microrna precursors. PLoS ONE 2011, 6, e28548. [Google Scholar] [CrossRef] [Green Version]
- Grishok, A.; Pasquinelli, A.E.; Conte, D.; Li, N.; Parrish, S.; Ha, I.; Baillie, D.L.; Fire, A.; Ruvkun, G.; Mello, C.C. Genes and mechanisms related to rna interference regulate expression of the small temporal rnas that control C. elegans developmental timing. Cell 2001, 106, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Khvorova, A.; Reynolds, A.; Jayasena, S.D. Functional sirnas and mirnas exhibit strand bias. Cell 2003, 115, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Graves, P.; Zeng, Y. Biogenesis of mammalian micrornas: A global view. Genom. Proteom. Bioinform. 2012, 10, 239–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Shi, R.; Zhao, S.; Li, X.; Lu, S.; Bu, H.; Ma, X.; Su, C. E2f8, a direct target of mir-144, promotes papillary thyroid cancer progression via regulating cell cycle. J. Exp. Clin. Cancer Res. 2017, 36, 40. [Google Scholar] [CrossRef] [Green Version]
- Cullen, B.R. Transcription and processing of human microrna precursors. Mol. Cell 2004, 16, 861–865. [Google Scholar] [CrossRef]
- Liu, Y.; Barta, S.K. Diffuse large b-cell lymphoma: 2019 update on diagnosis, risk stratification, and treatment. Am. J. Hematol. 2019, 94, 604–616. [Google Scholar] [CrossRef] [Green Version]
- Friedberg, J.W.; Fisher, R.I. Diffuse large b-cell lymphoma. Hematol. Oncol. Clin. N. Am. 2008, 22, 941–ix. [Google Scholar] [CrossRef]
- Musilova, K.; Mraz, M. Micrornas in b-cell lymphomas: How a complex biology gets more complex. Leukemia 2015, 29, 1004–1017. [Google Scholar] [CrossRef]
- Wang, H.; Wang, A.; Hu, Z.; Xu, X.; Liu, Z.; Wang, Z. A critical role of mir-144 in diffuse large b-cell lymphoma proliferation and invasion. Cancer Immunol. Res. 2016, 4, 337–344. [Google Scholar] [CrossRef]
- Wang, T.; Wu, F.; Yu, D. Mir-144/451 in hematopoiesis and beyond. ExRNA 2019, 1, 16. [Google Scholar] [CrossRef] [Green Version]
- Montes-Moreno, S.; Martinez, N.; Sanchez-Espiridión, B.; Díaz Uriarte, R.; Rodriguez, M.E.; Saez, A.; Montalbán, C.; Gomez, G.; Pisano, D.G.; García, J.F.; et al. Mirna expression in diffuse large b-cell lymphoma treated with chemoimmunotherapy. Blood 2011, 118, 1034–1040. [Google Scholar] [CrossRef] [PubMed]
- Luminari, S.; Bellei, M.; Biasoli, I.; Federico, M. Follicular lymphoma - treatment and prognostic factors. Rev. Bras. Hematol. Hemoter. 2012, 34, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Hershkovitz-Rokah, O.; Geva, P.; Salmon-Divon, M.; Shpilberg, O.; Liberman-Aronov, S. Network analysis of micrornas, genes and their regulation in diffuse and follicular b-cell lymphomas. Oncotarget 2018, 9, 7928–7941. [Google Scholar] [CrossRef] [PubMed]
- Malpeli, G.; Barbi, S.; Greco, C.; Zupo, S.; Bertolaso, A.; Scupoli, M.T.; Krampera, M.; Kamga, P.T.; Croce, C.M.; Scarpa, A.; et al. Microrna signatures and foxp3(+) cell count correlate with relapse occurrence in follicular lymphoma. Oncotarget 2018, 9, 19961–19979. [Google Scholar] [CrossRef] [Green Version]
- Takei, Y.; Ohnishi, N.; Kisaka, M.; Mihara, K. Determination of abnormally expressed micrornas in bone marrow smears from patients with follicular lymphomas. SpringerPlus 2014, 3, 288. [Google Scholar] [CrossRef] [Green Version]
- Santos, T.S.D.; Tavares, R.S.; Farias, D.L.C.D. Splenic marginal zone lymphoma: A literature review of diagnostic and therapeutic challenges. Rev. Bras. Hematol. Hemoter. 2017, 39, 146–154. [Google Scholar] [CrossRef]
- Di Lisio, L.; Sánchez-Beato, M.; Gómez-López, G.; Rodríguez, M.E.; Montes-Moreno, S.; Mollejo, M.; Menárguez, J.; Martínez, M.A.; Alves, F.J.; Pisano, D.G.; et al. Microrna signatures in b-cell lymphomas. Blood Cancer J. 2012, 2, e57. [Google Scholar] [CrossRef] [Green Version]
- Bouteloup, M.; Verney, A.; Rachinel, N.; Callet-Bauchu, E.; Ffrench, M.; Coiffier, B.; Magaud, J.P.; Berger, F.; Salles, G.A.; Traverse-Glehen, A.J.B.j.o.h. Microrna expression profile in splenic marginal zone lymphoma. Br. J. Haematol. 2012, 156, 279–281. [Google Scholar] [CrossRef]
- Peveling-Oberhag, J.; Crisman, G.; Schmidt, A.; Döring, C.; Lucioni, M.; Arcaini, L.; Rattotti, S.; Hartmann, S.; Piiper, A.; Hofmann, W.J.L. Dysregulation of global microrna expression in splenic marginal zone lymphoma and influence of chronic hepatitis c virus infection. Leukemia 2012, 26, 1654. [Google Scholar] [CrossRef]
- Grommes, C.; DeAngelis, L.M. Primary cns lymphoma. J. Clin. Oncol. 2017, 35, 2410–2418. [Google Scholar] [CrossRef]
- Löw, S.; Han, C.H.; Batchelor, T.T. Primary central nervous system lymphoma. Adv. Neurol. Disord. 2018, 11, 1756286418793562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, F.; Zhang, X.; Yin, K.-J. Micrornas in central nervous system diseases: A prospective role in regulating blood-brain barrier integrity. Exp. Neurol. 2020, 323, 113094. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Xue, Y.; Wang, P.; Wang, Z.; Li, Z.; Hu, Y.; Li, Z.; Shang, X.; Liu, Y. The long noncoding rna tug1 regulates blood-tumor barrier permeability by targeting mir-144. Oncotarget 2015, 6, 19759–19779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Suolitiken, D.; Xu, X.; Chen, B.; Zhang, L.; Kang, H.; Lin, Z.; Wang, Q. Circulating micrornas is a potential prognostic biomarker in primary central nervous system lymphoma. J. Abbr. 2018, 8, 1839–1846. [Google Scholar]
- Saultz, J.N.; Garzon, R. Acute myeloid leukemia: A concise review. J. Clin. Med. 2016, 5, 33. [Google Scholar] [CrossRef] [Green Version]
- Villela, L.; Bolaños-Meade, J. Acute myeloid leukaemia: Optimal management and recent developments. Drugs 2011, 71, 1537–1550. [Google Scholar] [CrossRef]
- Arber, D.A. The 2016 who classification of acute myeloid leukemia: What the practicing clinician needs to know. Semin. Hematol. 2019, 56, 90–95. [Google Scholar] [CrossRef]
- Hasserjian, R.P. Acute myeloid leukemia: Advances in diagnosis and classification. Int. J. Lab. Hematol. 2013, 35, 358–366. [Google Scholar] [CrossRef]
- Sun, X.; Liu, D.; Xue, Y.; Hu, X. Enforced mir-144-3p expression as a non-invasive biomarker for the acute myeloid leukemia patients mainly by targeting nrf2. Clin. Lab. 2017, 63, 679–687. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, J.; Chen, S.; Shen, K.; Ai, G.; Dai, X.; Xie, B.; Shi, Y.; Jiang, S.; Feng, J.; et al. Decreased mir-144 expression as a non-invasive biomarker for acute myeloid leukemia patients. Die Pharm. 2017, 72, 232–235. [Google Scholar]
- Daver, N.; Schlenk, R.F.; Russell, N.H.; Levis, M.J. Targeting flt3 mutations in aml: Review of current knowledge and evidence. Leukemia 2019, 33, 299–312. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Li, C.; Zhu, X. Flt3 inhibitors in acute myeloid leukemia. J. Hematol. Oncol. 2018, 11, 133. [Google Scholar] [CrossRef] [PubMed]
- Whitman, S.P.; Maharry, K.; Radmacher, M.D.; Becker, H.; Mrózek, K.; Margeson, D.; Holland, K.B.; Wu, Y.-Z.; Schwind, S.; Metzeler, K.H.; et al. Flt3 internal tandem duplication associates with adverse outcome and gene- and microrna-expression signatures in patients 60 years of age or older with primary cytogenetically normal acute myeloid leukemia: A cancer and leukemia group b study. Blood 2010, 116, 3622–3626. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, K.M. Letting micrornas overcome resistance to chemotherapy in acute myeloid leukemia. Leuk. Lymphoma 2014, 55, 1449–1450. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, R.; Tawa, A.; Hanada, R.; Horibe, K.; Tsuchida, M.; Tsukimoto, I. Extramedullary infiltration at diagnosis and prognosis in children with acute myelogenous leukemia. Pediatric Blood Cancer 2007, 48, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Meng, W.; Yu, G.; Yin, C.; Wang, Z.; Liao, L.; Meng, F. Microrna-144 targets app to regulate aml1/eto(+) leukemia cell migration via the p-erk/c-myc/mmp-2 pathway. Oncol. Lett. 2019, 18, 2034–2042. [Google Scholar] [CrossRef] [Green Version]
- Terwilliger, T.; Abdul-Hay, M. Acute lymphoblastic leukemia: A comprehensive review and 2017 update. Blood Cancer J. 2017, 7, e577. [Google Scholar] [CrossRef] [Green Version]
- Inaba, H.; Greaves, M.; Mullighan, C.G. Acute lymphoblastic leukaemia. Lancet 2013, 381, 1943–1955. [Google Scholar] [CrossRef] [Green Version]
- Ultimo, S.; Martelli, A.M.; Zauli, G.; Vitale, M.; Calin, G.A.; Neri, L.M. Roles and clinical implications of micrornas in acute lymphoblastic leukemia. J. Cell. Physiol. 2018, 233, 5642–5654. [Google Scholar] [CrossRef]
- Jin, J.; Wang, Y.; Xu, Y.; Zhou, X.; Liu, Y.; Li, X.; Wang, J. Microrna-144 regulates cancer cell proliferation and cell-cycle transition in acute lymphoblastic leukemia through the interaction of fmn2. J. Gene Med. 2017, 19, e2898. [Google Scholar] [CrossRef]
- Mavrakis, K.J.; Van Der Meulen, J.; Wolfe, A.L.; Liu, X.; Mets, E.; Taghon, T.; Khan, A.A.; Setty, M.; Rondou, P.; Vandenberghe, P.; et al. A cooperative microrna-tumor suppressor gene network in acute t-cell lymphoblastic leukemia (t-all). Nat. Genet. 2011, 43, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Granatowicz, A.; Piatek, C.I.; Moschiano, E.; El-Hemaidi, I.; Armitage, J.D.; Akhtari, M. An overview and update of chronic myeloid leukemia for primary care physicians. Korean J. Fam. Med. 2015, 36, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Jabbour, E.; Kantarjian, H. Chronic myeloid leukemia: 2018 update on diagnosis, therapy and monitoring. Am. J. Hematol. 2018, 93, 442–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabbri, M.; Croce, C.M.; Calin, G.A. Micrornas in the ontogeny of leukemias and lymphomas. Leuk Lymphoma 2009, 50, 160–170. [Google Scholar] [CrossRef]
- Liu, L.; Wang, S.; Chen, R.; Wu, Y.; Zhang, B.; Huang, S.; Zhang, J.; Xiao, F.; Wang, M.; Liang, Y. Myc induced mir-144/451 contributes to the acquired imatinib resistance in chronic myelogenous leukemia cell k562. Biochem. Biophys. Res. Commun. 2012, 425, 368–373. [Google Scholar] [CrossRef]
- Hehlmann, R. How i treat cml blast crisis. Blood 2012, 120, 737–747. [Google Scholar] [CrossRef] [Green Version]
- Machova Polakova, K.; Koblihova, J.; Stopka, T. Role of epigenetics in chronic myeloid leukemia. Curr. Hematol. Malig. Rep. 2013, 8, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Kipps, T.J.; Stevenson, F.K.; Wu, C.J.; Croce, C.M.; Packham, G.; Wierda, W.G.; O’Brien, S.; Gribben, J.; Rai, K. Chronic lymphocytic leukaemia. Nat. Rev. Dis Primers 2017, 3, 16096. [Google Scholar] [CrossRef] [Green Version]
- Hallek, M. Chronic lymphocytic leukemia: 2017 update on diagnosis, risk stratification, and treatment. Am. J. Hematol. 2017, 92, 946–965. [Google Scholar] [CrossRef]
- Van Roosbroeck, K.; Calin, G.A. Micrornas in chronic lymphocytic leukemia: Miracle or mirage for prognosis and targeted therapies? Semin. Oncol. 2016, 43, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Lafuente, N.; Alcaraz-García, M.-J.; Sebastián-Ruiz, S.; García-Serna, A.-M.; Gómez-Espuch, J.; Moraleda, J.-M.; Minguela, A.; García-Alonso, A.-M.; Parrado, A. Il-4 up-regulates mir-21 and the mirnas hosted in the clcn5 gene in chronic lymphocytic leukemia. PLoS ONE 2015, 10, e0124936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, C.; Zhou, C.; Zhuang, J.; Liu, L.; Wei, J.; Liu, C.; Li, H.; Sun, C. Identification of key candidate genes and mirna-mrna target pairs in chronic lymphocytic leukemia by integrated bioinformatics analysis. Mol. Med. Rep. 2019, 19, 362–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sitarz, R.; Skierucha, M.; Mielko, J.; Offerhaus, G.J.A.; Maciejewski, R.; Polkowski, W.P. Gastric cancer: Epidemiology, prevention, classification, and treatment. Cancer Manag Res. 2018, 10, 239–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Yao, G.; Zhai, J.; Hu, D.; Fan, Y. Lncrna ftx promotes proliferation and invasion of gastric cancer via mir-144/zfx axis. Onco Targets 2019, 12, 11701–11713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akiyoshi, S.; Fukagawa, T.; Ueo, H.; Ishibashi, M.; Takahashi, Y.; Fabbri, M.; Sasako, M.; Maehara, Y.; Mimori, K.; Mori, M. Clinical significance of mir-144-zfx axis in disseminated tumour cells in bone marrow in gastric cancer cases. Br. J. Cancer 2012, 107, 1345–1353. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, F.; Zhang, J.; Li, J. Mir-144 suppresses cell proliferation and invasion in gastric cancer through downregulation of activating enhancer-binding protein 4. Oncol. Lett. 2019, 17, 5686–5692. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Xue, H.; Zhang, J.; Suo, T.; Xiang, Y.; Zhang, W.; Ma, J.; Cai, D.; Gu, X. Microrna-144 inhibits the metastasis of gastric cancer by targeting met expression. J. Exp. Clin. Cancer Res. 2015, 34, 35. [Google Scholar] [CrossRef] [Green Version]
- Ren, K.; Liu, Q.Q.; An, Z.F.; Zhang, D.P.; Chen, X.H. Mir-144 functions as tumor suppressor by targeting pim1 in gastric cancer. Eur. Rev. Med. Pharm. Sci. 2017, 21, 3028–3037. [Google Scholar]
- Ji, T.T.; Huang, X.; Jin, J.; Pan, S.H.; Zhuge, X.J. Inhibition of long non-coding rna tug1 on gastric cancer cell transference and invasion through regulating and controlling the expression of mir-144/c-met axis. Asian Pac. J. Trop. Med. 2016, 9, 508–512. [Google Scholar] [CrossRef] [Green Version]
- Lario, S.; Brunet-Vega, A.; Quílez, M.E.; Ramírez-Lázaro, M.J.; Lozano, J.J.; García-Martínez, L.; Pericay, C.; Miquel, M.; Junquera, F.; Campo, R.; et al. Expression profile of circulating micrornas in the correa pathway of progression to gastric cancer. United Eur. Gastroenterol. J. 2018, 6, 691–701. [Google Scholar] [CrossRef]
- Liu, S.; Suo, J.; Wang, C.; Sun, X.; Wang, D.; He, L.; Zhang, Y.; Li, W. Prognostic significance of low mir-144 expression in gastric cancer. Cancer Biomark. Sect. A Dis. Markers 2017, 20, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Gu, A.; Wang, Z.; Xue, Y. Microrna-144 functions as a tumor suppressor in gastric cancer by targeting cyclooxygenase-2. Exp. Ther. Med. 2018, 15, 3088–3095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Q.G.; Tian, R.C.; Liu, Y.; Niu, A.Y.; Zhang, J.; Gao, W.F. The role of mir-144/gspt1 axis in gastric cancer. Eur. Rev. Med. Pharm. Sci. 2018, 22, 4138–4145. [Google Scholar]
- Vatandoust, S.; Price, T.J.; Karapetis, C.S. Colorectal cancer: Metastases to a single organ. World J. Gastroenterol. 2015, 21, 11767–11776. [Google Scholar] [CrossRef]
- Jiang, Y.; Cai, Y.; Shao, W.; Li, F.; Guan, Z.; Zhou, Y.; Tang, C.; Feng, S. Microrna144 suppresses aggressive phenotypes of tumor cells by targeting ano1 in colorectal cancer. Oncol. Rep. 2019, 41, 2361–2370. [Google Scholar]
- Han, B.; Feng, D.; Yu, X.; Liu, Y.; Yang, M.; Luo, F.; Zhou, L.; Liu, F. Microrna-144 mediates chronic inflammation and tumorigenesis in colorectal cancer progression via regulating c-x-c motif chemokine ligand 11. Exp. Ther. Med. 2018, 16, 1935–1943. [Google Scholar] [CrossRef] [Green Version]
- Saxton, R.A.; Sabatini, D.M. Mtor signaling in growth, metabolism, and disease. Cell 2017, 168, 960–976. [Google Scholar] [CrossRef] [Green Version]
- Iwaya, T.; Yokobori, T.; Nishida, N.; Kogo, R.; Sudo, T.; Tanaka, F.; Shibata, K.; Sawada, G.; Takahashi, Y.; Ishibashi, M.; et al. Downregulation of mir-144 is associated with colorectal cancer progression via activation of mtor signaling pathway. Carcinogenesis 2012, 33, 2391–2397. [Google Scholar] [CrossRef] [Green Version]
- Koga, Y.; Yasunaga, M.; Takahashi, A.; Kuroda, J.; Moriya, Y.; Akasu, T.; Fujita, S.; Yamamoto, S.; Baba, H.; Matsumura, Y. Microrna expression profiling of exfoliated colonocytes isolated from feces for colorectal cancer screening. Cancer Prev. Res. (Phila. Pa.) 2010, 3, 1435–1442. [Google Scholar] [CrossRef] [Green Version]
- Kalimutho, M.; Del Vecchio Blanco, G.; Di Cecilia, S.; Sileri, P.; Cretella, M.; Pallone, F.; Federici, G.; Bernardini, S. Differential expression of mir-144* as a novel fecal-based diagnostic marker for colorectal cancer. J. Gastroenterol. 2011, 46, 1391–1402. [Google Scholar] [CrossRef]
- Choi, H.H.; Cho, Y.-S.; Choi, J.H.; Kim, H.-K.; Kim, S.S.; Chae, H.-S. Stool-based mir-92a and mir-144* as noninvasive biomarkers for colorectal cancer screening. Oncology 2019, 97, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, M. Pancreatic cancer. N. Engl. J. Med. 2010, 362, 1605–1617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunetti, O.; Russo, A.; Scarpa, A.; Santini, D.; Reni, M.; Bittoni, A.; Azzariti, A.; Aprile, G.; Delcuratolo, S.; Signorile, M.; et al. Microrna in pancreatic adenocarcinoma: Predictive/prognostic biomarkers or therapeutic targets? Oncotarget 2015, 6, 23323–23341. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Sun, P.; Yue, Z.; Zhang, D.; You, K.; Wang, J. Mir-144-3p induces cell cycle arrest and apoptosis in pancreatic cancer cells by targeting proline-rich protein 11 expression via the mitogen-activated protein kinase signaling pathway. DNA Cell Biol. 2017, 36, 619–626. [Google Scholar] [CrossRef]
- Liu, S.; Luan, J.; Ding, Y. Mir-144-3p targets fosb proto-oncogene, ap-1 transcription factor subunit (fosb) to suppress proliferation, migration, and invasion of panc-1 pancreatic cancer cells. Oncol. Res. 2018, 26, 683–690. [Google Scholar] [CrossRef]
- Balogh, J.; Victor, D., 3rd; Asham, E.H.; Burroughs, S.G.; Boktour, M.; Saharia, A.; Li, X.; Ghobrial, R.M.; Monsour, H.P., Jr. Hepatocellular carcinoma: A review. J. Hepatocell. Carcinoma 2016, 3, 41–53. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Wang, F.; Honda, T.; Lindquist, D.M.; Dillman, J.R.; Timchenko, N.A.; Redington, A.N. Intravenous mir-144 inhibits tumor growth in diethylnitrosamine-induced hepatocellular carcinoma in mice. Tumour Biol. J. Int. Soc. Oncodevelopmental. Biol. Med. 2017, 39, 1010428317737729. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharm. Toxicol. 2013, 53, 401–426. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Ye, W.; Zhang, Y.; Yu, D.; Shao, Q.; Liang, J.; Zhang, M. Mir-144 reverses chemoresistance of hepatocellular carcinoma cell lines by targeting nrf2-dependent antioxidant pathway. Am. J. Transl. Res. 2016, 8, 2992–3002. [Google Scholar]
- Gao, Y.; Feng, B.; Lu, L.; Han, S.; Chu, X.; Chen, L.; Wang, R. Mirnas and e2f3: A complex network of reciprocal regulations in human cancers. Oncotarget 2017, 8, 60624–60639. [Google Scholar] [CrossRef] [Green Version]
- Cao, T.; Li, H.; Hu, Y.; Ma, D.; Cai, X. Mir-144 suppresses the proliferation and metastasis of hepatocellular carcinoma by targeting e2f3. Tumour Biol. J. Int. Soc. Oncodevelopmental. Biol. Med. 2014, 35, 10759–10764. [Google Scholar] [CrossRef] [PubMed]
- Pu, C.; Huang, H.; Wang, Z.; Zou, W.; Lv, Y.; Zhou, Z.; Zhang, Q.; Qiao, L.; Wu, F.; Shao, S. Extracellular vesicle-associated mir-21 and mir-144 are markedly elevated in serum of patients with hepatocellular carcinoma. Front. Physiol. 2018, 9, 930. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Huang, C.; Huang, X.; Liang, R.; Feng, Y.; Luo, X. Microrna-144-3p suppresses tumor growth and angiogenesis by targeting sgk3 in hepatocellular carcinoma. Oncol. Rep. 2017, 38, 2173–2181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, L.; Lin, L.; Du, Y.; Hao, X.; Zhao, Y.; Liu, X. Microrna-588 suppresses tumor cell migration and invasion by targeting grn in lung squamous cell carcinoma. Mol. Med. Rep. 2016, 14, 3021–3028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, M.; Lin, Y.; Zhou, Y.; Jin, H.; Hou, B.; Wu, Z.; Li, Z.; Jian, Z.; Sun, J. Mir-144 suppresses cell proliferation, migration, and invasion in hepatocellular carcinoma by targeting smad4. Onco Targets 2016, 9, 4705–4714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, J.; Kong, Y.; Gao, Z.; Liu, Y.; Zhu, P.; Yu, Z. Lncrna tug1 interacting with mir-144 contributes to proliferation, migration and tumorigenesis through activating the jak2/stat3 pathway in hepatocellular carcinoma. Int. J. Biochem. Cell Biol. 2018, 101, 19–28. [Google Scholar] [CrossRef]
- Blechacz, B. Cholangiocarcinoma: Current knowledge and new developments. Gut Liver 2017, 11, 13–26. [Google Scholar] [CrossRef]
- Alsaleh, M.; Leftley, Z.; Barbera, T.A.; Sithithaworn, P.; Khuntikeo, N.; Loilome, W.; Yongvanit, P.; Cox, I.J.; Chamodol, N.; Syms, R.R.; et al. Cholangiocarcinoma: A guide for the nonspecialist. Int J. Gen. Med. 2018, 12, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Ghouri, Y.A.; Mian, I.; Blechacz, B. Cancer review: Cholangiocarcinoma. J. Carcinog. 2015, 14. [Google Scholar] [CrossRef]
- Yang, R.; Chen, Y.; Tang, C.; Li, H.; Wang, B.; Yan, Q.; Hu, J.; Zou, S. Microrna-144 suppresses cholangiocarcinoma cell proliferation and invasion through targeting platelet activating factor acetylhydrolase isoform 1b. BMC Cancer 2014, 14, 917. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Liu, C.; Song, P.; Pang, Z.; Mo, Z.; Huang, C.; Yan, T.; Sun, M.; Fa, X. Investigation of mirna- and lncrna-mediated competing endogenous rna network in cholangiocarcinoma. Oncol. Lett. 2019, 18, 5283–5293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y. Epidemiology of esophageal cancer. World J. Gastroenterol. 2013, 19, 5598–5606. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Liu, R.; Liao, J.; Yang, M.; Pan, E.; Yin, L.; Pu, Y. Possible tumor suppressive role of the mir-144/451 cluster in esophageal carcinoma as determined by principal component regression analysis. Mol. Med. Rep. 2016, 14, 3805–3813. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Zhang, P.; Xie, M.; Gao, H.; Yin, L.; Liu, R. Mir-144/451 cluster plays an oncogenic role in esophageal cancer by inhibiting cell invasion. Cancer Cell Int. 2018, 18, 184. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, R. Mir-144 functions as an oncomir in kyse-410 human esophageal carcinoma cell line in vitro and targets pura. Neoplasma 2018, 65, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Hou, W.; Wu, Z.; Wang, Y.; Yi, Y.; Lin, W. [mirna-144 in the saliva is a genetic marker for early diagnosis of esophageal cancer]. Nan Fang Yi Ke Da Xue Xue Bao = J. South. Med. Univ. 2013, 33, 1783–1786. [Google Scholar]
- Sharma, P.; Saraya, A.; Sharma, R. Potential diagnostic implications of mir-144 overexpression in human oesophageal cancer. Indian J. Med. Res. 2016, 143, S91–s103. [Google Scholar] [CrossRef]
- Tsikouras, P.; Zervoudis, S.; Manav, B.; Tomara, E.; Iatrakis, G.; Romanidis, C.; Bothou, A.; Galazios, G. Cervical cancer: Screening, diagnosis and staging. J. B.U.On. Off. J. Balk. Union Oncol. 2016, 21, 320–325. [Google Scholar]
- Tao, P.; Wen, H.; Yang, B.; Zhang, A.; Wu, X.; Li, Q. Mir-144 inhibits growth and metastasis of cervical cancer cells by targeting vegfa and vegfc. Exp. Ther. Med. 2018, 15, 562–568. [Google Scholar] [CrossRef] [Green Version]
- Shi, F.; Su, J.; Liu, Z.; Wang, J.; Wang, T. Mir-144 reverses cisplatin resistance in cervical cancer via targeting lhx2. J. Cell. Biochem. 2019, 120, 15018–15026. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, Y.; Li, F.; Qiao, B. Mir-144-3p: A novel tumor suppressor targeting mapk6 in cervical cancer. J. Physiol. Biochem. 2019, 75, 143–152. [Google Scholar] [CrossRef]
- Reid, B.M.; Permuth, J.B.; Sellers, T.A. Epidemiology of ovarian cancer: A review. Cancer Biol Med. 2017, 14, 9–32. [Google Scholar] [PubMed] [Green Version]
- Thériault, B.L.; Basavarajappa, H.D.; Lim, H.; Pajovic, S.; Gallie, B.L.; Corson, T.W. Transcriptional and epigenetic regulation of kif14 overexpression in ovarian cancer. PLoS ONE 2014, 9, e91540. [Google Scholar] [CrossRef] [PubMed]
- Palma Flores, C.; Garcia-Vazquez, R.; Gallardo Rincon, D.; Ruiz-Garcia, E.; Astudillo de la Vega, H.; Marchat, L.A.; Salinas Vera, Y.M.; Lopez-Camarillo, C. Micrornas driving invasion and metastasis in ovarian cancer: Opportunities for translational medicine (review). Int. J. Oncol. 2017, 50, 1461–1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, R.; Woo, H.-H.; Varghese, F.; Zhou, M.; Chambers, S.K. Circulating mirna profiling of women at high risk for ovarian cancer. Transl. Oncol. 2019, 12, 714–725. [Google Scholar] [CrossRef]
- Pogge von Strandmann, E.; Reinartz, S.; Wager, U.; Muller, R. Tumor-host cell interactions in ovarian cancer: Pathways to therapy failure. Trends Cancer 2017, 3, 137–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penyige, A.; Márton, É.; Soltész, B.; Szilágyi-Bónizs, M.; Póka, R.; Lukács, J.; Széles, L.; Nagy, B. Circulating mirna profiling in plasma samples of ovarian cancer patients. Int. J. Mol. Sci. 2019, 20, 4533. [Google Scholar] [CrossRef] [Green Version]
- Walter, B.A.; Valera, V.A.; Pinto, P.A.; Merino, M.J. Comprehensive microrna profiling of prostate cancer. J. Cancer 2013, 4, 350–357. [Google Scholar] [CrossRef] [Green Version]
- Litwin, M.S.; Tan, H.J. The diagnosis and treatment of prostate cancer: A review. Jama 2017, 317, 2532–2542. [Google Scholar] [CrossRef]
- Cuzick, J.; Thorat, M.A.; Andriole, G.; Brawley, O.W.; Brown, P.H.; Culig, Z.; Eeles, R.A.; Ford, L.G.; Hamdy, F.C.; Holmberg, L.; et al. Prevention and early detection of prostate cancer. Lancet Oncol. 2014, 15, e484–e492. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Wang, J.; Fu, Q.; Zhang, X.; Wang, Y.; Liu, J.; Huang, J.; Lv, X. Vegf-activated mir-144 regulates autophagic survival of prostate cancer cells against cisplatin. Tumour Biol. J. Int. Soc. Oncodevelopmental. Biol. Med. 2015, 37, 15627–15633. [Google Scholar] [CrossRef]
- Gu, H.; Liu, M.; Ding, C.; Wang, X.; Wang, R.; Wu, X.; Fan, R. Hypoxia-responsive mir-124 and mir-144 reduce hypoxia-induced autophagy and enhance radiosensitivity of prostate cancer cells via suppressing pim1. Cancer Med. 2016, 5, 1174–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, H.; Guo, Z.; Zheng, X.; Cheng, W.; Huang, X. Microrna-144-3p inhibits cell proliferation and induces cell apoptosis in prostate cancer by targeting cep55. Am. J. Transl. Res. 2018, 10, 2457–2468. [Google Scholar] [PubMed]
- Hsieh, J.J.; Purdue, M.P.; Signoretti, S.; Swanton, C.; Albiges, L.; Schmidinger, M.; Heng, D.Y.; Larkin, J.; Ficarra, V. Renal cell carcinoma. Nat. Rev. Dis Primers 2017, 3, 17009. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Arai, T.; Kojima, S.; Sugawara, S.; Kato, M.; Okato, A.; Yamazaki, K.; Naya, Y.; Ichikawa, T.; Seki, N. Regulation of antitumor mir-144-5p targets oncogenes: Direct regulation of syndecan-3 and its clinical significance. Cancer Sci 2018, 109, 2919–2936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, C.; Cui, S.P.; Ke, Y. Mir-144 inhibits cell proliferation of renal cell carcinoma by targeting mtor. J. Huazhong Univ. Sci. Technol. Med. Sci. = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen ban 2016, 36, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Chen, N.; Xiao, R.; Wang, W.; Pan, Z. Mir-144-3p serves as a tumor suppressor for renal cell carcinoma and inhibits its invasion and metastasis by targeting map3k8. Biochem. Biophys. Res. Commun. 2016, 480, 87–93. [Google Scholar] [CrossRef]
- Xiao, W.; Lou, N.; Ruan, H.; Bao, L.; Xiong, Z.; Yuan, C.; Tong, J.; Xu, G.; Zhou, Y.; Qu, Y.; et al. Mir-144-3p promotes cell proliferation, metastasis, sunitinib resistance in clear cell renal cell carcinoma by downregulating arid1a. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2017, 43, 2420–2433. [Google Scholar] [CrossRef]
- Lou, N.; Ruan, A.M.; Qiu, B.; Bao, L.; Xu, Y.C.; Zhao, Y.; Sun, R.L.; Zhang, S.T.; Xu, G.H.; Ruan, H.L.; et al. Mir-144-3p as a novel plasma diagnostic biomarker for clear cell renal cell carcinoma. Urol. Oncol. 2017, 35, 36.e7–36.e14. [Google Scholar] [CrossRef]
- Boormans, J.L.; Zwarthoff, E.C. Limited funds for bladder cancer research and what can we do about it. Bladder Cancer 2016, 2, 49–51. [Google Scholar] [CrossRef] [Green Version]
- DeGeorge, K.C.; Holt, H.R.; Hodges, S.C. Bladder cancer: Diagnosis and treatment. Am. Fam. Physician 2017, 96, 507–514. [Google Scholar] [PubMed]
- Guo, Y.; Ying, L.; Tian, Y.; Yang, P.; Zhu, Y.; Wang, Z.; Qiu, F.; Lin, J. Mir-144 downregulation increases bladder cancer cell proliferation by targeting ezh2 and regulating wnt signaling. FEBS J. 2013, 280, 4531–4538. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, R.; Seki, N.; Chiyomaru, T.; Inoguchi, S.; Ishihara, T.; Goto, Y.; Nishikawa, R.; Mataki, H.; Tatarano, S.; Itesako, T.; et al. Tumour-suppressive microrna-144-5p directly targets ccne1/2 as potential prognostic markers in bladder cancer. Br. J. Cancer 2015, 113, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Tölle, A.; Jung, M.; Rabenhorst, S.; Kilic, E.; Jung, K.; Weikert, S. Identification of micrornas in blood and urine as tumour markers for the detection of urinary bladder cancer. Oncol. Rep. 2013, 30, 1949–1956. [Google Scholar] [CrossRef] [PubMed]
- Kavanaugh, J.; Hugo, G.; Robinson, C.G.; Roach, M.C. Anatomical adaptation-early clinical evidence of benefit and future needs in lung cancer. Semin. Radiat. Oncol. 2019, 29, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Uchida, A.; Seki, N.; Mizuno, K.; Misono, S.; Yamada, Y.; Kikkawa, N.; Sanada, H.; Kumamoto, T.; Suetsugu, T.; Inoue, H. Involvement of dual-strand of the mir-144 duplex and their targets in the pathogenesis of lung squamous cell carcinoma. Cancer Sci. 2019, 110, 420–432. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.S.; Li, B.; Xu, G.; Yang, S.Q.; Wang, P.; Tang, H.H.; Liu, Y.Y. Long noncoding rna linc00483/microrna-144 regulates radiosensitivity and epithelial-mesenchymal transition in lung adenocarcinoma by interacting with hoxa10. J. Cell. Physiol. 2019, 234, 11805–11821. [Google Scholar] [CrossRef]
- Chen, S.; Li, P.; Li, J.; Wang, Y.; Du, Y.; Chen, X.; Zang, W.; Wang, H.; Chu, H.; Zhao, G.; et al. Mir-144 inhibits proliferation and induces apoptosis and autophagy in lung cancer cells by targeting tigar. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2015, 35, 997–1007. [Google Scholar] [CrossRef]
- Wu, K.L.; Tsai, Y.M.; Lien, C.T.; Kuo, P.L.; Hung, A.J. The roles of microrna in lung cancer. Int. J. Mol. Sci. 2019, 20, 1611. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Peng, L.; Hua, S.; Li, X.; Ma, L.; Jie, J.; Chen, D.; Wang, Y.; Li, D. Mir-144-5p enhances the radiosensitivity of non-small-cell lung cancer cells via targeting atf2. Biomed. Res. Int. 2018, 2018, 5109497. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-J.; Guo, Y.-N.; Shi, K.; Huang, H.-M.; Huang, S.-P.; Xu, W.-Q.; Li, Z.-Y.; Wei, K.-L.; Gan, T.-Q.; Chen, G. Down-regulation of microrna-144-3p and its clinical value in non-small cell lung cancer: A comprehensive analysis based on microarray, mirna-sequencing, and quantitative real-time pcr data. Respir. Res. 2019, 20, 48. [Google Scholar] [CrossRef] [PubMed]
- Mott, F.E. Mesothelioma: A review. Ochsner J. 2012, 12, 70–79. [Google Scholar] [PubMed]
- Yang, H.; Testa, J.R.; Carbone, M. Mesothelioma epidemiology, carcinogenesis, and pathogenesis. Curr. Treat. Options Oncol. 2008, 9, 147–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Rivera, V.; Negrete-García, M.C.; Ávila-Moreno, F.; Ortiz-Quintero, B. Secreted and tissue mirnas as diagnosis biomarkers of malignant pleural mesothelioma. Int. J. Mol. Sci. 2018, 19, 595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guled, M.; Lahti, L.; Lindholm, P.M.; Salmenkivi, K.; Bagwan, I.; Nicholson, A.G.; Knuutila, S.J.G. Cancer. Cdkn2a, nf2, and jun are dysregulated among other genes by mirnas in malignant mesothelioma—A mirna microarray analysis. Genes Chromosomes Cancer 2009, 48, 615–623. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, J.; Fu, H.; Shen, L. Mir-144 functions as a tumor suppressor in breast cancer through inhibiting zeb1/2-mediated epithelial mesenchymal transition process. Onco Targets 2016, 9, 6247–6255. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Cai, J.; Meng, F.; Sui, C.; Jiang, Y. Mir-144 suppresses proliferation, invasion, and migration of breast cancer cells through inhibiting cep55. Cancer Biol. Ther. 2018, 19, 306–315. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Yang, Y.; Hou, J.; Zhai, C.; Song, Y.; Zhang, Z.; Qiu, L.; Jia, X. Microrna-144 affects radiotherapy sensitivity by promoting proliferation, migration and invasion of breast cancer cells. Oncol. Rep. 2015, 34, 1845–1852. [Google Scholar] [CrossRef]
- Kahraman, M.; Röske, A.; Laufer, T.; Fehlmann, T.; Backes, C.; Kern, F.; Kohlhaas, J.; Schrörs, H.; Saiz, A.; Zabler, C.; et al. Microrna in diagnosis and therapy monitoring of early-stage triple-negative breast cancer. Sci. Rep. 2018, 8, 11584. [Google Scholar] [CrossRef]
- Madhavan, D.; Peng, C.; Wallwiener, M.; Zucknick, M.; Nees, J.; Schott, S.; Rudolph, A.; Riethdorf, S.; Trumpp, A.; Pantel, K.; et al. Circulating mirnas with prognostic value in metastatic breast cancer and for early detection of metastasis. Carcinogenesis 2016, 37, 461–470. [Google Scholar] [CrossRef] [Green Version]
- Troiano, G.; Caponio, V.C.A.; Adipietro, I.; Tepedino, M.; Santoro, R.; Laino, L.; Lo Russo, L.; Cirillo, N.; Lo Muzio, L. Prognostic significance of cd68+ and cd163+ tumor associated macrophages in head and neck squamous cell carcinoma: A systematic review and meta-analysis. Oral Oncol. 2019, 93, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Lu, J.; Peng, X.; Wang, J.; Liu, X.; Chen, X.; Jiang, Y.; Li, X.; Zhang, B. Integrated analysis of microrna regulatory network in nasopharyngeal carcinoma with deep sequencing. J. Exp. Clin. Cancer Res. 2016, 35, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Cui, C.L.; Chen, W.L.; Fu, Z.Y.; Cui, X.Y.; Gong, X. Mir-144 suppresses the growth and metastasis of laryngeal squamous cell carcinoma by targeting irs1. Am. J. Transl. Res. 2016, 8, 1–11. [Google Scholar] [PubMed]
- Salazar-Ruales, C.; Arguello, J.V.; López-Cortés, A.; Cabrera-Andrade, A.; García-Cárdenas, J.M.; Guevara-Ramírez, P.; Peralta, P.; Leone, P.E.; Paz, Y.M.C. Salivary micrornas for early detection of head and neck squamous cell carcinoma: A case-control study in the high altitude mestizo ecuadorian population. Biomed. Res. Int. 2018, 2018, 9792730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Shen, C.; Lu, X.; Hu, C. The incidence and prognosis of nasopharyngeal carcinoma patients with family history. Oncotarget 2017, 8, 97323–97330. [Google Scholar]
- Zhang, L.Y.; Ho-Fun Lee, V.; Wong, A.M.; Kwong, D.L.; Zhu, Y.H.; Dong, S.S.; Kong, K.L.; Chen, J.; Tsao, S.W.; Guan, X.Y.; et al. Microrna-144 promotes cell proliferation, migration and invasion in nasopharyngeal carcinoma through repression of pten. Carcinogenesis 2013, 34, 454–463. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Chen, L.; Luan, Q.; Kong, Q. Mir-144-3p facilitates nasopharyngeal carcinoma via crosstalk with pten. J. Cell. Physiol. 2019, 234, 17912–17924. [Google Scholar] [CrossRef]
- Wu, C.W.; Wang, S.G.; Lin, M.L.; Chen, S.S. Downregulation of mir-144 by triptolide enhanced p85alpha-pten complex formation causing s phase arrest of human nasopharyngeal carcinoma cells. Eur. J. Pharmacol. 2019, 855, 137–148. [Google Scholar] [CrossRef]
- Nguyen, Q.T.; Lee, E.J.; Huang, M.G.; Park, Y.I.; Khullar, A.; Plodkowski, R.A. Diagnosis and treatment of patients with thyroid cancer. Am. Health Drug Benefits 2015, 8, 30–40. [Google Scholar]
- Rossing, M.; Borup, R.; Henao, R.; Winther, O.; Vikesaa, J.; Niazi, O.; Godballe, C.; Krogdahl, A.; Glud, M.; Hjort-Sorensen, C.; et al. Down-regulation of micrornas controlling tumourigenic factors in follicular thyroid carcinoma. J. Mol. Endocrinol. 2012, 48, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Guan, H.; Liang, W.; Xie, Z.; Li, H.; Liu, J.; Liu, L.; Xiu, L.; Li, Y. Down-regulation of mir-144 promotes thyroid cancer cell invasion by targeting zeb1 and zeb2. Endocrine 2015, 48, 566–574. [Google Scholar] [CrossRef]
- Sun, W.; Lan, X.; Wang, Z.; Dong, W.; He, L.; Zhang, T.; Zhang, P.; Zhang, H. Microrna-144 inhibits proliferation by targeting ww domain-containing transcription regulator protein 1 in papillary thyroid cancer. Oncol. Lett. 2018, 15, 1007–1013. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Su, C.; Chen, Y.; Li, G. Mir-144-3p promotes the tumor growth and metastasis of papillary thyroid carcinoma by targeting paired box gene 8. Cancer Cell Int. 2018, 18, 54. [Google Scholar] [CrossRef] [PubMed]
- Wirsching, H.G.; Galanis, E.; Weller, M. Glioblastoma. Handb. Clin. Neurol. 2016, 134, 381–397. [Google Scholar] [PubMed]
- Areeb, Z.; Stylli, S.; Koldej, R.; Ritchie, D.; Siegal, T.; Morokoff, A.; Kaye, A.; Luwor, R. Microrna as potential biomarkers in glioblastoma. J. Neuro-Oncol. 2015, 125, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Lan, F.; Yu, H.; Hu, M.; Xia, T.; Yue, X. Mir-144-3p exerts anti-tumor effects in glioblastoma by targeting c-met. J. Neurochem. 2015, 135, 274–286. [Google Scholar] [CrossRef]
- Song, J.; Ma, Q.; Hu, M.; Qian, D.; Wang, B.; He, N. The inhibition of mir-144-3p on cell proliferation and metastasis by targeting top2a in hcmv-positive glioblastoma cells. Molecules 2018, 23, 3259. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.X.; Song, Y.X.; Wang, Z.Y.; Wang, Y.; Dong, Y. Mir-144-3p serves as a tumor suppressor by targeting fzd7 and predicts the prognosis of human glioblastoma. Eur. Rev. Med. Pharm. Sci. 2017, 21, 4079–4086. [Google Scholar]
- Liu, N.; Tu, Y. Systematic review of micrornas and its therapeutic potential in glioma. Cancer Transl. Med. 2015, 1, 50–66. [Google Scholar]
- Cardoso, A.M.S.; Sousa, M.; Morais, C.M.; Oancea-Castillo, L.R.; Regnier-Vigouroux, A.; Rebelo, O.; Tao, H.; Barbosa, M.; Pedroso de Lima, M.C.; Jurado, A.S. Mir-144 overexpression as a promising therapeutic strategy to overcome glioblastoma cell invasiveness and resistance to chemotherapy. Hum. Mol. Genet. 2019. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Ren, J.J.; Zhao, J.L.; Zang, J.; Long, Q.F.; Du, J.J.; Jia, X.T.; Gu, N.B.; Di, Z.L.; Qian, Y.H.; et al. Microrna-144 represses gliomas progression and elevates susceptibility to temozolomide by targeting cav2 and fgf7. Sci. Rep. 2020, 10, 4155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwiatkowska, D.; Kluska, P.; Reich, A. Beyond pd-1 immunotherapy in malignant melanoma. Dermatol. Ther. 2019, 9, 243–257. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.-G.; Zhang, L. Baohuoside-i suppresses cell proliferation and migration by up-regulating mir-144 in melanoma. Pharm Biol. 2017, 56, 43–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L.; Bian, G.; Meng, Z.; Dang, G.; Shi, D.; Mi, S. Mir-144 inhibits uveal melanoma cell proliferation and invasion by regulating c-met expression. PLoS ONE 2015, 10, e0124428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misaghi, A.; Goldin, A.; Awad, M.; Kulidjian, A.A. Osteosarcoma: A comprehensive review. Sicot J. 2018, 4, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Namlos, H.M.; Meza-Zepeda, L.A.; Baroy, T.; Ostensen, I.H.; Kresse, S.H.; Kuijjer, M.L.; Serra, M.; Burger, H.; Cleton-Jansen, A.M.; Myklebost, O. Modulation of the osteosarcoma expression phenotype by micrornas. PLoS ONE 2012, 7, e48086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, M.; Huang, J.; Gui, K.; Xiong, M.; Cai, G.; Xu, J.; Wang, K.; Liu, D.; Zhang, X.; Yin, W. The downregulation of mir-144 is associated with the growth and invasion of osteosarcoma cells through the regulation of tagln expression. Int. J. Mol. Med. 2014, 34, 1565–1572. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, X.; Wei, M. Microrna-144 suppresses osteosarcoma growth and metastasis by targeting rock1 and rock2. Oncotarget 2015, 6, 10297–10308. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Sun, H.; Bai, Y.; Han, J.; Liu, G.; Liu, Y.; Zhang, N. Mef2d overexpression contributes to the progression of osteosarcoma. Gene 2015, 563, 130–135. [Google Scholar] [CrossRef]
- Cui, S.Q.; Wang, H. Microrna-144 inhibits the proliferation, apoptosis, invasion, and migration of osteosarcoma cell line f5m2. Tumour Biol. J. Int. Soc. Oncodevelopmental. Biol. Med. 2015, 36, 6949–6958. [Google Scholar] [CrossRef]
- Ren, Y.F.; Zhang, T.H.; Zhong, S.; Zhao, Y.T.; Lv, Y.N. Mir-144 suppresses proliferation and induces apoptosis of osteosarcoma cells via direct regulation of mtor expression. Oncol. Lett. 2018, 15, 1163–1169. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kooshkaki, O.; Rezaei, Z.; Rahmati, M.; Vahedi, P.; Derakhshani, A.; Brunetti, O.; Baghbanzadeh, A.; Mansoori, B.; Silvestris, N.; Baradaran, B. MiR-144: A New Possible Therapeutic Target and Diagnostic/Prognostic Tool in Cancers. Int. J. Mol. Sci. 2020, 21, 2578. https://doi.org/10.3390/ijms21072578
Kooshkaki O, Rezaei Z, Rahmati M, Vahedi P, Derakhshani A, Brunetti O, Baghbanzadeh A, Mansoori B, Silvestris N, Baradaran B. MiR-144: A New Possible Therapeutic Target and Diagnostic/Prognostic Tool in Cancers. International Journal of Molecular Sciences. 2020; 21(7):2578. https://doi.org/10.3390/ijms21072578
Chicago/Turabian StyleKooshkaki, Omid, Zohre Rezaei, Meysam Rahmati, Parviz Vahedi, Afshin Derakhshani, Oronzo Brunetti, Amir Baghbanzadeh, Behzad Mansoori, Nicola Silvestris, and Behzad Baradaran. 2020. "MiR-144: A New Possible Therapeutic Target and Diagnostic/Prognostic Tool in Cancers" International Journal of Molecular Sciences 21, no. 7: 2578. https://doi.org/10.3390/ijms21072578
APA StyleKooshkaki, O., Rezaei, Z., Rahmati, M., Vahedi, P., Derakhshani, A., Brunetti, O., Baghbanzadeh, A., Mansoori, B., Silvestris, N., & Baradaran, B. (2020). MiR-144: A New Possible Therapeutic Target and Diagnostic/Prognostic Tool in Cancers. International Journal of Molecular Sciences, 21(7), 2578. https://doi.org/10.3390/ijms21072578