Individual Immune-Modulatory Capabilities of MSC-Derived Extracellular Vesicle (EV) Preparations and Recipient-Dependent Responsiveness
<p>Influence of phorbol 12-myristate 13-acetate (PMA)/Ionomycin stimulation on T cell subsets and cytokine response over course of time. (<b>a</b>,<b>b</b>) Shift of the frequencies of CD4<sup>+</sup> and CD8<sup>+</sup> central memory (T<sub>CM</sub>), naïve (T<sub>N</sub>), effector (T<sub>E</sub>), and effector memory (T<sub>EM</sub>) T cell subsets upon PMA/Ionomycin stimulation for 1–4 h. (<b>c</b>,<b>d</b>) Modification of the TNFα and IFNγ response of CD4<sup>+</sup> and CD8<sup>+</sup> cells within four hours of PMA/Ionomycin stimulation.</p> "> Figure 2
<p>Influence of PMA/Ionomycin stimulation on T cell differentiation and cytokine response. Effect of PMA/Ionomycin stimulation for 4 h on (<b>a</b>) the surface expression of CCR7 and CD45RA, differentiation of (<b>b</b>) CD4<sup>+</sup> and (<b>c</b>) CD8<sup>+</sup> naïve (T<sub>N</sub>), central memory (T<sub>CM</sub>), effector (T<sub>E</sub>), and effector memory (T<sub>EM</sub>) T cell subsets, and (<b>d</b>) the cytokine response. Frequencies of cell populations (%) are presented as median with minimum and maximum. Black dotted line indicates the median frequency of a certain population obtained without PMA/Ionomycin stimulation. Statistical analysis was performed by Wilcoxon test.</p> "> Figure 3
<p>Modulation of CD45RA expression on T cells by MSC-EVs. (<b>a</b>,<b>b</b>) Effect of four different mesenchymal stem/stromal cells–extracellular vesicles (MSC-EV) preparations (EV1–EV4) on the frequency of CCR7 and CD45RA expressing T cells and (<b>c</b>–<b>f</b>) capacity to modulate CD4<sup>+</sup> and CD8<sup>+</sup> effector (T<sub>E</sub>) and effector memory (T<sub>EM</sub>) T cell subsets upon 4 h of PMA/Ionomycin stimulation. Frequencies of cell populations (%) are presented as median with minimum and maximum. Black dotted line indicates the median frequency of a certain population obtained without PMA/Ionomycin stimulation; red dotted line indicates the median frequency of a certain population obtained after PMA/Ionomycin stimulation in the absence of EV. Statistical analysis was performed by Wilcoxon test.</p> "> Figure 4
<p>Modulation of the cytokine response of T cells subsets by MSC-EVs. Effect of different MSC-EV (EV1–EV4) on the proinflammatory cytokine distribution pattern of CD4<sup>+</sup> and CD8<sup>+</sup> naïve (T<sub>N</sub>), effector (T<sub>E</sub>) and effector memory (T<sub>EM</sub>) T cell subsets upon 4 h of PMA/Ionomycin stimulation. Given are the relative differences normalized to the stimulation in absence of MSC-EV.</p> "> Figure 5
<p>Hierarchical clustering regarding individual peripheral blood mononuclear cells (PBMC) responsiveness to MSC-EV. Clustering was performed with all factors included in the flow cytometric analysis. Compared was the effect of four different MSC-EV preparations (EV1–EV4) on PBMCs from six healthy donors (HD1–HD6).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Induction of T cell Differentiation and Cytokine Production Upon PMA/Ionomycin Stimulation
2.2. Modulation of CD45RA Expression on T cells by MSC-EVs upon PMA/Ionomycin Stimulation
2.3. Modulation of the Cytokine Response of T cells Subsets by MSC-EVs upon PMA/Ionomycin Stimulation
2.4. Influence of PBMC Donor Heterogeneity during MSC-EV Administration Upon PMA/Ionomycin Stimulation
3. Discussion
4. Materials and Methods
4.1. Isolation and Characterization of Extracellular Vesicles from Mesenchymal Stem Cells
4.2. Stimulation of PBMC
4.3. Flow Cytometric Analysis
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Le Blanc, K.; Rasmusson, I.; Sundberg, B.; Gotherstrom, C.; Hassan, M.; Uzunel, M.; Ringden, O. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004, 363, 1439–1441. [Google Scholar] [CrossRef]
- Giebel, B.; Kordelas, L.; Borger, V. Clinical potential of mesenchymal stem/stromal cell-derived extracellular vesicles. Stem Cell Investig. 2017, 4, 84. [Google Scholar] [CrossRef] [PubMed]
- Fierabracci, A.; Del Fattore, A.; Luciano, R.; Muraca, M.; Teti, A.; Muraca, M. Recent advances in mesenchymal stem cell immunomodulation: The role of microvesicles. Cell Transplant. 2015, 24, 133–149. [Google Scholar] [CrossRef] [PubMed]
- Lai, R.C.; Arslan, F.; Lee, M.M.; Sze, N.S.; Choo, A.; Chen, T.S.; Salto-Tellez, M.; Timmers, L.; Lee, C.N.; El Oakley, R.M.; et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010, 4, 214–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timmers, L.; Lim, S.K.; Arslan, F.; Armstrong, J.S.; Hoefer, I.E.; Doevendans, P.A.; Piek, J.J.; El Oakley, R.M.; Choo, A.; Lee, C.N.; et al. Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res. 2007, 1, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Kordelas, L.; Rebmann, V.; Ludwig, A.K.; Radtke, S.; Ruesing, J.; Doeppner, T.R.; Epple, M.; Horn, P.A.; Beelen, D.W.; Giebel, B. MSC-derived exosomes: A novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 2014, 28, 970–973. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Yeo, R.W.Y.; Lai, R.C.; Sim, E.W.K.; Chin, K.C.; Lim, S.K. Mesenchymal stromal cell exosome-enhanced regulatory T-cell production through an antigen-presenting cell-mediated pathway. Cytotherapy 2018, 20, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Fujii, S.; Miura, Y.; Fujishiro, A.; Shindo, T.; Shimazu, Y.; Hirai, H.; Tahara, H.; Takaori-Kondo, A.; Ichinohe, T.; Maekawa, T. Graft-Versus-Host Disease Amelioration by Human Bone Marrow Mesenchymal Stromal/Stem Cell-Derived Extracellular Vesicles Is Associated with Peripheral Preservation of Naive T Cell Populations. Stem Cells 2018, 36, 434–445. [Google Scholar] [CrossRef] [PubMed]
- Henson, S.M.; Riddell, N.E.; Akbar, A.N. Properties of end-stage human T cells defined by CD45RA re-expression. Curr. Opin. Immunol. 2012, 24, 476–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.G.; Xie, Q.L.; Li, B.B.; Zhou, L.; Yan, D. Exosomes Derived from IDO1-Overexpressing Rat Bone Marrow Mesenchymal Stem Cells Promote Immunotolerance of Cardiac Allografts. Cell Transplant. 2018. [Google Scholar] [CrossRef] [PubMed]
- Levine, J.E. Implications of TNF-alpha in the pathogenesis and management of GVHD. Int. J. Hematol. 2011, 93, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Waller, E.K. Dichotomous role of interferon-gamma in allogeneic bone marrow transplant. Biol. Blood Marrow Transplant. 2009, 15, 1347–1353. [Google Scholar] [CrossRef] [PubMed]
- Zeiser, R.; Blazar, B.R. Acute Graft-versus-Host Disease—Biologic Process, Prevention, and Therapy. N. Engl. J. Med. 2017, 377, 2167–2179. [Google Scholar] [CrossRef] [PubMed]
- Galipeau, J.; Krampera, M.; Barrett, J.; Dazzi, F.; Deans, R.J.; DeBruijn, J.; Dominici, M.; Fibbe, W.E.; Gee, A.P.; Gimble, J.M.; et al. International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy 2016, 18, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, A.K.; De Miroschedji, K.; Doeppner, T.R.; Borger, V.; Ruesing, J.; Rebmann, V.; Durst, S.; Jansen, S.; Bremer, M.; Behrmann, E.; et al. Precipitation with polyethylene glycol followed by washing and pelleting by ultracentrifugation enriches extracellular vesicles from tissue culture supernatants in small and large scales. J. Extracell. Vesicles 2018, 7, 1528109. [Google Scholar] [CrossRef] [PubMed]
- Sokolova, V.; Ludwig, A.K.; Hornung, S.; Rotan, O.; Horn, P.A.; Epple, M.; Giebel, B. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf. B Biointerfaces 2011, 87, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Lotvall, J.; Hill, A.F.; Hochberg, F.; Buzas, E.I.; Di Vizio, D.; Gardiner, C.; Gho, Y.S.; Kurochkin, I.V.; Mathivanan, S.; Quesenberry, P.; et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles 2014, 3, 26913. [Google Scholar] [CrossRef] [PubMed]
- Konig, L.; Kasimir-Bauer, S.; Bittner, A.K.; Hoffmann, O.; Wagner, B.; Santos Manvailer, L.F.; Kimmig, R.; Horn, P.A.; Rebmann, V. Elevated levels of extracellular vesicles are associated with therapy failure and disease progression in breast cancer patients undergoing neoadjuvant chemotherapy. Oncoimmunology 2017, 7, e1376153. [Google Scholar] [CrossRef] [PubMed]
- Warnes, G.R.; Bolker, B.; Bonebakker, L.; Gentleman, R.; Liaw, W.H.A.; Lumley, T.; Maechler, M.; Magnusson, A.; Moeller, S.; Schwartz, M.; et al. gplots: Various R Programming Tools for Plotting Data. R Package Version 3.0.1. 2016. Available online: https://CRAN.R-project.org/package=gplots (accessed on 20 November 2018).
- Suzuki, R.; Shimodaira, H. pvclust: Hierarchical Clustering with P-Values via Multiscale Bootstrap Resampling. R Package Version 2.0-0. 2015. Available online: https://CRAN.R-project.org/package=pvclust (accessed on 20 November 2018).
- Day, A. Heatmap.Plus: Heatmap with more Sensible Behavior. R Package Version 1.3. 2012. Available online: https://CRAN.R-project.org/package=heatmap.plus (accessed on 20 November 2018).
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kordelas, L.; Schwich, E.; Dittrich, R.; Horn, P.A.; Beelen, D.W.; Börger, V.; Giebel, B.; Rebmann, V. Individual Immune-Modulatory Capabilities of MSC-Derived Extracellular Vesicle (EV) Preparations and Recipient-Dependent Responsiveness. Int. J. Mol. Sci. 2019, 20, 1642. https://doi.org/10.3390/ijms20071642
Kordelas L, Schwich E, Dittrich R, Horn PA, Beelen DW, Börger V, Giebel B, Rebmann V. Individual Immune-Modulatory Capabilities of MSC-Derived Extracellular Vesicle (EV) Preparations and Recipient-Dependent Responsiveness. International Journal of Molecular Sciences. 2019; 20(7):1642. https://doi.org/10.3390/ijms20071642
Chicago/Turabian StyleKordelas, Lambros, Esther Schwich, Robin Dittrich, Peter A. Horn, Dietrich W. Beelen, Verena Börger, Bernd Giebel, and Vera Rebmann. 2019. "Individual Immune-Modulatory Capabilities of MSC-Derived Extracellular Vesicle (EV) Preparations and Recipient-Dependent Responsiveness" International Journal of Molecular Sciences 20, no. 7: 1642. https://doi.org/10.3390/ijms20071642
APA StyleKordelas, L., Schwich, E., Dittrich, R., Horn, P. A., Beelen, D. W., Börger, V., Giebel, B., & Rebmann, V. (2019). Individual Immune-Modulatory Capabilities of MSC-Derived Extracellular Vesicle (EV) Preparations and Recipient-Dependent Responsiveness. International Journal of Molecular Sciences, 20(7), 1642. https://doi.org/10.3390/ijms20071642