CRK5 Protein Kinase Contributes to the Progression of Embryogenesis of Arabidopsis thaliana
"> Figure 1
<p>Differences in seed and embryo sizes and embryo bent-cotyledon hook angles of wild type (Col-0) and mutant (At<span class="html-italic">crk5-1)</span> lines. (<b>A</b>) Pictures show dry seeds of the wild type (Col-0) and mutant (At<span class="html-italic">crk5-1).</span> The diagram shows the quantification of the seed size in wild type and mutant lines after two days’ imbibition of dried seeds at 4 °C. The seed contours were measured by ImageJ. The averages are from 100 independent seeds from the wild type and mutant, respectively. Standard errors (SE) are also shown. The mutant value indicated by asterisk is significantly lower compared to the wild type (Student’s t-test: <span class="html-italic">p</span> < 0.01, <span class="html-italic">n</span> = 100). (<b>B</b>) Embryo axis length measured from shoot apical meristem (SAM) until root apical meristem (RAM) was calculated in bent-cotyledon-stage embryos arised from the (<b>A</b>) experiment. Pictogram shows how the SAM-RAM axis was measured. All values are averages of at least 100 bent-cotyledon embryos. Standard errors (SE) are also shown. Asterisk depicts significant difference between the wild type and mutant embryos (Student’s t-test: <span class="html-italic">p</span> < 0.05, <span class="html-italic">n</span> = 100). (<b>C</b>) Differences in the hook angles of wild type and mutant embryos at the bent-cotyledon-stage (after two days’ imbibition of seeds at 4 °C). The averages and standard errors (SE) are shown. The mutant value is significantly different in comparison with the wild type (Student’s t-test: * <span class="html-italic">p</span> < 0.01, <span class="html-italic">n</span> = 75). Pictogram shows the mode of measuring embryo hook angles (<b>C</b>). All experiment was repeated three times.</p> "> Figure 2
<p>Embryogenesis of the wild type <span class="html-italic">Arabidopsis thaliana</span> Col-0 and the At<span class="html-italic">crk5-1</span> mutant. Bright field microscopic images from a CELL-R Olympus Microscope. Embryo shapes were visualized after chloral hydrate treatment. S1–S11 = silique developmental stages where S1 represents the youngest and S11 the oldest siliques formed after pollination. As compared to wild type (<b>A</b>) embryos, there is a shift in At<span class="html-italic">crk5-1</span> mutant (<b>B</b>) embryo development initiated from the globular/early heart embryo stages found in silique5 (S5). Red arrow represents the start and sequential direction of delay. Note that the wild type (Col-0) bent-cotyledon-stage embryos have 180° hook bending, while the mutant embryos at the same developmental stage (At<span class="html-italic">crk5-1</span>) have much less (around 130°) bending angle. (Scale bars = 10 µm for S1–S7 and 100 µm for S9–S11).</p> "> Figure 3
<p>Quantitative analysis of embryogenesis in wild type <span class="html-italic">Arabidopsis thaliana</span> (Col-0) and At<span class="html-italic">crk5-1</span> mutant in correlation to silique development. Distribution of the different embryo developmental stages from S1 until S11 depicted in percentage (%). A notable shift in At<span class="html-italic">crk5-1</span> embryo development can be observed from the globular embryo stages in silique 4 (S4). Minimum 50 seeds were investigated for both genotypes for each embryo developmental stage of green-house-grown plants. The experiments were repeated three times with the same results.</p> "> Figure 4
<p>Comparison of hypocotyl bending and the SAM-RAM distance of bent-cotyledon-stage embryos. (<b>A</b>) Embryo length was measured from SAM to RAM in silique10 and silique11-derived embryos after preclearing in Hoyer’s solution. The SAM-RAM axis is indicated with red line. Note that the axes of the At<span class="html-italic">crk5-1</span> embryos are shorter in comparison to those of the wild type. (<b>B</b>) Quantification of embryo axis length differences. Asterisks depict significant differences between the wild type and mutant embryos (Student’s t-test: * <span class="html-italic">p</span> < 0.05, <span class="html-italic">n</span> ≥ 50). Scale bars = 100 μm.</p> "> Figure 5
<p>Expression level of embryo maturation/dormancy related genes at different silique stages quantified by qRT-PCR. The relative transcript levels were determined in small siliques (S; S1–S4, 2DAP) and medium siliques (M, S5–S7, 3DAP) for (<b>A</b>) <span class="html-italic">LEC1</span>, (<b>B</b>) <span class="html-italic">LEC2</span>, (<b>C</b>) <span class="html-italic">FUS3</span>, and (<b>D</b>) <span class="html-italic">ABI3</span>. <span class="html-italic">Ubiquitin1 (UBQ-1)</span> was used as an internal control. The values are means (+/−) SD of two independent biological repeats. Student’s t-test: * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001. Primers used are listed in <a href="#app1-ijms-20-06120" class="html-app">Table S1</a>.</p> "> Figure 6
<p>Role of gibberellic acid in the delayed embryo development of At<span class="html-italic">crk5-1</span>. (<b>A</b>) Quantification of embryo axis length differences in siliques S11–S12. Embryo axis from SAM-to-RAM was measured after the treatment of developing inflorescences of wild type (Col-0) and At<span class="html-italic">crk5-1</span> mutant plants without (GA −) or with 20 μM GA<sub>3</sub> (GA +). The exogenous GA<sub>3</sub> supply restored the length of the mutant embryos to the wild type level. (Student’s t-test:* <span class="html-italic">p</span> < 0.05, <span class="html-italic">n</span> = 30). The data presented are the means of two biological repeats. (<b>B</b>) Quantification of the total GA content in medium stage siliques (S5–S6–S7). 30-30 siliques were collected from wild type (Col-0) and mutant (At<span class="html-italic">crk5-1</span>) inflorescence. The total GA content was determined using a GA-antibody-based Elisa kit. (<b>C</b>) Rescue of the delayed embryo bending phenotype in S11 of the At<span class="html-italic">crk5-1</span> mutant by 20 μM GA<sub>3</sub> treatment with its noticeable change from walking stick to bent cotyledon stage, while Col-0 remains in the bent cotyledon stage. Representative images are shown from experiments repeated two times with 30-30 mutant and wild type embryos. Scale bars = 100 µm.</p> "> Figure 7
<p>Relative expression level of selected genes involved in Gibberellic Acid (GA) metabolism and signaling at different silique stages quantified by qRT-PCR. The relative transcript levels were determined in small siliques (S; S1–S4, 3DAP) and medium siliques (M, S5–S7, 5DAP) for the DELLA GA signaling genes (<b>A</b>) <span class="html-italic">RGL1</span>, (<b>B</b>) <span class="html-italic">RGL2</span>, (<b>C</b>) <span class="html-italic">RGL3</span>, (<b>D</b>) <span class="html-italic">GA-INSENSITIVE</span> (<span class="html-italic">GAI</span>), and (<b>E</b>) <span class="html-italic">REPRESSOR OF ga1-3</span> (<span class="html-italic">RGA)</span>, the gibberellin biosynthesis genes (<b>F</b>) <span class="html-italic">GA20ox2</span> and (<b>G</b><span class="html-italic">) GA20ox3</span>, and the gene of the GA catabolism enzyme (<b>H</b><span class="html-italic">) GA2ox4</span>. <span class="html-italic">Ubiquitin1</span> (<span class="html-italic">UBQ-1</span>) was used as an internal control. The values are means (+/−) SD of two independent biological repeats. Student’s t-test: * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001. Primers used are listed in the <a href="#app1-ijms-20-06120" class="html-app">Table S1</a>.</p> "> Figure 8
<p>The auxin sensor DR5::GFP activity was recorded in wild type <span class="html-italic">Arabidopsis</span> and mutant At<span class="html-italic">crk5-1</span> embryos at several developmental stages. Auxin distribution during the embryo development in wild type (<b>A</b>) and in the mutant (<b>B</b>). In both cases, 5-5 embryos were investigated from three independent experiments. Note the decreased auxin levels in each embryo developmental stage in the At<span class="html-italic">crk5-1</span> mutant. Scale bars: eight-cell to torpedo = 15 µm; upright and walking stick = 100 µm.</p> "> Figure 9
<p>Relative expression level of auxin efflux carrier <span class="html-italic">PIN</span> genes at different silique stages quantified by qRT-PCR. The relative transcript levels were determined in small siliques (S1–S4, 3DAP) and medium siliques (S5–S7, 5DAP) for (<b>A</b>) <span class="html-italic">PIN4</span>, (<b>B</b>) <span class="html-italic">PIN7</span>, (<b>C</b>) <span class="html-italic">PIN1</span>. <span class="html-italic">Ubiquitin1 (UBQ-1)</span> was used as an internal control. The values are means (+/−) SD of two independent biological repeats. Student’s t-test: * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001. Primers used are listed in the <a href="#app1-ijms-20-06120" class="html-app">Table S1</a>.</p> "> Figure 10
<p>Level and distribution of PIN1-GFP in wild type (<b>A</b>) and in At<span class="html-italic">crk5-1</span> mutant (<b>B</b>) embryos during embryogenesis. Note that the PIN1-GFP signal is much less intense in the At<span class="html-italic">crk5-1</span> mutant then in the control embryos. In both cases 5-5 embryos were investigated from three independent experiments. Scale bars: eight-cell to torpedo = 15 µm; upright; and, walking stick = 100 µm.</p> "> Figure 11
<p>Comparison of the PIN7-GFP abundance and distribution in developing Arabidopsis embryos. PIN7-GFP intensity distribution during embryo development in wild type (<b>A</b>) and in the mutant (<b>B</b>). Note the decreased abundance of PIN7-GFP in each developmental stage of At<span class="html-italic">crk5-1</span> embryos. In both cases 5-5 embryos were investigated from three independent experiments. Scale bars: eight-cell to torpedo = 15 µm; upright/walking stick= 100 µm.</p> "> Figure 12
<p>Distribution of AUX1::YFP during embryo development in the wild type (<b>A</b>) and in the At<span class="html-italic">crk5-1</span> mutant (<b>B</b>)<b>.</b> In all embryo developmental stages there is lower level of AUX1-YFP in the At<span class="html-italic">crk5-1</span> mutant. The localisation of the auxin influx protein (AUX-YFP) is also different in the mutant and the wild type backgrounds. In both cases 5-5 embryos were investigated from three independent experiments. Scale bars = 100 μm.</p> "> Figure 13
<p>AtCRK5 phosphorylates the PIN1 hydrophilic loop <span class="html-italic">in vitro</span>. We performed in vitro radioactive phosphorylation assay with His6-AtCRK5 and two substrates: Myelin Basic Protein (MBP) as a positive control, and GST-PIN1-HL loop. White asterisks indicate the phosphorylation event on MBP (* asterisk) and GST-PIN1HLloop (** asterisk) proteins, respectively. We carried out glutathione S-Transferase (GST) column purification after the kinase reactions shown in the last three columns to remove the HIS6-CRK5 kinase because the His6-CRK5 and the GST-PIN1 protein sizes are nearly identical and we could not distinguish the phosphorylation signals.</p> "> Figure 14
<p>Hypothetical model about the involvement of the AtCRK5 protein kinase in the coordination of embryo morphogenesis in <span class="html-italic">Arabidopsis thaliana</span>. The auxin transport proteins having central role in the establishment of auxin gradients controlling embryo morphogenesis are potential targets of AtCRK5. The phosphorylation of these transporters by AtCRK5 increases their stability. In the absence of AtCRK5 their level is decreased without affecting their distribution pattern. The auxin gradients therefore are properly established in the At<span class="html-italic">crk5-1</span> mutant but at lower auxin maxima in the corresponding regions. The lower auxin concentration in these regions limits gibberellin synthesis, via the decreased expression of key genes of gibberellin metabolisms. The lower GA level results in lower expression of the genes coding for auxin transport proteins strengthening the phenotype. An auxin-transport-independent effect of the AtCRK5 kinase on gibberellin metabolism cannot be excluded. In summary, in the absence of AtCRK5, embryogenesis progresses at correctly organised but lower auxin and gibberellin levels delaying but not preventing the processes of morphogenesis.</p> ">
Abstract
:1. Introduction
2. Results
2.1. The Atcrk5-1 Mutant Exhibits a Considerable Delay in the Progression of the Phases of Embryogenesis
2.2. The Delayed Development of the Atcrk5-1 Embryos Is Linked to Their Decreased Gibberellin Synthesis and Level
2.3. The Auxin Level Is Decreased in the Atcrk5-1 Mutant Embryos in Comparison with the Wild Type Ones.
2.4. Expression and Abundance of Auxin Efflux Proteins During Embryogenesis of Wild Type and Atcrk5-1 Mutant Plants
2.5. Expression and Abundance of Auxin Influx (AUX1) Proteins During Embryogenesis of Wild Type and Atcrk5-1 Mutant Plants
2.6. AtCRK5 Can Phosphorylate the Auxin Efflux Proteins PIN1, PIN4 and PIN7 in vitro
3. Discussion
3.1. The AtCRK5 Protein Kinase Controls the Gibberellin Level Influencing Seed Size and Embryogenesis
3.2. AtCRK5 is a General Regulator of Auxin Distribution Potentially via the Phosphorylation of Several PINs
3.3. The AtCRK5 Protein Kinase is Involved in Hormonal Crosstalk Influencing Embryogenesis
4. Materials and Methods
4.1. Plant Material and Growth Conditions
4.2. Seed/Embryo Size/Axis Determination, Embryo Isolation and GA Rescue Experiments
4.3. Total GA Measurement by Competitive GAs Elisa Assay
4.4. Embryo Morphology Monitored by Cell-R Microscopy
4.5. Monitoring of Abundance of GFP/YFP Signals in Embryos by LSM Microscopy
4.6. RNA Isolation and Real Time Quantitative PCR (qRT-PCR) for Embryo Gene Expression
4.7. PIN4 and PIN7 Hydrophilic Loop Region Cloning
4.8. Purification of Tagged Proteins
4.9. In vitro Kinase Assays
4.10. Mass Spectrometry
4.11. Bioinformatic Analysis and Tools
4.12. Accession Numbers
4.13. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mayer, U.; Buttner, G.; Jurgens, G. Apical-basal pattern formation in the Arabidopsis embryo: Studies on the role of the gnom gene. Development 1993, 117, 149–162. [Google Scholar]
- Ten Hove, C.A.; Lu, K.-J.; Weijers, D. Building a plant: Cell fate specification in the early Arabidopsis embryo. Development 2015, 142, 420–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Zhou, L.; Huang, M.; He, X.; Yang, Y.; Liu, X.; Li, Y.; Hou, X. Gibberellins play an essential role in late embryogenesis of Arabidopsis. Nat. Plants 2018, 4, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Locascio, A.; Roig-Villanova, I.; Bernardi, J.; Varotto, S. Current perspectives on the hormonal control of seed development in Arabidopsis and maize: A focus on auxin. Front. Plant Sci. 2014, 5, 412. [Google Scholar] [CrossRef] [Green Version]
- Teale, W.D.; Paponov, I.A.; Palme, K. Auxin in action: Signalling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell Biol. 2006, 7, 847–859. [Google Scholar] [CrossRef]
- Vanneste, S.; Friml, J. Auxin: A trigger for change in plant development. Cell 2009, 136, 1005–1016. [Google Scholar] [CrossRef]
- Vanstraelen, M.; Benkova, E. Hormonal interactions in the regulation of plant development. Annu. Rev. Cell Dev. Biol. 2012, 28, 463–487. [Google Scholar] [CrossRef]
- Zádnikova, P.; Smet, D.; Zhu, Q.; Van der Straeten, D.; Benková, E. Strategies of seedlings to overcome their sessile nature: Auxin in mobility control. Front. Plant Sci. 2015, 6, 218. [Google Scholar] [CrossRef] [Green Version]
- Hamann, T.; Benkova, E.; Baurle, I.; Kientz, M.; Jurgens, G. The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev. 2002, 16, 1610–1615. [Google Scholar] [CrossRef] [Green Version]
- Friml, J.; Vieten, A.; Sauer, M.; Weijers, D.; Schwarz, H.; Hamann, T.; Offringa, R.; Jürgens, G. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 2003, 426, 147–153. [Google Scholar] [CrossRef]
- Jenik, P.D.; Barton, M.K. Surge and destroy: The role of auxin in plant embryogenesis. Development 2005, 132, 3577–3585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wabnik, K.; Robert, H.S.; Smith, R.S.; Friml, J. Modeling framework for the establishment of the apical-basal embryonic axis in plants. Curr. Biol. 2013, 23, 2513–2518. [Google Scholar] [CrossRef]
- Bennett, M.J.; Marchant, A.; Green, H.G.; May, S.T.; Ward, S.P.; Millner, P.A.; Walker, A.R.; Schulz, B.F.; Feldmann, K.A. Arabidopsis AUX1 gene: A permease-like regulator of root gravitropism. Science 1996, 273, 948–950. [Google Scholar] [CrossRef] [PubMed]
- Petrasek, J.; Mravec, J.; Bouchard, R.; Blakeslee, J.J.; Abas, M.; Seifertova, D.; Wiśniewska, J.; Tadele, Z.; Kubeš, M.; Čovanová, M.; et al. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 2006, 312, 914–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krecek, P.; Skupa, P.; Libus, J.; Naramoto, S.; Tejos, R.; Friml, J. The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol. 2009, 10, 249–260. [Google Scholar] [CrossRef] [Green Version]
- Barbez, E.; Kubeš, M.; Rolčík, J.; Béziat, C.; Pěnčík, A.; Wang, B.; Rosquete, M.R.; Zhu, J.; Dobrev, P.I.; Lee, Y.; et al. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature 2012, 485, 119–122. [Google Scholar] [CrossRef] [Green Version]
- Robert, H.S.; Grunewald, W.; Sauer, M.; Cannoot, B.; Soriano, M.; Swarup, R.; Weijers, D.; Bennett, M.; Boutilier, K.; Friml, J. Plant embryogenesis requires AUX/LAX-mediated auxin influx. Development 2015, 142, 702–711. [Google Scholar] [CrossRef] [Green Version]
- Adamowski, M.; Friml, J. PIN-dependent auxin transport: Action, regulation and evolution. Plant Cell 2015, 27, 20–32. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Dong, Q.; Kita, D.; Huang, J.B.; Liu, G.; Wu, X.; Zhu, X.; Cheung, A.Y.; Wu, H.M.; Tao, L.Z. RopGEF1 Plays a Critical Role in Polar Auxin Transport in Early Development. Plant Physiol. 2017, 175, 157–171. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.J.; Luo, J. The PIN-FORMED auxin effux carriers in plants. Int. J. Mol. Sci. 2018, 19, 2759. [Google Scholar] [CrossRef] [Green Version]
- Wisniewska, J.; Xu, J.; Seifertova, D.; Brewer, P.B.; Ruzicka, K.; Blilou, I.; Rouquie, D.; Benkova, E.; Scheres, B.; Friml, J. Polar PIN localization directs auxin flow in plants. Science 2006, 312, 883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Möller, B.; Weijers, D. Auxin Control of Embryo Patterning. Cold Spring Harb. Perspect. Biol. 2009, 1, a001545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robert, H.S.; Chulmin Park, C.; Gutierrez, C.L.; Wójcikowska, B.; Pěnčík, A.; Novák, O.; Chen, J.; Grunewald, W.; Dresselhaus, T.; Friml, J.; et al. Maternal auxin supply contributes to early embryo patterning in Arabidopsis. Nat. Plants 2018, 4, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Ugartechea-Chirino, Y.; Swarup, Y.R.; Swarup, K.; Peret, B.; Whitworth, M.; Bennett, M.; Bougourd, S. The AUX1 LAX family of auxin influx carriers is required for the establishment of embryonic root cell organization in Arabidopsis thaliana. Ann. Bot. 2010, 105, 277–289. [Google Scholar] [CrossRef] [Green Version]
- Swain, S.M.; Reid, J.B.; Kamiya, Y. Gibberellins are required for embryo growth and seed development in pea. Plant J. 1997, 12, 1329–1338. [Google Scholar] [CrossRef]
- Hays, D.B.; Yeung, E.C.; Pharis, R.P. The role of gibberellins in embryo axis development. J. Exp. Bot. 2002, 53, 1747–1751. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.P.; Jermakow, A.M.; Swain, S.M. Gibberellins are required for seed development and pollen tube growth in Arabidopsis. Plant Cell 2002, 14, 3133–3147. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.P. Gibberellin metabolism, perception and signaling pathways in Arabidopsis. Arab. Book 2008, 6, e0103. [Google Scholar] [CrossRef]
- Yamaguchi, S. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 2008, 59, 225–251. [Google Scholar] [CrossRef]
- Schwecheimer, C. Gibberellin signaling in plants—The extended version. Front. Plant Sci. 2012, 2, 107. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.; Alabadi, D.; Blazquez, M.A. Differential growth at the apical hook: All roads lead to auxin. Front. Plant Sci. 2013, 4, 441–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salanenka, Y.; Verstraeten, I.; Löfke, C.; Tabata, K.; Naramoto, S.; Glanc, M.; Friml, J. Gibberellin DELLA signaling targets the retromer complex to redirect protein trafficking to the plasma membrane. Proc. Natl. Acad. Sci. USA 2018, 115, 3716–3721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willige, B.C.; Isono, E.; Richter, R.; Zourelidou, M.; Schwechheimer, C. Gibberellin Regulates PIN-FORMED Abundance and Is Required for Auxin Transport–Dependent Growth and Development in Arabidopsis thaliana. Plant Cell 2011, 23, 2184–2195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, T.P.; Kamiya, Y. The Arabidopsis GAl Locus Encodes the Cyclase ent-Kaurene Synthetase A of Gibberellin Biosynthesis. Plant Cell 1994, 6, 1509–1518. [Google Scholar] [PubMed] [Green Version]
- Willige, C.V.; Ghosh, S.; Nill, C.; Zourelidou, M.; Dohmann, E.M.N.; Maier, A.; Schwechheimer, C. The DELLA Domain of GA INSENSITIVE Mediates the Interaction with the GA INSENSITIVE DWARF1A Gibberellin Receptor of Arabidopsis. Plant Cell 2007, 19, 1209–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sreenivasulu, N.; Wobus, U. Seed-development programs: A systems biology-based comparison between dicots and monocots. Annu. Rev. Plant Biol. 2013, 64, 189–217. [Google Scholar] [CrossRef]
- Ye, N.; Zhang, J. Antagonism between abscisic acid and gibberellins is partially mediated by ascorbic acid during seed germination in rice. Plant Signal. Behav. 2012, 7, 563–565. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Hou, X. Antagonistic Regulation of ABA and GA in Metabolism and Signaling Pathways. Front. Plant Sci. 2018, 9, 251. [Google Scholar] [CrossRef] [Green Version]
- Shu, K.; Zhou, W.; Chen, F.; Luo, X.; Yang, W. Abscisic Acid and Gibberellins Antagonistically Mediate Plant Development and Abiotic Stress Responses. Front. Plant Sci. 2018, 9, 416. [Google Scholar] [CrossRef] [Green Version]
- Koornneef, M.; Jorna, M.L.; Brinkhorst-Van Der Swan, D.L.; Karssen, C.M. The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana (L.) heynh. Theor. Appl. Genet. 1982, 61, 385–393. [Google Scholar] [CrossRef]
- Roscoe, T.T.; Guilleminot, J.; Bessoule, J.-J.; Berger, F.; Devic, M. Complementation of Seed Maturation Phenotype by Ectopic Expression of ABSCISIC ACID INSENSITIVE3, FUSCA3 and LEAFY COTYLEDON2 in Arabidopsis. Plant Cell Physiol. 2015, 56, 1215–1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, M.A.L.; Yee, K.M.; Danao, J.; Zimmermann, J.L.; Fischer, R.L.; Goldberg, R.B.; Harada, J.J. LEAFY COTYLEDON1 is an essential regulator of late embryogenesis and cotyledon identity in Arabidopsis. Plant Cell 1994, 6, 1731–1745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luerssen, H.; Kirik, V.; Herrmann, P.; Misera, S. FUSCA3 encodes a protein with a conserved VP1/ABI3-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana. Plant J. 1998, 15, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Stone, S.L.; Kwong, L.W.; Yee, K.M.; Pelletier, J.; Lepiniec, L.; Fischer, R.L.; Goldberg, R.B.; Harada, J.J. LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc. Natl. Acad. Sci. USA 2001, 98, 11806–11811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.; Fischer, R.L.; Goldberg, R.B.; Harada, J.J. Arabidopsis LEAFYCOTYLEDON1 represents a functionally specialized subunit of the CCAAT binding transcription factor. Proc. Natl. Acad. Sci. USA 2003, 100, 2152–2156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braybrook, S.A.; Harada, J.J. LECs go crazy in embryo development. Trends Plant Sci. 2008, 13, 624–630. [Google Scholar] [CrossRef]
- Yamamoto, A.; Yoshii, M.; Murase, S.; Fujita, M.; Kurata, N.; Hobo, T.; Kagaya, Y.; Takeda, S.; Hattori, T. Cell-by-Cell Developmental Transition from Embryo to Post-Germination Phase Revealed by Heterochronic Gene Expression and ER-Body Formation in Arabidopsis leafy cotyledon Mutants. Plant Cell Physiol. 2014, 55, 2112–2125. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Dai, X.; Zhao, Y. Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 2007, 19, 2430–2439. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, H.; Zhao, Y.; Feng, Z.; Li, Q.; Yang, H.Q.; Luan, S.; Li, J.; He, Z.H. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proc. Natl. Acad. Sci. USA 2013, 110, 15485–15490. [Google Scholar] [CrossRef] [Green Version]
- Frigerio, M.; Alabadı, D.; APerez-Gomez, J.; Garcıa-Carcel, L.; Phillips, A.F.; Hedden, P.; Blazquez, M.A. Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol. 2006, 142, 553–563. [Google Scholar] [CrossRef] [Green Version]
- Rieu, I.; Ruiz-Rivero, O.; Fernandez-Garcia, N.; Griffiths, J.; Powers, S.J.; Gong, F.; Linhartova, T.; Eriksson, S.; Nilsson, O.; Thomas, S.G.; et al. The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J. 2008, 53, 488–504. [Google Scholar] [CrossRef] [PubMed]
- Dorcey, E.; Urbez, C.; Blazquez, M.A.; Carbonell, J.; Perez-Amador, M.A. Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. Plant J. 2009, 58, 318–332. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Carol, P.; Richards, D.E.; King, K.E.; Cowling, R.J.; Murphy, G.P.; Harberd, N.P. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev. 1997, 11, 3194–3205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silverstone, A.L.; Ciampaglio, C.N.; Sun, T. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 1998, 10, 1555–1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Cheng, H.; King, K.E.; Wang, W.; He, Y.; Hussain, A.; Lo, L.; Harberd, N.P.; Peng, J. Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev. 2002, 16, 646–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daviere, J.M.; Achard, P. A pivotal role of DELLAs in regulating multiple hormone signals. Mol. Plant 2016, 9, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Rigó, G.; Ayaydin, F.; Tietz, O.; Zsigmond, L.; Kovács, H.; Páy, A.; Salchert, K.; Darula, Z.; Medzihradszky, K.F.; Szabados, L.; et al. Inactivation of plasma membrane-localized CDPK-RELATED KINASE5 decelerates PIN2 exocytosis and root gravitropic response in Arabidopsis. Plant Cell 2013, 25, 1592–1608. [Google Scholar]
- Baba, A.I.; Rigó, G.; Ayaydin, F.; Rehman, A.U.; Andrási, N.; Zsigmond, L.; Valkai, I.; Urbancsok, J.; Vass, I.; Pasternak, T.; et al. Functional Analysis of the Arabidopsis thaliana CDPK-Related Kinase Family: AtCRK1 Regulates Responses to Continuous Light. Int. J. Mol. Sci. 2018, 19, 1282. [Google Scholar] [CrossRef] [Green Version]
- Baba, A.I.; Andrási, N.; Valkai, I.; Gorcsa, T.; Koczka, L.; Darula, Z.; Medzihradszky, K.F.; Szabados, L.; Fehér, A.; Rigó, G.; et al. AtCRK5 Protein Kinase Exhibits a Regulatory Role in Hypocotyl Hook Development during Skotomorphogenesis. Int. J. Mol. Sci. 2019, 20, 3432. [Google Scholar] [CrossRef] [Green Version]
- Robert, S.H. Molecular communication for coordinated seed and fruit dvelopment: What can we learn from auxin and sugars? Int. J. Mol. Sci. 2019, 20, 936. [Google Scholar] [CrossRef] [Green Version]
- Ottenschläger, I.; Wolff, P.; Wolverton, C.; Bhalerao, R.P.; Sandberg, G.; Ishikawa, H.; Evans, M.; Palme, K. Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc. Natl. Acad. Sci. USA 2003, 100, 2987–2991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenik, P.D.; Gillmor, C.S.; Lukowitz, W. Embryonic patterning in Arabidopsis thaliana. Annu. Rev. Cell Dev. Biol. 2007, 23, 207–236. [Google Scholar] [CrossRef] [PubMed]
- Offringa, R.; Huang, F. Phosphorylation-dependent trafficking of plasma membrane proteins in animal and plant cells. J. Integr. Plant Biol. 2013, 55, 789–808. [Google Scholar] [CrossRef] [PubMed]
- Luschnig, C.; Vert, G. The dynamics of plant plasma membrane proteins: PINs and beyond. Development 2014, 141, 2924–2938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbosa, I.C.R.; Hammes, U.Z.; Schwechheimer, C. Activation and polarity control of PIN-FORMED auxin transporters by phosphorylation. Trends Plant Sci. 2018, 23, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Hrabak, E.M.; Chan, C.W.M.; Gribskov, M.; Harper, J.F.; Choi, J.H.; Halford, N.; Kudla, J.; Luan, S.; Nimmo, H.G.; Sussman, M.R.; et al. The Arabidopsis CDPK-SnRK Superfamily of Protein Kinases. Plant Physiol. 2003, 132, 666–680. [Google Scholar] [CrossRef] [Green Version]
- Harper, J.F.; Breton, G.; Harmon, A. Decoding Ca2+ signals through plant protein kinases. Annu. Rev. Plant Biol. 2004, 55, 263–288. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, Y.-T. Calmodulin-binding protein kinases in plants. Trends Plant Sci. 2003, 8, 123–127. [Google Scholar] [CrossRef]
- Zhang, L.; Du, L.; Poovaiah, B.W. Calcium signaling and biotic defense responses in plants. Plant Signal Behav. 2014, 9, e973818. [Google Scholar] [CrossRef] [Green Version]
- Zeng, H.; Xu, L.; Singh, A.; Wang, H.; Du, L.; Poovaiah, B.W. Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. Front Plant Sci. 2015, 6, 600. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.P.; Xu, Y.P.; Munyampundu, J.P.; Liu, T.Y.; Cai, X.Z. Calcium dependent protein kinase (CDPK) and CDPK related kinase (CRK) gene families in tomato: Genome wide identification and functional analyses in disease resistance. Mol. Genet. Genom. 2016, 291, 661–676. [Google Scholar] [CrossRef] [PubMed]
- Simeunovic, A.; Mair, A.; Wurzinger, B.; Teige, M. Know where your clients are: Subcellular localization and targets of calcium-dependent protein kinases. J. Exp. Bot. 2016, 67, 3855–3872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delormel, T.Y.; Boudsocq, M. Properties and functions of calcium dependent protein kinases and their relatives in Arabidopsis thaliana. New Phytol. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baba, A.I.; Rigó, G.; Andrási, N.; Tietz, O.; Palme, K.; Szabados, L.; Cséplő, Á. Striving Towards Abiotic Stresses: Role of the Plant CDPK Superfamily Members. In International Climate Protection; Palócz-Andresen, M., Szalay, D., Gosztom, A., Sípos, L., Taligás, T., Eds.; Springer: Cham, Switzerland, 2019; pp. 99–105. [Google Scholar]
- Leyser, O. Dynamic integration of auxin transport and signalling. Curr. Biol. 2006, 16, R424–R433. [Google Scholar] [CrossRef] [Green Version]
- Paponov, I.A.; Paponov, M.; Teale, W.; Menges, M.; Chakrabortee, S.; Murray, J.A.H.; Palme, K. Comprehensive transcriptome analysis of auxin responses in Arabidopsis. Mol. Plant 2008, 1, 321–337. [Google Scholar] [CrossRef]
- Ganguly, A.; Sasayama, D.; Cho, H.T. Regulation of the polarity of protein trafficking by phosphorylation. Mol. Cells. 2012, 33, 423–430. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, I.C.R.; Schwechheimer, C. Dynamic control of auxin transport-dependent growth by AGCVIII protein kinases. Curr. Opin. Plant Biol. 2014, 22, 108–115. [Google Scholar] [CrossRef]
- Mazzella, M.A.; Casal, J.J.; Muschietti, J.P.; Fox, A.R. Hormonal networks involved in apical hook development in darkness and their response to light. Front. Plant Sci. 2014, 5, 52–65. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Harberd, N.P. Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 2003, 421, 740–743. [Google Scholar] [CrossRef]
- Benková, E.; Michniewicz, M.; Sauer, M.; Teichmann, T.; Seifertová, D.; Jürgens, G.; Friml, J. Local efflux-dependent auxin gradients as a common module for plant organ formation. Cell 2003, 115, 591–602. [Google Scholar] [CrossRef] [Green Version]
- Zadnikova, P.; Petrasek, J.; Marhavy, P.; Raz, V.; Vandenbussche, F.; Ding, Z.; Schwarzerová, K.; Morita, M.T.; Tasaka, M.; Hejátko, J.; et al. Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development 2010, 137, 607–617. [Google Scholar] [CrossRef] [Green Version]
- Blilou, I.; Xu, J.; Wildwater, M.; Willemsen, V.; Paponov, I.; Friml, J.; Heidstra, R.; Aida, M.; Palme, K.; Scheres, B. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 2005, 433, 39–44. [Google Scholar] [CrossRef]
- Swarup, R.; Friml, J.; Marchant, A.; Ljung, K.; Sandberg, G.; Palme, K.; Bennett, M. Localization of the auxin permease AUX 1suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev. 2001, 15, 2648–2653. [Google Scholar] [CrossRef] [Green Version]
- Bechtold, N.; Ellis, J.; Pelletier, G. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C. R. Acad. Sci. Paris Life Sci. 1993, 316, 1194–1199. [Google Scholar]
- Stangeland, B.; Salehian, Z. An Improved Clearing Method for GUS Assay in Arabidopsis Endosperm and Seeds. Plant Mol. Biol. Rep. 2002, 20, 107–114. [Google Scholar] [CrossRef]
- Jaakola, L.; Pirttilä, A.; Halonen, M.; Hohtola, A. Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Mol. Biotechnol 2001, 19, 201–203. [Google Scholar] [CrossRef]
- Czechowski, T.; Stitt, M.; Altmann, T.; Udvardi, M.K.; Scheible, W.R. Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis. Plant Physiol. 2005, 139, 5–17. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baba, A.I.; Valkai, I.; Labhane, N.M.; Koczka, L.; Andrási, N.; Klement, É.; Darula, Z.; Medzihradszky, K.F.; Szabados, L.; Fehér, A.; et al. CRK5 Protein Kinase Contributes to the Progression of Embryogenesis of Arabidopsis thaliana. Int. J. Mol. Sci. 2019, 20, 6120. https://doi.org/10.3390/ijms20246120
Baba AI, Valkai I, Labhane NM, Koczka L, Andrási N, Klement É, Darula Z, Medzihradszky KF, Szabados L, Fehér A, et al. CRK5 Protein Kinase Contributes to the Progression of Embryogenesis of Arabidopsis thaliana. International Journal of Molecular Sciences. 2019; 20(24):6120. https://doi.org/10.3390/ijms20246120
Chicago/Turabian StyleBaba, Abu Imran, Ildikó Valkai, Nitin M. Labhane, Lilla Koczka, Norbert Andrási, Éva Klement, Zsuzsanna Darula, Katalin F. Medzihradszky, László Szabados, Attila Fehér, and et al. 2019. "CRK5 Protein Kinase Contributes to the Progression of Embryogenesis of Arabidopsis thaliana" International Journal of Molecular Sciences 20, no. 24: 6120. https://doi.org/10.3390/ijms20246120
APA StyleBaba, A. I., Valkai, I., Labhane, N. M., Koczka, L., Andrási, N., Klement, É., Darula, Z., Medzihradszky, K. F., Szabados, L., Fehér, A., Rigó, G., & Cséplő, Á. (2019). CRK5 Protein Kinase Contributes to the Progression of Embryogenesis of Arabidopsis thaliana. International Journal of Molecular Sciences, 20(24), 6120. https://doi.org/10.3390/ijms20246120