The Omega-3 Fatty Acids EPA and DHA, as a Part of a Murine High-Fat Diet, Reduced Lipid Accumulation in Brown and White Adipose Tissues
<p>Physiological changes in adipose tissues upon dietary intervention. (<b>a</b>) Brown adipose tissue: Effects of 8 weeks of diet intervention on brown adipose tissue (BAT), represented as BAT to body weight ratio. (<b>b</b>) White adipose tissue: Effects of 8 weeks diet intervention on white adipose tissue (WAT), represented as WAT to body weight ratio. For 8 weeks dietary intervention: <span class="html-italic">n</span> = 10, 12, 12; control, high fat diet (HFD corn oil with 40% substituted with EPA and DHA (HFD-ED) and HFD-corn oil (HFD-CO), respectively. * asterisk denotes significant difference between evaluated groups by Tukey’s multiple comparison test. Data are shown as mean ± SEM and <span class="html-italic">p</span>-value < 0.05 was considered significant.</p> "> Figure 2
<p>BAT.Fatty acids methyl esters (FAME) composition is shown as mean ± SEM and as a relative percentage of total lipid fractions in order of increasing number of carbon-chain length of respective fatty acid. n3 and n6 denotes omega-3 and omega-6 fatty acids, respectively. White bar control, black bar HFD-ED, grey bar HFD-corn oil (<b>top</b>) BAT neutral lipid fraction and FAME composition, (<b>middle</b>) BAT free fatty acid fraction and FAME composition, (<b>bottom</b>) BAT phospholipid fraction and FAME composition, from the mice fed either control diet (BAT <span class="html-italic">n</span> = 5), HFD-ED (BAT <span class="html-italic">n</span> = 8) or HFD-corn oil (BAT <span class="html-italic">n</span> = 12) after 8-week dietary intervention. The significance is denoted by different letters and the statistical difference was tested by ANOVA followed by Tukey’s multiple comparison test where letter a = <span class="html-italic">p</span>-value < 0.05 between HFD-corn oil vs. control diet; b = <span class="html-italic">p</span>-value < 0.05 between HFD-ED vs. control diet; c = <span class="html-italic">p</span>-value < 0.05 between HFD-ED vs. HFD-corn oil.</p> "> Figure 2 Cont.
<p>BAT.Fatty acids methyl esters (FAME) composition is shown as mean ± SEM and as a relative percentage of total lipid fractions in order of increasing number of carbon-chain length of respective fatty acid. n3 and n6 denotes omega-3 and omega-6 fatty acids, respectively. White bar control, black bar HFD-ED, grey bar HFD-corn oil (<b>top</b>) BAT neutral lipid fraction and FAME composition, (<b>middle</b>) BAT free fatty acid fraction and FAME composition, (<b>bottom</b>) BAT phospholipid fraction and FAME composition, from the mice fed either control diet (BAT <span class="html-italic">n</span> = 5), HFD-ED (BAT <span class="html-italic">n</span> = 8) or HFD-corn oil (BAT <span class="html-italic">n</span> = 12) after 8-week dietary intervention. The significance is denoted by different letters and the statistical difference was tested by ANOVA followed by Tukey’s multiple comparison test where letter a = <span class="html-italic">p</span>-value < 0.05 between HFD-corn oil vs. control diet; b = <span class="html-italic">p</span>-value < 0.05 between HFD-ED vs. control diet; c = <span class="html-italic">p</span>-value < 0.05 between HFD-ED vs. HFD-corn oil.</p> "> Figure 3
<p>WAT.Fatty acids methyl esters (FAME) composition is shown as mean ± SEM and as a relative percentage of total lipid fractions in order of increasing number of carbon-chain length of respective fatty acid. n3 and n6 denotes omega-3 and omega-6 fatty acids, respectively. White bar control, black bar HFD-ED, grey bar HFD-corn oil (<b>top</b>) WAT neutral lipid fractions and FAME composition, (<b>middle</b>) WAT free fatty acid fraction and FAME composition, (<b>bottom</b>) WAT phospholipid fraction and FAME composition, from the mice fed either control diet (WAT <span class="html-italic">n</span> = 7), HFD-ED (WAT <span class="html-italic">n</span> = 10) or HFD-corn oil (WAT <span class="html-italic">n</span> = 11) after 8-week dietary intervention. The significance is denoted by different letters and the statistical difference was tested by ANOVA followed by Tukey’s multiple comparison test where letter a = <span class="html-italic">p</span>-value < 0.05 between HFD-corn oil vs. control diet; b = <span class="html-italic">p</span>-value < 0.05 between HFD-ED vs. control diet; c = <span class="html-italic">p</span>-value < 0.05 between HFD-ED vs. HFD-corn oil.</p> "> Figure 3 Cont.
<p>WAT.Fatty acids methyl esters (FAME) composition is shown as mean ± SEM and as a relative percentage of total lipid fractions in order of increasing number of carbon-chain length of respective fatty acid. n3 and n6 denotes omega-3 and omega-6 fatty acids, respectively. White bar control, black bar HFD-ED, grey bar HFD-corn oil (<b>top</b>) WAT neutral lipid fractions and FAME composition, (<b>middle</b>) WAT free fatty acid fraction and FAME composition, (<b>bottom</b>) WAT phospholipid fraction and FAME composition, from the mice fed either control diet (WAT <span class="html-italic">n</span> = 7), HFD-ED (WAT <span class="html-italic">n</span> = 10) or HFD-corn oil (WAT <span class="html-italic">n</span> = 11) after 8-week dietary intervention. The significance is denoted by different letters and the statistical difference was tested by ANOVA followed by Tukey’s multiple comparison test where letter a = <span class="html-italic">p</span>-value < 0.05 between HFD-corn oil vs. control diet; b = <span class="html-italic">p</span>-value < 0.05 between HFD-ED vs. control diet; c = <span class="html-italic">p</span>-value < 0.05 between HFD-ED vs. HFD-corn oil.</p> "> Figure 4
<p>Venn diagram of differentially regulated genes at the cut off of the <span class="html-italic">p</span>-value < 0.001 after 8-week dietary intervention. (<b>Left</b>) Venn diagram depicting overlaps among differentially expressed genes in BAT upon dietary intervention. Most regulation can be seen for comparison HFD-corn oil vs. control diet (CO vs. CD) = blue and HFD-ED vs. HFD-corn oil (ED vs. CO) = yellow, whereas HFD-ED vs. control diet (ED vs. CD) = red shows comparatively less bidirectional differentially regulated genes. (<b>Right</b>) Venn diagram depicting overlaps among differentially expressed genes in WAT upon dietary intervention. Most regulation can be seen for comparison HFD-corn oil vs. control diet (CO vs. CD) and HFD-ED vs. HFD-corn oil (ED vs. CO), whereas HFD-ED vs. control diet (ED vs. CD) shows least bidirectional differentially regulated genes.</p> "> Figure 5
<p>Top 20 pathways regulated in BAT for diet comparison HFD-ED vs. HFD-CO and Top 20 pathways regulated in WAT for diet comparison HFD-ED vs. HFD-CO. Pathway analysis was performed by taking all the up- and down-regulated probes into account.</p> "> Figure 6
<p>A heatmap showing significant biological process (BP) GO-terms (<span class="html-italic">p</span>-value < 10<sup>−10</sup>) for different diet across BAT and WAT after 8 weeks diet intervention. Colour patterns indicate the direction of regulation where red indicates up-regulation and blue indicates down-regulation of immune specific GO-terms. Labels, HFD-ED = HFD-ED vs. control diet; HFD-CO = HFD-corn oil vs. control diet; ED-CO = HFD-ED vs. HFD-corn oil.</p> "> Figure 7
<p>RNA expression of <span class="html-italic">Pparα</span>, <span class="html-italic">Pparγ1a</span> and <span class="html-italic">Prdm16</span> in (<b>a</b>) BAT and (<b>b</b>) WAT in response to HFD-ED and HFD-CO relative to the control diet. All data for BAT are mean values of 3 tissues (<span class="html-italic">n</span> = 3). WAT RNA expression in the HFD-ED group was based on 2 animals due to that the RNA from the third animal did not pass the quality check. Also data on <span class="html-italic">Prdm16</span> in the WAT control diet group was based on <span class="html-italic">n</span> = 2 (missing value).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Physiological Changes Induced by HFD-ED in Brown- and White Adipose Tissues
2.2. Fatty Acid Composition of the Brown and White Adipose Tissues
2.3. Transcriptomic Differences between HFD-ED and HFD-Corn Oil Fed Mice.
2.4. GO-Terms Gene-Set Enrichment Analyses of Biological Processes Affected by the HFD Diets in White- and Brown Adipose Tissues
2.5. Differential Expression of Pparα and Prdm16 in BAT and WAT in Response to HFD-ED
3. Discussion
4. Materials and Methods
4.1. Animals and Ethical Declaration
4.2. Diet Composition
4.3. RNA Isolation, Quality Assurance and Microarray Analysis
4.4. RT-qPCR Analyses of Selected Genes
4.4.1. Samples
4.4.2. Quality Control
4.4.3. Normalization and cDNA Synthesis
4.4.4. cDNA Synthesis and qPCR
4.4.5. Gene Expression Profiling
4.5. Fatty Acid Analysis by Gas-Chromatography Mass Spectrometry
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sethi, J.K.; Vidal-Puig, A.J. Thematic review series: Adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J. Lipid Res. 2007, 48, 1253–1262. [Google Scholar] [CrossRef]
- Mraz, M.; Haluzik, M. The role of adipose tissue immune cells in obesity and low-grade inflammation. J. Endocrinol. 2014, 222, 113–127. [Google Scholar] [CrossRef]
- Tremblay, A.; Chaput, J.P. Adaptive reduction in thermogenesis and resistance to lose fat in obese men. Br. J. Nutr. 2009, 102, 488–492. [Google Scholar] [CrossRef]
- Cypess, A.M.; Lehman, S.; Williams, G.; Tal, I.; Rodman, D.; Goldfine, A.B.; Kuo, F.C.; Palmer, E.L.; Tseng, Y.H.; Doria, A.; et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 2009, 360, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- Nookaew, I.; Svensson, P.A.; Jacobson, P.; Jernas, M.; Taube, M.; Larsson, I.; Andersson-Assarsson, J.C.; Sjostrom, L.; Froguel, P.; Walley, A.; et al. Adipose tissue resting energy expenditure an expression of genes involved in mitochondrial function are higher in women than in men. J. Clin. Endocrinol. Metab. 2013, 98, 370–378. [Google Scholar] [CrossRef] [PubMed]
- van Marken Lichtenbelt, W.D.; Vanhommerig, J.W.; Smulders, N.M.; Drossaerts, J.M.; Kemerink, G.J.; Bouvy, N.D.; Schrauwen, P.; Teule, G.J. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 2009, 360, 1500–1508. [Google Scholar] [CrossRef] [PubMed]
- Pahlavani, M.; Razafimanjato, F.; Ramalingam, L.; Kalupahana, N.S.; Moussa, H.; Scoggin, S.; Moustaid-Moussa, N. Eicosapentaenoic acid regulates brown adipose tissue metabolism in high-fat-fed mice and in clonal brown adipocytes. J. Nutr. Biochem. 2017, 39, 101–109. [Google Scholar] [CrossRef]
- Ghandour, R.A.; Colson, C.; Giroud, M.; Maurer, S.; Rekima, S.; Ailhaud, G.; Klingenspor, M.; Amri, E.Z.; Pisani, D.F. Impact of dietary omega 3 polyunsaturated fatty acid supplementation on brown and brite adipocyte function. J. Lipid Res. 2018, 59, 452–461. [Google Scholar] [CrossRef]
- Raclot, T.; Groscolas, R. Differential mobilization of white adipose tissue fatty acids according to chain length, unsaturation, and positional isomerism. J. Lipid Res. 1993, 34, 1515–1526. [Google Scholar]
- Joannic, J.L.; Auboiron, S.; Raison, J.; Basdevant, A.; Bornet, F.; Guy-Grand, B. How the degree of unsaturation of dietary fatty acids influences the glucose and insulin responses to different carbohydrates in mixed meals. Am. J. Clin. Nutr. 1997, 65, 1427–1433. [Google Scholar] [CrossRef]
- Trumbo, P.; Schlicker, S.; Yates, A.A.; Poos, M. Food, Nutrition Board of the Institute of Medicine TNA. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J. Am. Diet. Assoc. 2002, 102, 1621–1630. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Harris, W.S.; Appel, L.J.; Nutrition, C. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Arter. Thromb. Vasc. Biol. 2003, 23, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. Omega-3 fatty acids in inflammation and autoimmune diseases. J. Am. Coll. Nutr. 2002, 21, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Harris, W.S.; Appel, L.J. Association AHANCAH. Omega-3 fatty acids and cardiovascular disease: New recommendations from the American Heart Association. Arter. Thromb Vasc Biol. 2003, 23, 151–152. [Google Scholar] [CrossRef]
- Park, Y.; Harris, W.S. Omega-3 fatty acid supplementation accelerates chylomicron triglyceride clearance. J Lipid Res. 2003, 44, 455–463. [Google Scholar] [CrossRef]
- Lai, Y.H.; Petrone, A.B.; Pankow, J.S.; Arnett, D.K.; North, K.E.; Ellison, R.C.; Hunt, S.C.; Djousse, L. Association of dietary omega-3 fatty acids with prevalence of metabolic syndrome: The National Heart, Lung, and Blood Institute Family Heart Study. Clin. Nutr. 2013, 32, 966–969. [Google Scholar] [CrossRef]
- Baik, I.; Abbott, R.D.; Curb, J.D.; Shin, C. Intake of fish and n-3 fatty acids and future risk of metabolic syndrome. J. Am. Diet. Assoc. 2010, 110, 1018–1026. [Google Scholar] [CrossRef]
- Sato, A.; Kawano, H.; Notsu, T.; Ohta, M.; Nakakuki, M.; Mizuguchi, K.; Itoh, M.; Suganami, T.; Ogawa, Y. Antiobesity effect of eicosapentaenoic acid in high-fat/high-sucrose diet-induced obesity: Importance of hepatic lipogenesis. Diabetes. 2010, 59, 2495–2504. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, M.; Zhao, M.; Ge, A.; Guo, F.; Zhang, M.; Yang, Y.; Liu, L.; Yang, N. Differential effects of high-fat-diet rich in lard oil or soybean oil on osteopontin expression and inflammation of adipose tissue in diet-induced obese rats. Eur. J. Nutr. 2013, 52, 1181–1189. [Google Scholar] [CrossRef]
- Madsen, L.; Kristiansen, K. Of mice and men: Factors abrogating the antiobesity effect of omega-3 fatty acids. Adipocyte. 2012, 1, 173–176. [Google Scholar] [CrossRef]
- Greenberg, A.S.; Obin, M.S. Obesity and the role of adipose tissue in inflammation and metabolism. Am. J. Clin. Nutr. 2006, 83, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Shoelson, S.E.; Lee, J.; Goldfine, A.B. Inflammation and insulin resistance. J. Clin. Invest. 2006, 116, 1793–1801. [Google Scholar] [CrossRef] [PubMed]
- Soni, N.K.; Nookaew, I.; Sandberg, A.S.; Gabrielsson, B.G. Eicosapentaenoic and docosahexaenoic acid-enriched high fat diet delays the development of fatty liver in mice. Lipids Health Dis. 2015, 14. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim. Biophys. Acta. 2015, 1851, 469–484. [Google Scholar] [CrossRef]
- Miller, J.L.; Blaszkiewicz, M.; Beaton, C.; Johnson, C.P.; Waible, S.; Dubois, A.L.; Klemmer, A.; Kiebish, M.; Townsend, K.L. A peroxidized omega-3-enriched polyunsaturated diet leads to adipose and metabolic dysfunction. J. Nutr. Biochem. 2019, 64, 50–60. [Google Scholar] [CrossRef]
- Birsoy., K.; Festuccia, W.T.; Laplante, M. A comparative perspective on lipid storage in animals. J. Cell Sci. 2013, 126, 1541–1552. [Google Scholar] [CrossRef]
- Gesta, S.; Tseng, Y.H.; Kahn, C.R. Developmental origin of fat: Tracking obesity to its source. Cell 2007, 131, 242–256. [Google Scholar] [CrossRef]
- Kalupahana, N.S.; Claycombe, K.J.; Moustaid-Moussa, N. (n-3) Fatty acids alleviate adipose tissue inflammation and insulin resistance: Mechanistic insights. Adv. Nutr. 2011, 2, 304–316. [Google Scholar] [CrossRef]
- Magne, J.; Mariotti, F.; Fischer, R.; Mathe, V.; Tome, D.; Huneau, J.F. Early postprandial low-grade inflammation after high-fat meal in healthy rats: Possible involvement of visceral adipose tissue. J. Nutr. Biochem. 2010, 21, 550–555. [Google Scholar] [CrossRef]
- Bes-Houtmann, S.; Roche, R.; Hoareau, L.; Gonthier, M.P.; Festy, F.; Caillens, H.; Gasque, P.; Lefebvre d’Hellencourt, C.; Cesari, M. Presence of functional TLR2 and TLR4 on human adipocytes. Histochem. Cell Biol. 2007, 127, 131–137. [Google Scholar] [CrossRef]
- Alvheim, A.R.; Malde, M.K.; Osei-Hyiaman, D.; Lin, Y.H.; Pawlosky, R.J.; Madsen, L.; Kristiansen, K.; Froyland, L.; Hibbeln, J.R. Dietary linoleic acid elevates endogenous 2-AG and anandamide and induces obesity. Obesity 2012, 20, 1984–1994. [Google Scholar] [CrossRef]
- Luxwolda, M.F.; Kuipers, R.S.; Smit, E.N.; Velzing-Aarts, F.V.; Dijck-Brouwer, D.A.; Muskiet, F.A. The relation between the omega-3 index and arachidonic acid is bell shaped: Synergistic at low EPA+DHA status and antagonistic at high EPA+DHA status. Prostaglandins Leukot Essent Fat. Acids 2011, 85, 171–178. [Google Scholar] [CrossRef]
- Rossmeisl, M.; Jilkova, Z.M.; Kuda, O.; Jelenik, T.; Medrikova, D.; Stankova, B.; Kristinsson, B.; Haraldsson, G.G.; Svensen, H.; Stoknes, I.; et al. Metabolic effects of n-3 PUFA as phospholipids are superior to triglycerides in mice fed a high-fat diet: Possible role of endocannabinoids. PLoS ONE 2012, 7, e38834. [Google Scholar] [CrossRef] [Green Version]
- Soni, N.; Ross, A.; Scheers, N.; Savolainen, O.; Nookaew, I.; Gabrielsson, B.; Sandberg, A.-S. Eicosapentaenoic and Docosahexaenoic Acid-Enriched High Fat Diet Delays Skeletal Muscle Degradation in Mice. Nutrients. 2016, 85, 43. [Google Scholar]
- Soni, N.K.; Ross, A.B.; Scheers, N.; Savolainen, O.I.; Nookaew, I.; Gabrielsson, B.G.; Sandberg, A.S. Splenic immune response is down-regulated in C57BL/6J mice fed eicosapentaenoic acid and docosahexaenoic acid enriched high fat diet. Nutrients 2017, 9, 50. [Google Scholar] [CrossRef] [Green Version]
- Khasawneh, J.; Schulz, M.D.; Walch, A.; Rozman, J.; Hrabe de Angelis, M.; Klingenspor, M.; Buck, A.; Schwaiger, M.; Saur, D.; Schmid, R.M.; et al. Inflammation and mitochondrial fatty acid beta-oxidation link obesity to early tumor promotion. Proc. Natl. Acad. Sci. USA 2009, 106. [Google Scholar] [CrossRef] [Green Version]
- Mihaylova, M.M.; Shaw, R.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 2011, 13. [Google Scholar] [CrossRef]
- Ziello, J.E.; Jovin, I.S.; Huang, Y. Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J. Biol. Med. 2007, 80, 51–60. [Google Scholar]
- Eijkelenboom, A.; Burgering, B.M. FOXOs: Signalling integrators for homeostasis maintenance. Nat. Rev. Mol. Cell Biol. 2013, 14, 83–97. [Google Scholar] [CrossRef]
- Wu, J.H.; Micha, R.; Imamura, F.; Pan, A.; Biggs, M.L.; Ajaz, O.; Djousse, L.; Hu, F.B.; Mozaffarian, D. Omega-3 fatty acids and incident type 2 diabetes: A systematic review and meta-analysis. Br. J. Nutr. 2012, 107. [Google Scholar] [CrossRef]
- Hendrich, S. (n-3) Fatty Acids: Clinical Trials in People with Type 2 Diabetes. Adv. Nutr. 2010, 1, 3–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Logan, S.L.; Spriet, L.L. Omega-3 Fatty Acid Supplementation for 12 Weeks Increases Resting and Exercise Metabolic Rate in Healthy Community-Dwelling Older Females. PLoS ONE 2015, 10, e0144828. [Google Scholar] [CrossRef] [PubMed]
- Noreen, E.E.; Sass, M.J.; Crowe, M.L.; Pabon, V.A.; Brandauer, J.; Averill, L.K. Effects of supplemental fish oil on resting metabolic rate, body composition, and salivary cortisol in healthy adults. J. Int. Soc. Sports Nutr. 2010, 7, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerling, C.J.; Whitfield, J.; Mukai, K.; Spriet, L.L. Variable effects of 12 weeks of omega-3 supplementation on resting skeletal muscle metabolism. Appl. Physiol. Nutr. Metab 2014, 39. [Google Scholar] [CrossRef]
- Du, P.; Kibbe, W.A.; Lin, S.M. lumi: A pipeline for processing Illumina microarray. Bioinformatics 2008, 24, 1547–1548. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43. [Google Scholar] [CrossRef]
- Varemo, L.; Nielsen, J.; Nookaew, I. Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods. Nucleic Acids Res. 2013, 41. [Google Scholar] [CrossRef]
- Luo, W.; Friedman, M.S.; Shedden, K.; Hankenson, K.D.; Woolf, P.J. GAGE: Generally applicable gene set enrichment for pathway analysis. BMC Bioinform. 2009, 10, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.; Brouwer, C. Pathview: An R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics. 2013. [Google Scholar] [CrossRef] [Green Version]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar]
Parameter | Control | HFD-ED | HFD-Corn Oil |
---|---|---|---|
Initial body weight (g) | 27.50 ± 0.80 | 28.60 ± 0.80 | 24.30 ± 0.50 |
Final body weight (g) | 31.40 ± 1.00 | 33.80 ± 0.80 | 36.20 ± 0.90 |
Change in body weight (g) | 3.90 ± 0.50 a | 5.20 ± 0.30 a | 8.60 ± 0.50 b |
Ingredient (g/100 g Diet) | Control | HFD-ED | HFD-CO | |
---|---|---|---|---|
Protein | Casein | 22.20 | 25.60 | 25.60 |
Carbohydrates | Sucrose | 5.00 | 10.00 | 10.00 |
Corn starch | 56.00 | 34.80 | 34.80 | |
Cellulose | 5.00 | 5.80 | 5.80 | |
Fat | Total | 5.00 | 15.00 | 15.00 |
Corn oil | 2.50 | 3.00 | 5.00 | |
Coconut oil | 2.50 | 10.00 | 10.00 | |
EPAX oils a | 0.00 | 2.00 | 0.00 | |
Minerals b | 2.00 | 2.50 | 2.50 | |
Micro nutrients c | 3.00 | 3.00 | 3.00 | |
Choline bitartrate | 1.60 | 2.00 | 2.00 | |
Cholesterol | 0.00 | 1.00 | 1.00 | |
Methionine | 0.20 | 0.30 | 0.30 | |
Energy content (kJ/100g) | 1599 | 1752 | 1752 | |
Protein E% | 24 | 25 | 25 | |
Carbohydrate E% | 65 | 44 | 44 | |
Fat E% | 12 | 32 | 32 | |
Fatty acid composition d (mg/g diet) | ||||
C10:0 | 0.20 | 1.47 | 1.33 | |
C12:0 | 2.37 | 7.58 | 7.72 | |
C14:0 | 1.54 | 4.58 | 4.78 | |
C16:0 | 1.90 | 3.44 | 3.59 | |
C18:0 | 0.68 | 2.26 | 2.49 | |
SFA | 6.70 | 19.33 | 19.91 | |
C18:1 n-9 | 2.82 | 4.80 | 5.26 | |
MUFA | 2.82 | 4.80 | 5.26 | |
C18:2 n-6 | 3.62 | 5.03 | 7.36 | |
C18:3 n-6 | 0.12 | 0.22 | 0.26 | |
Total n-6 PUFA | 3.74 | 5.26 | 7.62 | |
C20:5 n-3 (EPA) | 0.00 | 2.03 | 0.01 | |
C22:6 n-3 (DHA) | 0.00 | 4.58 | 0.01 | |
Total n-3 PUFA | 0.00 | 6.61 | 0.02 |
Target Gene | Assay ID | Probe Dye | Comment |
---|---|---|---|
Pparα | qMmuCEP0054952 | FAM | GOI |
Pparγ1a | qMmuCIP0030057 | FAM | GOI |
Prdm16 | qMmuCEP0057138 | FAM | GOI |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soni, N.; Ross, A.B.; Scheers, N.; Nookaew, I.; Gabrielsson, B.G.; Sandberg, A.-S. The Omega-3 Fatty Acids EPA and DHA, as a Part of a Murine High-Fat Diet, Reduced Lipid Accumulation in Brown and White Adipose Tissues. Int. J. Mol. Sci. 2019, 20, 5895. https://doi.org/10.3390/ijms20235895
Soni N, Ross AB, Scheers N, Nookaew I, Gabrielsson BG, Sandberg A-S. The Omega-3 Fatty Acids EPA and DHA, as a Part of a Murine High-Fat Diet, Reduced Lipid Accumulation in Brown and White Adipose Tissues. International Journal of Molecular Sciences. 2019; 20(23):5895. https://doi.org/10.3390/ijms20235895
Chicago/Turabian StyleSoni, Nikul, Alastair B. Ross, Nathalie Scheers, Intawat Nookaew, Britt G. Gabrielsson, and Ann-Sofie Sandberg. 2019. "The Omega-3 Fatty Acids EPA and DHA, as a Part of a Murine High-Fat Diet, Reduced Lipid Accumulation in Brown and White Adipose Tissues" International Journal of Molecular Sciences 20, no. 23: 5895. https://doi.org/10.3390/ijms20235895
APA StyleSoni, N., Ross, A. B., Scheers, N., Nookaew, I., Gabrielsson, B. G., & Sandberg, A.-S. (2019). The Omega-3 Fatty Acids EPA and DHA, as a Part of a Murine High-Fat Diet, Reduced Lipid Accumulation in Brown and White Adipose Tissues. International Journal of Molecular Sciences, 20(23), 5895. https://doi.org/10.3390/ijms20235895