Near-Infrared Genetically Encoded Positive Calcium Indicator Based on GAF-FP Bacterial Phytochrome
"> Figure 1
<p>Alignment of the amino acid sequences of GAF-FP and GAF domain of <span class="html-italic">Pa</span>BphP (<span class="html-italic">Pa</span>BphP-GAF) and representation of insertion sites of calcium binding domain. (<b>a</b>) Alignment numbering follows that of PaBphP. The residues which are within 4.5, 4.5−5.5, and 5.5−6.5 Å surrounding the biliverdin (BV) chromophore according to the X-ray structure of PaBphP (3C2W) are highlighted in grey, cyan, and red colors, respectively. Stars indicate Cys-residue that is covalently bound to the chromophore. Sites of insertion in the GAF-FP protein are indicated with arrows. (<b>b</b>) Insertion sites of calcium-binding domain are highlighted in cyan on X-ray structure of GAF domain (PDB 3C2W). The BV chromophore is shown in green.</p> "> Figure 2
<p>Alignment of the amino acid sequences for the original library L9 and GAF-CaMP2 calcium indicator. Alignment numbering follows that of original library L9. Mutations in GAF-CaMP2 related to the initial library L9 including linkers between fluorescent and indicator parts are highlighted in yellow. The residues which are suggested within 4.5, 4.5–5.5, and 5.5–6.5 Å surrounding the BV chromophore according to the X-ray structure of PaBphP (3C2W) are highlighted in grey, cyan, and red colors, respectively. Residues in the CaM-part that assumed to bind Ca<sup>2+</sup> ions are selected with stars. M13-peptide is underlined. Cys-residue 289 that is suggested to be covalently bound to the chromophore of GAF-FP protein is selected with bold.</p> "> Figure 3
<p>In vitro properties of the purified GAF-CaMP2 indicator. (<b>a</b>) A scheme of the original library for optimization of linkers in the GAF-CaMP2 indicator and suggested mechanism of its function based on the crystal structure of GAF domain (PDB 3C2W). The BV chromophore is highlighted in green. (<b>b</b>) Absorbance spectra for GAF-CaMP2 in Ca<sup>2+</sup>-bound and Ca<sup>2+</sup>-free state at pH 7.2. (<b>c</b>) Excitation and emission spectra for GAF-CaMP2 in Ca<sup>2+</sup>-bound and Ca<sup>2+</sup>-free states, pH 7.2. (<b>d</b>) Fluorescence intensity for GAF-CaMP2 in Ca<sup>2+</sup>-bound and Ca<sup>2+</sup>-free states as a function of pH. Three replicates were averaged for analysis. Error bars represent the standard deviation. (<b>e</b>) Ca<sup>2+</sup> titration curves for GAF-CaMP2 in the absence and in the presence of 1 mM MgCl<sub>2</sub>, pH 7.2. Three replicates were averaged for analysis. Error bars represent the standard deviation. (<b>f</b>) Photobleaching curves for GAF-CaMP2 in Ca<sup>2+</sup>-bound state and smURFP. The power of light before the objective lens was 2.23 mW/cm<sup>2</sup>. Four replicates were averaged for analysis. (<b>g</b>) Maturation of purified GAF-CaMP2-sfGFP<sub>sat</sub> fusion protein. The experimental data were fitted by the Hill equation. Protein maturation occurred in Ca<sup>2+</sup>-saturated buffer 30 mM HEPES, pH 7.20, 100 mM KCl, 1 µM BV, 5 mM Ca-EDTA at 37°C. The green (ex. 460/10 nm, em. 520/10 nm) and far-red (ex. 640/10 nm, em. 675/10 nm) fluorescence were simultaneously registered for sfGFP and GAF-CaMP2<sub>sat</sub> in their fusion, respectively.</p> "> Figure 4
<p>In vitro properties of the purified ratiometric GAF-CaMP2-sfGFP indicator. (<b>a</b>) A scheme for the fusion of GAF-CaMP2 indicator and sfGFP. (<b>b</b>) Absorbance spectra for GAF-CaMP2-sfGFP in Ca<sup>2+</sup>-bound and Ca<sup>2+</sup>-free states at pH 7.2. (<b>c</b>) Excitation and emission spectra for GAF-CaMP2-sfGFP in Ca<sup>2+</sup>-bound and Ca<sup>2+</sup>-free states, pH 7.2. (<b>d</b>) Fluorescence intensity for GAF-CaMP2 in its fusion with sfGFP in Ca<sup>2+</sup>-bound and Ca<sup>2+</sup>-free states as a function of pH. Three replicates were averaged for analysis. Error bars represent the standard deviation. (<b>e</b>) Ca<sup>2+</sup> titration curves for GAF-CaMP2 in fusion with sfGFP in the absence and in the presence of 1 mM MgCl<sub>2</sub>, pH 7.2. Three replicates were averaged for analysis. Error bars represent the standard deviation. (<b>f</b>) BV titration of the GAF-CaMP2-sfGFP in Ca<sup>2+</sup>-bound and Ca<sup>2+</sup>-free states at pH 7.2. The experimental data were fitted by Hill equation. (<b>g</b>) Photobleaching curves for GAF-CaMP2 in its fusion with sfGFP in Ca<sup>2+</sup>-bound state and smURFP. The power of light before objective lens was 2.23 mW/cm<sup>2</sup>. Four replicates were averaged for analysis.</p> "> Figure 5
<p>Optimization of GAF-CaMP2 expression in mammalian cells. Confocal images of HeLa Kyoto cells co-expressing green sfGFP protein and far-red NES-GAF-CaMP2 indicator (<b>a</b>) and expressing green/far-red NES-GAF-CaMP2-sfGFP fusion (<b>b</b>) before and after addition of the 2.5 µM ionomycin. A total of 20 µM BV was supplied during cell’s transfection procedure 24–48 h before imaging. Green (ex. 488 nm, em. 525/50 nm) and far-red (ex. 640 nm, em. 685/40 nm) channels are shown.</p> "> Figure 6
<p>Visualization of calcium transients in three organelles of mammalian cells using GAF-CaMP2 indicator and four-color fluorescence confocal microscopy. Confocal images of HeLa Kyoto cells co-expressing blue H2B-B-GECO1, green/far-red NES-GAF-CaMP2-sfGFP, and red IMS-R-GECO1 calcium indicators in the nucleus, cytosol, and intermembrane space of mitochondria, respectively, before and respective time after addition of the 2.5 µM ionomycin (<b>a</b>) or 10 µM thapsigargin (<b>b</b>). Overlap images of blue (in blue, ex. 405 nm, em. 447/60 nm), red (in red, ex. 561 nm, em. 617/73 nm), and far-red (in grey, ex. 640 nm, em. 685/40 nm) channels are shown; the green (ex. 488 nm, em. 525/50 nm) channel is intentionally missed. The graphs illustrate ΔF/F changes in all fluorescence channels for respective indicators. Example of one cell is shown. The time of ionomycin and thapsigargin addition is shown by the arrow. A total of 20 µM BV was supplied during the cell’s transfection procedure 24–48 h before imaging.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Development of a Novel Infra-Red Fluorescent Positive Calcium Indicator Based on GAF-FP Bacterial Phytochrome
2.2. In Vitro Characterization of the Purified GAF-CaMP2 Indicator
2.3. Optimization of Expression and Calcium-Dependent Response of the GAF-CaMP2 Indicator in HeLa Mammalian Cells
2.4. Simultaneous Visualization of Calcium Transients in Three Organelles of Mammalian Cells using GAF-CaMP2 Indicator and Four-Color Fluorescence Confocal Microscopy
3. Materials and Methods
3.1. Mutagenesis and Library Screening
3.2. Protein Purification and Characterization
3.3. Mammalian Live-Cell Imaging
3.4. Mammalian Plasmid Construction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Looger, L.L.; Griesbeck, O. Genetically encoded neural activity indicators. Curr. Opin. Neurobiol. 2012, 22, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, E.A.; Campbell, R.E.; Lin, J.Y.; Lin, M.Z.; Miyawaki, A.; Palmer, A.E.; Shu, X.; Zhang, J.; Tsien, R.Y. The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins. Trends Biochem. Sci. 2017, 42, 111–129. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Dana, H.; Abdelfattah, A.S.; Patel, R.; Shea, J.; Molina, R.S.; Rawal, B.; Rancic, V.; Chang, Y.F.; Wu, L.; et al. A genetically encoded Ca2+ indicator based on circularly permutated sea anemone red fluorescent protein eqFP578. BMC Biol. 2018, 16, 9. [Google Scholar] [CrossRef] [PubMed]
- Piatkevich, K.D.; Subach, F.V.; Verkhusha, V.V. Engineering of bacterial phytochromes for near-infrared imaging, sensing, and light-control in mammals. Chem. Soc. Rev. 2013, 42, 3441–3452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shcherbakova, D.M.; Cox Cammer, N.; Huisman, T.M.; Verkhusha, V.V.; Hodgson, L. Direct multiplex imaging and optogenetics of Rho GTPases enabled by near-infrared FRET. Nat. Chem. Biol. 2018, 14, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.; Zhang, Y.; Roth, R.H.; Zhang, J.F.; Mo, A.; Tenner, B.; Huganir, R.L.; Zhang, J. Single-fluorophore biosensors for sensitive and multiplexed detection of signalling activities. Nat. Cell Biol. 2018, 20, 1215–1225. [Google Scholar] [CrossRef] [PubMed]
- Piatkevich, K.D.; Jung, E.E.; Straub, C.; Linghu, C.; Park, D.; Suk, H.J.; Hochbaum, D.R.; Goodwin, D.; Pnevmatikakis, E.; Pak, N.; et al. A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters. Nat. Chem. Biol. 2018, 14, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Akerboom, J.; Carreras Calderon, N.; Tian, L.; Wabnig, S.; Prigge, M.; Tolo, J.; Gordus, A.; Orger, M.B.; Severi, K.E.; Macklin, J.J.; et al. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol. Neurosci. 2013, 6, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chernov, K.G.; Redchuk, T.A.; Omelina, E.S.; Verkhusha, V.V. Near-Infrared Fluorescent Proteins, Biosensors, and Optogenetic Tools Engineered from Phytochromes. Chem. Rev. 2017, 117, 6423–6446. [Google Scholar] [CrossRef]
- Piatkevich, K.D.; Suk, H.J.; Kodandaramaiah, S.B.; Yoshida, F.; DeGennaro, E.M.; Drobizhev, M.; Hughes, T.E.; Desimone, R.; Boyden, E.S.; Verkhusha, V.V. Near-Infrared Fluorescent Proteins Engineered from Bacterial Phytochromes in Neuroimaging. Biophys. J. 2017, 113, 2299–2309. [Google Scholar] [CrossRef] [Green Version]
- Shcherbakova, D.M.; Stepanenko, O.V.; Turoverov, K.K.; Verkhusha, V.V. Near-Infrared Fluorescent Proteins: Multiplexing and Optogenetics across Scales. Trends Biotechnol. 2018, 36, 1230–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rumyantsev, K.A.; Shcherbakova, D.M.; Zakharova, N.I.; Emelyanov, A.V.; Turoverov, K.K.; Verkhusha, V.V. Minimal domain of bacterial phytochrome required for chromophore binding and fluorescence. Sci. Rep. 2015, 5, 18348. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, E.A.; Tran, G.N.; Gross, L.A.; Crisp, J.L.; Shu, X.; Lin, J.Y.; Tsien, R.Y. A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein. Nat. Methods 2016, 13, 763–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, Y.; Piatkevich, K.D.; Mc Larney, B.; Abdelfattah, A.S.; Mehta, S.; Murdock, M.H.; Gottschalk, S.; Molina, R.S.; Zhang, W.; Chen, Y.; et al. A genetically encoded near-infrared fluorescent calcium ion indicator. Nat. Methods 2019, 16, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Pandey, N.; Kuypers, B.E.; Nassif, B.; Thomas, E.E.; Alnahhas, R.N.; Segatori, L.; Silberg, J.J. Tolerance of a Knotted Near-Infrared Fluorescent Protein to Random Circular Permutation. Biochemistry 2016, 55, 3763–3773. [Google Scholar] [CrossRef] [Green Version]
- Takala, H.; Lehtivuori, H.K.; Berntsson, O.; Hughes, A.; Nanekar, R.; Niebling, S.; Panman, M.; Henry, L.; Menzel, A.; Westenhoff, S.; et al. On the (un)coupling of the chromophore, tongue interactions, and overall conformation in a bacterial phytochrome. J. Biol. Chem. 2018, 293, 8161–8172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Kuk, J.; Moffat, K. Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: Photoconversion and signal transduction. Proc. Natl. Acad. Sci. USA 2008, 105, 14715–14720. [Google Scholar] [CrossRef]
- Barykina, N.V.; Subach, O.M.; Doronin, D.A.; Sotskov, V.P.; Roshchina, M.A.; Kunitsyna, T.A.; Malyshev, A.Y.; Smirnov, I.V.; Azieva, A.M.; Sokolov, I.S.; et al. A new design for a green calcium indicator with a smaller size and a reduced number of calcium-binding sites. Sci. Rep. 2016, 6, 34447. [Google Scholar] [CrossRef]
- Doronin, D.A.; Barykina, N.V.; Subach, O.M.; Sotskov, V.P.; Plusnin, V.V.; Ivleva, O.A.; Isaakova, E.A.; Varizhuk, A.M.; Pozmogova, G.E.; Malyshev, A.Y.; et al. Genetically encoded calcium indicator with NTnC-like design and enhanced fluorescence contrast and kinetics. BMC Biotechnol. 2018, 18, 10. [Google Scholar] [CrossRef]
- Qian, Y.; Rancic, V.; Wu, J.; Ballanyi, K.; Campbell, R.E. A Bioluminescent Ca2+ Indicator Based on a Topological Variant of GCaMP6s. ChemBioChem 2019, 20, 516–520. [Google Scholar] [CrossRef]
- Subach, F.V.; Piatkevich, K.D.; Verkhusha, V.V. Directed molecular evolution to design advanced red fluorescent proteins. Nat. Methods 2011, 8, 1019–1026. [Google Scholar] [CrossRef] [PubMed]
- Berridge, M.J.; Lipp, P.; Bootman, M.D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 2000, 1, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Maravall, M.; Mainen, Z.F.; Sabatini, B.L.; Svoboda, K. Estimating intracellular calcium concentrations and buffering without wavelength ratioing. Biophys. J. 2000, 78, 2655–2667. [Google Scholar] [CrossRef]
- Horikawa, K.; Yamada, Y.; Matsuda, T.; Kobayashi, K.; Hashimoto, M.; Matsu-Ura, T.; Miyawaki, A.; Michikawa, T.; Mikoshiba, K.; Nagai, T. Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow Cameleon-Nano. Nat. Methods 2010, 7, 729–732. [Google Scholar] [CrossRef] [PubMed]
- Nakagaki, T.; Yamada, H.; Toth, A. Maze-solving by an amoeboid organism. Nature 2000, 407, 470. [Google Scholar] [CrossRef] [PubMed]
- Nakagaki, T.; Kobayashi, R.; Nishiura, Y.; Ueda, T. Obtaining multiple separate food sources: Behavioural intelligence in the Physarum plasmodium. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2004, 271, 2305–2310. [Google Scholar] [CrossRef] [PubMed]
- Li, S.I.; Purugganan, M.D. The cooperative amoeba: Dictyostelium as a model for social evolution. Trends Genet 2011, 27, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Barykina, N.V.; Subach, O.M.; Piatkevich, K.D.; Jung, E.E.; Malyshev, A.Y.; Smirnov, I.V.; Bogorodskiy, A.O.; Borshchevskiy, V.I.; Varizhuk, A.M.; Pozmogova, G.E.; et al. Green fluorescent genetically encoded calcium indicator based on calmodulin/M13-peptide from fungi. PLoS ONE 2017, 12, e0183757. [Google Scholar] [CrossRef]
- Pedelacq, J.D.; Cabantous, S.; Tran, T.; Terwilliger, T.C.; Waldo, G.S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 2006, 24, 79–88. [Google Scholar] [CrossRef]
- Heim, R.; Cubitt, A.B.; Tsien, R.Y. Improved green fluorescence. Nature 1995, 373, 663–664. [Google Scholar] [CrossRef]
- Zhao, Y.; Araki, S.; Wu, J.; Teramoto, T.; Chang, Y.F.; Nakano, M.; Abdelfattah, A.S.; Fujiwara, M.; Ishihara, T.; Nagai, T.; et al. An expanded palette of genetically encoded Ca2 indicators. Science 2011, 333, 1888–1891. [Google Scholar] [CrossRef] [PubMed]
- Grabe, M.; Oster, G. Regulation of organelle acidity. J. Gen. Physiol. 2001, 117, 329–344. [Google Scholar] [CrossRef] [PubMed]
- Brocard, J.B.; Rajdev, S.; Reynolds, I.J. Glutamate-induced increases in intracellular free Mg2+ in cultured cortical neurons. Neuron 1993, 11, 751–757. [Google Scholar] [CrossRef]
- Filonov, G.S.; Piatkevich, K.D.; Ting, L.M.; Zhang, J.; Kim, K.; Verkhusha, V.V. Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat. Biotechnol. 2011, 29, 757–761. [Google Scholar] [CrossRef] [PubMed]
- Treiman, M.; Caspersen, C.; Christensen, S.B. A tool coming of age: Thapsigargin as an inhibitor of sarco-endoplasmic reticulum Ca2+-ATPases. Trends Pharm. Sci. 1998, 19, 131–135. [Google Scholar] [CrossRef]
- Stemmer, W.P.; Crameri, A.; Ha, K.D.; Brennan, T.M.; Heyneker, H.L. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 1995, 164, 49–53. [Google Scholar] [CrossRef]
- Barykina, N.V.; Doronin, D.A.; Subach, O.M.; Sotskov, V.P.; Plusnin, V.V.; Ivleva, O.A.; Gruzdeva, A.M.; Kunitsyna, T.A.; Ivashkina, O.I.; Lazutkin, A.A.; et al. NTnC-like genetically encoded calcium indicator with a positive and enhanced response and fast kinetics. Sci. Rep. 2018, 8, 15233. [Google Scholar] [CrossRef] [PubMed]
- Oliinyk, O.S.; Shemetov, A.A.; Pletnev, S.; Shcherbakova, D.M.; Verkhusha, V.V. Smallest near-infrared fluorescent protein evolved from cyanobacteriochrome as versatile tag for spectral multiplexing. Nat. Commun. 2019, 10, 279. [Google Scholar] [CrossRef]
- Chassin, H.; Muller, M.; Tigges, M.; Scheller, L.; Lang, M.; Fussenegger, M. A modular degron library for synthetic circuits in mammalian cells. Nat. Commun. 2019, 10, 2013. [Google Scholar] [CrossRef]
Properties | Proteins | |||||||
---|---|---|---|---|---|---|---|---|
GAF-CaMP2 | GAF-CaMP2-sfGFP | smURFPa | GAF-FPb | |||||
apo | sat | apo | sat | |||||
Absorbance maximum (nm) | 642 (384) | 650 (384) | 630 (383, 490) | 649 (383, 490) | 642 * | 637 (379) | ||
Excitation maximum (nm) | 620 (371) | 640 (374) | 630 (372, 493) | 642 (374, 493) | 642 | 635 | ||
Emission maximum (nm) | 676 | 674 | 676 (514) | 674 (514) | 670 | 670 | ||
Quantum yield (%) c | 1.8 ± 0.2 | 4.8 ± 0.2 | 3.3 ± 0.1 | 6.9 ± 0.5 | 17.9 ± 0.2 * | 7.3 | ||
ε (mM−1·cm−1) d | 22.2 ± 0.2 | 29.2 ± 0.3 | 15.7 ± 0.4 | 27.5 ± 0.9 | 180 | 49.8 | ||
Brightness vs. EGFP (%) e | 1.2 | 4.2 | 1.5 | 5.6 | 96 | 11 | ||
pKa | 5.16 ± 0.05; 6.99 ± 0.06; ≥9.3 ± 0.3 | 4.89 ± 0.05; 7.15 ± 0.02; ≥9.1 ± 0.2 | 5.30 ± 0.02; 7.28 ± 0.02; ≥9.28 ± 0.06 | 4.89 ± 0.01; 7.60 ± 0.07; ≥9.31 ± 0.09 | 3.3 * | 4.0; 7.8 | ||
ΔF/F (%) | Purified protein | 0 mM Mg | 103 ± 33 | 93 ± 11 | NA | NA | ||
1 mM Mg | 77 ± 16 | 78 ± 7 | ||||||
HeLa cells | non-fluorescent | 169 ± 56 | ||||||
Kd (nM) f | 0 mM Mg | 235 ± 37 (0.88 ± 0.12) | 289 ± 29 (1.54 ± 0.22) | |||||
1 mM Mg | 435 ± 39 (1.48 ± 0.18) | 466 ± 50 (1.54 ± 0.23) | ||||||
Maturation half-time (min) | ND | ND | 28.2 ± 0.7 (sfGFP) 44 ± 2 (GAF-CaMP2) | 39 | 240 | |||
Photobleaching half-time (s) g | ND | 1150 ± 560 | ND | 1080 ± 560 | 377 ± 55 * | ND |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subach, O.M.; Barykina, N.V.; Anokhin, K.V.; Piatkevich, K.D.; Subach, F.V. Near-Infrared Genetically Encoded Positive Calcium Indicator Based on GAF-FP Bacterial Phytochrome. Int. J. Mol. Sci. 2019, 20, 3488. https://doi.org/10.3390/ijms20143488
Subach OM, Barykina NV, Anokhin KV, Piatkevich KD, Subach FV. Near-Infrared Genetically Encoded Positive Calcium Indicator Based on GAF-FP Bacterial Phytochrome. International Journal of Molecular Sciences. 2019; 20(14):3488. https://doi.org/10.3390/ijms20143488
Chicago/Turabian StyleSubach, Oksana M., Natalia V. Barykina, Konstantin V. Anokhin, Kiryl D. Piatkevich, and Fedor V. Subach. 2019. "Near-Infrared Genetically Encoded Positive Calcium Indicator Based on GAF-FP Bacterial Phytochrome" International Journal of Molecular Sciences 20, no. 14: 3488. https://doi.org/10.3390/ijms20143488
APA StyleSubach, O. M., Barykina, N. V., Anokhin, K. V., Piatkevich, K. D., & Subach, F. V. (2019). Near-Infrared Genetically Encoded Positive Calcium Indicator Based on GAF-FP Bacterial Phytochrome. International Journal of Molecular Sciences, 20(14), 3488. https://doi.org/10.3390/ijms20143488