Optical Investigation of Action Potential and Calcium Handling Maturation of hiPSC-Cardiomyocytes on Biomimetic Substrates
"> Figure 1
<p>Experimental procedure. Human iPSCs are differentiated into cardiomyocytes (hiPSC-CMs) with monolayer-directed differentiation protocol. (<b>A</b>) At day 20 post differentiation, single hiPSC-CMs are seeded onto hydrogel-based micropatterned surface and cultured until experimental day 60, 75 and 90. (<b>B</b>) Left: fabrication of micropatterned hydrogel with PDMS mold and PEG-DA hydrogel synthesis by soft lithography (scale bars equal to 10 and 60 μm respectively). hiPSC-CM preferential spreading along thepattern direction (indicated by yellow line). (<b>C</b>) Simultaneous recording of action potential and calcium transients using Fluovolt (Ex/em 522/535 nm) and Cal630 (Ex/Em 608/626 nm), respectively.</p> "> Figure 2
<p>Dual recording of action potential and calcium transient in later-stages hiPSC-CMs. Single hiPSC-CMs matured on hydrogel-based micropatterned surfaces were subjected to simultaneous optical measurements of action potentials and calcium transients under electrical pacing (1 and 2 Hz) at 37 °C at and external [Ca<sup>2+</sup>] = 1.8 mM. (<b>A</b>) Superimposed action potential (AP) traces of day 75 (<span class="html-italic">N</span> = 2; <span class="html-italic">n</span> = 186) vs. day 90 (<span class="html-italic">N</span> = 2; <span class="html-italic">n</span> = 119) recorded by FluoVolt. AP profile of hiPSC-CMs was recorded both at 1 and 2 Hz to evaluate action potential duration (APD50, ms) and the response to frequency changes at both day 75 and 90. (<b>B</b>) Superimposed normalized traces of calcium transients recorded by Cal630 at day 60 (<span class="html-italic">N</span> = 3; <span class="html-italic">n</span> = 336), 75 (<span class="html-italic">N</span> = 5; <span class="html-italic">n</span> = 251) and 90 (<span class="html-italic">N</span> = 3; <span class="html-italic">n</span> = 165): average calcium transient (CaT) rise (time to peak TTP, ms) and CaT decay (difference of 50% of CaT decay and TTP, RT50, ms) are reported, during pacing at 1 and 2 Hz (<b>C</b>) Representative CaT profiles at day 60 and 90 and average CaT amplitude (in arbitrary fluorescence units, A.U.) at day 60,75 and 90. (<b>D</b>) Representative simultaneous recordings of action potential and intracellular calcium transient from adult ventricular cardiomyocytes, elicited with short current pulses in current-clamp mode at 1 Hz. Average time to peak (Ca TTP) and time from peak to 50% decay (Ca RT50) of Ca transients, and time from stimulus to 50% repolarization (APD50) of action potentials at 1 Hz. Means ± SEM from 27 myocytes (nine control patients). Data are reported as means ± SEM; one-way analysis of variance (ANOVA) with a Tukey post-hoc test with statistical significance set at * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01; NS not significant. Supporting information given in <a href="#app1-ijms-20-03799" class="html-app">Table S2</a>. <span class="html-italic">N</span> = number of differentiations; <span class="html-italic">n</span> = cells.</p> "> Figure 3
<p>Correlative analysis of action potential and calcium transient parameters. Pearson correlation coefficient (<span class="html-italic">r</span><sup>2</sup>) estimated by linear regression (red line) to correlate APD50 (ms) against CaT amplitude (NS, not significant) and CaT duration (RT50, ms, <span class="html-italic">p</span> < 0.05) of (<b>A</b>) day 90 hiPSC-CMs and (<b>B</b>) (human) hAdult CMs from donor ventricular tissue (<span class="html-italic">p</span> < 0.05).</p> "> Figure 4
<p>Sarcoplasmic reticulum contribution during hiPSC-CM maturation. Sarcoplasmic reticulum (SR) contribution in calcium handling maturation was tested by a post rest potentiation protocol and caffeine-induced CaTs elicited in hiPSC-CMs at multiple maturation time-points. (<b>A</b>) The post-rest potentiation of CaT amplitude was estimated after a resting pause of 5 s, inserted in a regular train of stimulation at 2 Hz. The potentiation is expressed as the % increase of CaT amplitude at the first post-rest beat from that of the last calcium transient before the pause (%). Post rest potentiation is estimated at day 60 and day 90. (<b>B</b>) Caffeine-induced CaTs (quick exposure to 10 μM caffeine) after a series of 2 Hz paced CaTs. Average of caffeine transient amplitude was normalized by the amplitude of steady-state calcium transients at 2 Hz prior to caffeine exposure (<span class="html-italic">N</span> = 2; <span class="html-italic">n</span> = 83). Caffeine transient CaT amplitude (CaT<sub>A CAFF</sub>/CaT<sub>A 2Hz</sub> ratio) and decay (τ, s<sup>−1</sup>) of hiPSC-CMs were calculated and compared with caffeine-CaT recorded in hAdult-CMs (<span class="html-italic">N</span> = 5; <span class="html-italic">n</span> = 14). (<b>C</b>) Simultaneously recorded APs and CaTs during the pause protocol. (<b>D</b>) APs and CaTs from the same cells were compared to show Pearson’s correlation (<span class="html-italic">r</span><sup>2</sup>) between post rest AP duration (APD50, ms) and post rest CaT decay (RT50, ms, <span class="html-italic">p</span> < 0.05). (<b>E</b>) Variations of post rest APD50 and (<b>F</b>) post rest RT50 were measured both at day 75 (AP: <span class="html-italic">N</span> = 2, <span class="html-italic">n</span> = 119; CaT: <span class="html-italic">N</span> = 5, <span class="html-italic">n</span> = 251) and day 90 (AP: <span class="html-italic">N</span> = 2, <span class="html-italic">n</span> = 119; CaT: <span class="html-italic">N</span> = 3, <span class="html-italic">n</span> = 165). One-way analysis of variance (ANOVA) with a Tukey post-hoc test with statistical significance set at * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01; NS not significant. Supporting information is reported in <a href="#app1-ijms-20-03799" class="html-app">Table S2</a>. <span class="html-italic">N</span> = number of differentiations or patients; <span class="html-italic">n</span> = cells.</p> "> Figure 5
<p>Positive β-adrenergic response of later stage hiPSC-CMs. Day 90 hiPSC-CMs were exposed to isoproterenol (ISO, 1 μM) and forskolin (FSK, 1 μM). (<b>A</b>) Representative traces of hiPSC-CM AP recorded before and under ISO stimulation. APD50 reduction under ISO was 12 ± 4%, <span class="html-italic">p</span> > 0.05. (<b>B</b>) Representative traces of ISO effect on the APD50 of human adult cardiomyocytes (15 ± 3%, <span class="html-italic">p</span> < 0.05)(hAdult-CMs: <span class="html-italic">N</span> = 5 patients, <span class="html-italic">n</span> = 12 cells). (<b>C</b>,<b>D</b>) Relative positive inotropic and lusitropic effects of both ISO and FSK (%) in later stages hiPSC-CMs (ISO: <span class="html-italic">N</span> = 2, <span class="html-italic">n</span> = 7; FSK: <span class="html-italic">N</span> = 2, <span class="html-italic">n</span> = 21). Supporting information is reported in <a href="#app1-ijms-20-03799" class="html-app">Table S2</a>.</p> "> Figure 6
<p>Action potential recording by patch clamp in earlier stages hiPSC-CMs. Earlier-stages hiPSC-CMs during patch clamp, elicited with short current pulses in current-clamp mode at day 20, 30 and 60. (<b>A</b>) Representative traces at 0.5, 1 and 2 Hz stimulation rates. (<b>B</b>) Average of resting membrane potential (mV), AP amplitude (mV), time from stimulus to 50% repolarization (APD50, ms) at 1 Hz and to 90% of repolarization (APD90, ms) with frequency variation. (<b>C</b>) Spontaneous beating frequency of action potential from day 20 to day 60. Data are reported as means ± SEM; One-way analysis of variance (ANOVA) with a Tukey post-hoc test with statistical significance set at * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01; NS not significant.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Simultaneous Recordings of Action Potential and Calcium Transient from Single hiPSC-Cardiomyocytes
2.2. Action Potential and Calcium Transient of Human iPSC-Versus Adult Cardiomyocytes
2.3. Sarcoplasmic Reticulum Contribution to Calcium Handling of Later-Stages hiPSC-Cardiomyocytes
2.4. Ca-Handling Response to Inotropic Intervention of Later-Stages hiPSC-Cardiomyocytes
2.5. Membrane Potential and Spontaneous Action Potential of Earlier-Stage hiPSC-CMs
3. Discussion
4. Materials and Methods
4.1. Human Adult Cardiomyocytes from Patient Tissue
4.2. Tissue Processing and Cell Isolation
4.3. HiPSC Cardiac Differentiation and Single Cell Maturation
4.4. Maturation on PEG-DA Hydrogel with Micropatterned Topography
4.5. Fabrication of PEG-DA Hydrogel Substrate with Micropatterned Topography
4.6. Dual Recording of Action Potential and Calcium Transient
4.7. Perforated Patch Clamp and Calcium Transient Recording
4.8. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
hiPSC | Human induced pluripotent stem cell |
hAdult- | Human adult |
AP | Action potential |
APD | Action potential duration |
CaT | Calcium transient |
CM | Cardiomyocyte |
CaM | Calmodulin |
CDI | Calcium/CaM dependent inactivation |
TTP | Time to peak |
RT50 | Time to 50% relaxation |
NCX | Sodium calcium exchanger |
RyR2 | Ryanodine receptors 2 |
SERCA | Sarco-Endoplasmic Reticulum Calcium ATPase-2A |
PLN | Phospholamban |
PKA | Protein kinase A |
cAMP | Cyclic adenosine monophosphate |
ISO | Isoproterenol |
FSK | Forskolin |
ICaL | Inward calcium current |
Ito1 | Transient outward potassium current |
IKr | Inward-rectifier potassium current |
IKs | Slow delayed rectifier potassium current |
If | Funny current |
p.d. | Post differentiation |
p | Passage |
r2 | Pearson’s correlation coefficient |
References
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Giacomelli, E.; Mummery, C.L.; Bellin, M. Human heart disease: Lessons from human pluripotent stem cell-derived cardiomyocytes. Cell. Mol. Life Sci. 2017, 74, 3711–3739. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Pabon, L.; Murry, C.E. Engineering adolescence: Maturation of human pluripotent stem cell-derived cardiomyocytes. Circ. Res. 2014, 114, 511–523. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, C.W.; Okawa, S.; Chuva de Sousa Lopes, S.M.; van Iperen, L.; Passier, R.; Braam, S.R.; Tertoolen, L.G.; del Sol, A.; Davis, R.P.; Mummery, C.L. Transcriptome of human foetal heart compared with cardiomyocytes from pluripotent stem cells. Development 2015, 142, 3231–3238. [Google Scholar] [CrossRef] [PubMed]
- Beqqali, A.; Kloots, J.; Ward-van Oostwaard, D.; Mummery, C.; Passier, R. Genome-wide transcriptional profiling of human embryonic stem cells differentiating to cardiomyocytes. Stem Cells 2006, 24, 1956–1967. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.C.; Tertoolen, L.G.; Guadix, J.A.; Bellin, M.; Kosmidis, G.; D’Aniello, C.; Monshouwer-Kloots, J.; Goumans, M.J.; Wang, Y.L.; Feinberg, A.W.; et al. Functional maturation of human pluripotent stem cell derived cardiomyocytes in vitro--correlation between contraction force and electrophysiology. Biomaterials 2015, 51, 138–150. [Google Scholar] [CrossRef] [PubMed]
- Pioner, J.M.; Racca, A.W.; Klaiman, J.M.; Yang, K.C.; Guan, X.; Pabon, L.; Muskheli, V.; Zaunbrecher, R.; Macadangdang, J.; Jeong, M.Y.; et al. Isolation and Mechanical Measurements of Myofibrils from Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cell Rep. 2016, 6, 885–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Racca, A.W.; Klaiman, J.M.; Pioner, J.M.; Cheng, Y.; Beck, A.E.; Moussavi-Harami, F.; Bamshad, M.J.; Regnier, M. Contractile properties of developing human fetal cardiac muscle. J. Physiol. 2016, 594, 437–452. [Google Scholar] [CrossRef] [PubMed]
- Pioner, J.M.; Guan, X.; Klaiman, J.M.; Racca, A.W.; Pabon, L.; Muskheli, V.; Macadangdang, J.; Ferrantini, C.; Hoopmann, M.R.; Moritz, R.L.; et al. Absence of full-length dystrophin impairs normal maturation and contraction of cardiomyocytes derived from human induced pluripotent stem cells. Cardiovasc. Res. 2019. [Google Scholar] [CrossRef] [PubMed]
- Barbuti, A.; Benzoni, P.; Campostrini, G.; Dell’Era, P. Human derived cardiomyocytes: A decade of knowledge after the discovery of induced pluripotent stem cells. Dev. Dyn. 2016, 245, 1145–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parikh, S.S.; Blackwell, D.J.; Gomez-Hurtado, N.; Frisk, M.; Wang, L.; Kim, K.; Dahl, C.P.; Fiane, A.; Tonnessen, T.; Kryshtal, D.O.; et al. Thyroid and Glucocorticoid Hormones Promote Functional T-Tubule Development in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Circ. Res. 2017, 121, 1323–1330. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.D.; Rushing, S.N.; Lieu, D.K.; Chan, C.W.; Kong, C.W.; Geng, L.; Wilson, K.D.; Chiamvimonvat, N.; Boheler, K.R.; Wu, J.C.; et al. Distinct roles of microRNA-1 and -499 in ventricular specification and functional maturation of human embryonic stem cell-derived cardiomyocytes. PLoS ONE 2011, 6, e27417. [Google Scholar] [CrossRef] [PubMed]
- Coppini, R.; Ferrantini, C.; Yao, L.; Fan, P.; Del Lungo, M.; Stillitano, F.; Sartiani, L.; Tosi, B.; Suffredini, S.; Tesi, C.; et al. Late sodium current inhibition reverses electromechanical dysfunction in human hypertrophic cardiomyopathy. Circulation 2013, 127, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.; Klos, M.; Bollensdorff, C.; Hou, L.; Ewart, P.; Kamp, T.J.; Zhang, J.; Bizy, A.; Guerrero-Serna, G.; Kohl, P.; et al. Simultaneous voltage and calcium mapping of genetically purified human induced pluripotent stem cell-derived cardiac myocyte monolayers. Circ. Res. 2012, 110, 1556–1563. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, G.T.; Chaudhary, K.W.; Atwater, N.; Nguyen, C.; Brown, B.S.; McNeish, J.D.; Cohen, A.E.; Kralj, J.M. Cardiotoxicity screening with simultaneous optogenetic pacing, voltage imaging and calcium imaging. J. Pharmacol. Toxicol. Methods 2016, 81, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Tardiff, J.C.; Carrier, L.; Bers, D.M.; Poggesi, C.; Ferrantini, C.; Coppini, R.; Maier, L.S.; Ashrafian, H.; Huke, S.; van der Velden, J. Targets for therapy in sarcomeric cardiomyopathies. Cardiovasc. Res. 2015, 105, 457–470. [Google Scholar] [CrossRef] [Green Version]
- Dell’Era, P.; Benzoni, P.; Crescini, E.; Valle, M.; Xia, E.; Consiglio, A.; Memo, M. Cardiac disease modeling using induced pluripotent stem cell-derived human cardiomyocytes. World J. Stem Cells 2015, 7, 329–342. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.; Cho, S.; Discher, D.E. Mechanosensing of matrix by stem cells: From matrix heterogeneity, contractility, and the nucleus in pore-migration to cardiogenesis and muscle stem cells in vivo. Semin. Cell Dev. Biol. 2017, 71, 84–98. [Google Scholar] [CrossRef]
- Chen, G.; Li, S.; Karakikes, I.; Ren, L.; Chow, M.Z.; Chopra, A.; Keung, W.; Yan, B.; Chan, C.W.; Costa, K.D.; et al. Phospholamban as a crucial determinant of the inotropic response of human pluripotent stem cell-derived ventricular cardiomyocytes and engineered 3-dimensional tissue constructs. Circulation. Arrhythmia Electrophysiol. 2015, 8, 193–202. [Google Scholar] [CrossRef]
- McPheeters, M.T.; Wang, Y.T.; Werdich, A.A.; Jenkins, M.W.; Laurita, K.R. An infrared optical pacing system for screening cardiac electrophysiology in human cardiomyocytes. PLoS ONE 2017, 12, e0183761. [Google Scholar] [CrossRef]
- Bedut, S.; Seminatore-Nole, C.; Lamamy, V.; Caignard, S.; Boutin, J.A.; Nosjean, O.; Stephan, J.P.; Coge, F. High-throughput drug profiling with voltage- and calcium-sensitive fluorescent probes in human iPSC-derived cardiomyocytes. Am. J. Physiology. Heart Circ. Physiol. 2016, 311, H44–H53. [Google Scholar] [CrossRef] [Green Version]
- Sartiani, L.; Bettiol, E.; Stillitano, F.; Mugelli, A.; Cerbai, E.; Jaconi, M.E. Developmental changes in cardiomyocytes differentiated from human embryonic stem cells: A molecular and electrophysiological approach. Stem Cells 2007, 25, 1136–1144. [Google Scholar] [CrossRef] [PubMed]
- Lundy, S.D.; Zhu, W.Z.; Regnier, M.; Laflamme, M.A. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev. 2013, 22, 1991–2002. [Google Scholar] [CrossRef] [PubMed]
- Bosman, A.; Sartiani, L.; Spinelli, V.; Del Lungo, M.; Stillitano, F.; Nosi, D.; Mugelli, A.; Cerbai, E.; Jaconi, M. Molecular and functional evidence of HCN4 and caveolin-3 interaction during cardiomyocyte differentiation from human embryonic stem cells. Stem Cells Dev. 2013, 22, 1717–1727. [Google Scholar] [CrossRef]
- Pitt, G.S.; Zuhlke, R.D.; Hudmon, A.; Schulman, H.; Reuter, H.; Tsien, R.W. Molecular basis of calmodulin tethering and Ca2+-dependent inactivation of L-type Ca2+ channels. J. Biol. Chem. 2001, 276, 30794–30802. [Google Scholar] [CrossRef]
- Bers, D.M.; Grandi, E. Calcium/calmodulin-dependent kinase II regulation of cardiac ion channels. J. Cardiovasc. Pharmacol. 2009, 54, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Schober, T.; Huke, S.; Venkataraman, R.; Gryshchenko, O.; Kryshtal, D.; Hwang, H.S.; Baudenbacher, F.J.; Knollmann, B.C. Myofilament Ca sensitization increases cytosolic Ca binding affinity, alters intracellular Ca homeostasis, and causes pause-dependent Ca-triggered arrhythmia. Circ. Res. 2012, 111, 170–179. [Google Scholar] [CrossRef]
- Sasse, S.; Brand, N.J.; Kyprianou, P.; Dhoot, G.K.; Wade, R.; Arai, M.; Periasamy, M.; Yacoub, M.H.; Barton, P.J. Troponin I gene expression during human cardiac development and in end-stage heart failure. Circ. Res. 1993, 72, 932–938. [Google Scholar] [CrossRef]
- Bedada, F.B.; Chan, S.S.; Metzger, S.K.; Zhang, L.; Zhang, J.; Garry, D.J.; Kamp, T.J.; Kyba, M.; Metzger, J.M. Acquisition of a quantitative, stoichiometrically conserved ratiometric marker of maturation status in stem cell-derived cardiac myocytes. Stem Cell Rep. 2014, 3, 594–605. [Google Scholar] [CrossRef]
- Jung, G.; Fajardo, G.; Ribeiro, A.J.; Kooiker, K.B.; Coronado, M.; Zhao, M.; Hu, D.Q.; Reddy, S.; Kodo, K.; Sriram, K.; et al. Time-dependent evolution of functional vs. remodeling signaling in induced pluripotent stem cell-derived cardiomyocytes and induced maturation with biomechanical stimulation. FASEB J. 2016, 30, 1464–1479. [Google Scholar] [CrossRef]
- Ferrantini, C.; Pioner, J.M.; Mazzoni, L.; Gentile, F.; Tosi, B.; Rossi, A.; Belardinelli, L.; Tesi, C.; Palandri, C.; Matucci, R.; et al. Late sodium current inhibitors to treat exercise-induced obstruction in hypertrophic cardiomyopathy: An in vitro study in human myocardium. Br. J. Pharmacol. 2018, 175, 2635–2652. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Mack, D.L.; Moreno, C.M.; Strande, J.L.; Mathieu, J.; Shi, Y.; Markert, C.D.; Wang, Z.; Liu, G.; Lawlor, M.W.; et al. Dystrophin-deficient cardiomyocytes derived from human urine: New biologic reagents for drug discovery. Stem Cell Res. 2014, 12, 467–480. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pioner, J.M.; Santini, L.; Palandri, C.; Martella, D.; Lupi, F.; Langione, M.; Querceto, S.; Grandinetti, B.; Balducci, V.; Benzoni, P.; et al. Optical Investigation of Action Potential and Calcium Handling Maturation of hiPSC-Cardiomyocytes on Biomimetic Substrates. Int. J. Mol. Sci. 2019, 20, 3799. https://doi.org/10.3390/ijms20153799
Pioner JM, Santini L, Palandri C, Martella D, Lupi F, Langione M, Querceto S, Grandinetti B, Balducci V, Benzoni P, et al. Optical Investigation of Action Potential and Calcium Handling Maturation of hiPSC-Cardiomyocytes on Biomimetic Substrates. International Journal of Molecular Sciences. 2019; 20(15):3799. https://doi.org/10.3390/ijms20153799
Chicago/Turabian StylePioner, Josè Manuel, Lorenzo Santini, Chiara Palandri, Daniele Martella, Flavia Lupi, Marianna Langione, Silvia Querceto, Bruno Grandinetti, Valentina Balducci, Patrizia Benzoni, and et al. 2019. "Optical Investigation of Action Potential and Calcium Handling Maturation of hiPSC-Cardiomyocytes on Biomimetic Substrates" International Journal of Molecular Sciences 20, no. 15: 3799. https://doi.org/10.3390/ijms20153799
APA StylePioner, J. M., Santini, L., Palandri, C., Martella, D., Lupi, F., Langione, M., Querceto, S., Grandinetti, B., Balducci, V., Benzoni, P., Landi, S., Barbuti, A., Ferrarese Lupi, F., Boarino, L., Sartiani, L., Tesi, C., Mack, D. L., Regnier, M., Cerbai, E., ... Coppini, R. (2019). Optical Investigation of Action Potential and Calcium Handling Maturation of hiPSC-Cardiomyocytes on Biomimetic Substrates. International Journal of Molecular Sciences, 20(15), 3799. https://doi.org/10.3390/ijms20153799