Enhancing Physicochemical and Piezoelectric Properties of Eggshell Membrane Proteins by Ultrasonic-Assisted Enzymes for Food and Sensor Applications
"> Figure 1
<p>The three-dimensional (3D) response surface graphs and two-dimensional (2D) contour plots exhibiting the interactive effects of enzyme usage (<b>a</b>); pH (<b>b</b>); solid-to-solvent ratio (<b>c</b>); and time (<b>d</b>) on EY. Interaction between (<b>a</b>,<b>a′</b>) enzyme usage and pH; (<b>b</b>,<b>b′</b>) enzyme usage and solid-to-solvent ratio; (<b>c</b>,<b>c′</b>) enzyme usage and time; (<b>d</b>,<b>d′</b>) pH and solid-to-solvent ratio; (<b>e</b>,<b>e′</b>) pH and time; (<b>f</b>,<b>f′</b>) solid-to-solvent ratio and time.</p> "> Figure 2
<p>The functional properties of different samples. (<b>a</b>) solubility and H<sub>0</sub>; (<b>b</b>) WHC and OHC; (<b>c</b>) FC and FS; (<b>d</b>) EAI and ESI. Mean value ± standard deviations of three independent experiments were shown (<span class="html-italic">n</span> = 3). Different letters labeled mean significant difference (<span class="html-italic">p</span> < 0.05).</p> "> Figure 3
<p>(<b>a</b>) FTIR spectra of ESMP, PSC, and UPSC; (<b>b</b>) FTIR of the range of 650 to 2200 cm<sup>−1</sup> for the samples; (<b>c</b>–<b>e</b>) FTIR amide I regions of ESMP, PSC, UPSC, and deconvolution of amide I bands into individual peaks; (<b>f</b>) The secondary structure contents of ESMP, PSC, and UPSC.</p> "> Figure 4
<p>SEM image of different samples. (<b>a</b>,<b>b</b>) ESM; (<b>c</b>) ESM with enzyme treatment; (<b>d</b>) ESM with ultrasonic-assisted enzyme treatment; (<b>e</b>) PSC, and (<b>f</b>) UPSC.</p> "> Figure 5
<p>Mechanical properties of different samples. (<b>a</b>) Stress-strain curves; (<b>b</b>) The maximum tensile stress; (<b>c</b>) Breaking strain; (<b>d</b>) Young’s modulus of different samples. Mean ± SD of three independent experiments are shown (<span class="html-italic">n</span> = 3).</p> "> Figure 6
<p>Piezoelectric performance of all samples. (<b>a</b>) The voltages and (<b>b</b>) currents of different samples; (<b>c</b>) Piezoelectric voltages and (<b>d</b>) currents at 1.5 Hz under different applied forces (5–40 N); (<b>e</b>) Piezoelectric voltages and (<b>f</b>) currents under 10 N at different frequencies (0.3–1.5 Hz); (<b>g</b>,<b>h</b>) Stability test of the device under 3000 working cycles.</p> "> Figure 7
<p>Applications of the device in detecting various human motions. (<b>a</b>) Diagram of the test on the human body; (<b>b</b>–<b>e</b>) The signals corresponding to finger bending, wrist bending, elbow bending, and knee bending; (<b>f</b>) Schematic diagram of a 4 × 4 pixel sensing array; (<b>g</b>) The voltages corresponding to spatial pressure distributions.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Statistical Analysis and Model Fitting
2.2. Optimization of the Extraction Efficiency
2.3. Model Validation and Optimization
2.4. Functional Properties
2.5. Structural Properties
2.6. SH and S-S Content
2.7. Microstructure
2.8. Amino Acid Composition
2.9. Mechanical Properties
2.10. Piezoelectric Performance
3. Materials and Methods
3.1. Raw Materials and Reagents
3.2. Enzymatic Extraction of Eggshell Membrane Protein
3.3. Experimental Design
3.4. Ultrasonic-Assisted Enzymatic Extraction (UAEE) of Eggshell Membrane Protein (ESMP)
3.5. Isolation of Pepsin Soluble Collagen (PSC) and Ultrasonic-Assisted Pepsin Soluble Collagen (UPSC)
3.6. Properties Characterization
3.6.1. Solubility
3.6.2. Surface Hydrophobicity (H0)
3.6.3. Water Holding Capacity (WHC) and Oil Holding Capacity (OHC)
3.6.4. Foaming Properties
3.6.5. Emulsifying Properties
3.7. Fourier Transform Infrared Spectroscopy (FTIR)
3.8. Determination of Free Sulfhydryl (SH) and Disulfide Bond (S-S) Content
3.9. Scanning Electron Microscopy (SEM)
3.10. Amino Acid Composition
3.11. Preparation of PVA/UPSC Film
3.12. Mechanical Properties
3.13. Assembly of Piezoelectric Sensors
3.14. Piezoelectric Properties
3.15. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Strack, R. Extracellular protein degradation on demand. Nat. Methods 2020, 17, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Floret, C.; Monnet, A.-F.; Micard, V.; Walrand, S.; Michon, C. Replacement of animal proteins in food: How to take advantage of nutritional and gelling properties of alternative protein sources. Crit. Rev. Food Sci. 2023, 63, 920–946. [Google Scholar] [CrossRef] [PubMed]
- Baláž, M. Eggshell membrane biomaterial as a platform for applications in materials science. Acta Biomater. 2014, 10, 3827–3843. [Google Scholar] [CrossRef] [PubMed]
- Fraser, R.D.; MacRae, T.P.; Miller, A.; Suzuki, E. Molecular conformation and packing in collagen fibrils. J. Mol. Biol. 1983, 167, 497–521. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.J.; Zhang, Z.; Shi, X.X.; Xu, Y.Y.; Li, Y.; Wang, X.F.; Li, Q.; Turng, L.-S. Eggshell membrane and expanded polytetrafluoroethylene piezoelectric-enhanced triboelectric bio-nanogenerators for energy harvesting. Int. J. Energ. Res. 2021, 45, 11053–11064. [Google Scholar] [CrossRef]
- Halgrain, M.; Georgeault, S.; Bernardet, N.; Hincke, M.T.; Rehault-Godbert, S. Concomitant morphological modifications of the avian eggshell, eggshell membranes and the chorioallantoic membrane during embryonic development. Front. Physiol. 2022, 13, 838013. [Google Scholar] [CrossRef]
- Park, S.; Choi, K.S.; Lee, D.; Kim, D.; Lim, K.T.; Lee, K.-H.; Seonwoo, H.; Kim, J. Eggshell membrane: Review and impact on engineering. Biosyst. Eng. 2016, 151, 446–463. [Google Scholar] [CrossRef]
- Han, C.H.; Chen, Y.F.; Shi, L.; Chen, H.; Li, L.H.; Ning, Z.H.; Zeng, D.; Wang, D.H. Advances in eggshell membrane separation and solubilization technologies. Front. Vet. Sci. 2023, 10, 1216172. [Google Scholar] [CrossRef]
- Baiano, A. Recovery of biomolecules from food wastes-A review. Molecules 2014, 19, 14821–14842. [Google Scholar] [CrossRef]
- Qu, W.J.; Ma, H.L.; Jia, J.Q.; He, R.H.; Luo, L.; Pan, Z.L. Enzymolysis kinetics and activities of ACE inhibitory peptides from wheat germ protein prepared with SFP ultrasound-assisted processing. Ultrason. Sonochem. 2012, 19, 1021–1026. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Morton, J.D.; Kumar, S.; Bhat, H.F.; Aadil, R.M.; Bekhit, A.E.-D.A. Ultrasonication as an emerging technology for processing of animal derived foods: A focus on in vitro protein digestibility. Trends Food Sci. Technol. 2022, 124, 309–322. [Google Scholar] [CrossRef]
- Panda, D.; Manickam, S. Cavitation technology-the future of greener extraction method: A review on the extraction of natural products and process intensification mechanism and perspectives. Appl. Sci. 2019, 9, 766. [Google Scholar] [CrossRef]
- Yolmeh, M.; Jafari, S.M. Applications of response surface methodology in the food industry processes. Food Bioprocess Technol. 2017, 10, 413–433. [Google Scholar] [CrossRef]
- Tsumura, K.; Saito, T.; Tsuge, K.; Ashida, H.; Kugimiya, W.; Inouye, K. Functional properties of soy protein hydrolysates obtained by selective proteolysis. LWT-Food Sci. Technol. 2005, 38, 255–261. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Hu, J.L.; Ma, L.; Liu, X.Q.; Li, H.Y.; Zhang, M.H.; Jiang, Z.M.; Hou, J.C. Superfine grinding pretreatment enhances emulsifying, gel properties and in vitro digestibility of laccase-treated α-Lactalbumin. LWT-Food Sci. Technol. 2022, 157, 157113082. [Google Scholar] [CrossRef]
- Hadidi, M.; Khaksar, F.B.; Pagan, J.; Ibarz, A. Application of ultrasound-ultrafiltration-assisted alkaline isoelectric precipitation (UUAAIP) technique for producing alfalfa protein isolate for human consumption: Optimization, comparison, physicochemical, and functional properties. Food Res. Int. 2020, 130, 108907. [Google Scholar] [CrossRef]
- Romdhane, M.B.; Haddar, A.; Ghazala, I.; Jeddou, K.B.; Helbert, C.B.; Ellouz-Chaabouni, S. Optimization of polysaccharides extraction from watermelon rinds: Structure, functional and biological activities. Food Chem. 2017, 216, 355–364. [Google Scholar] [CrossRef]
- Shahidi, F.; Han, X.-Q.; Synowiecki, J. Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chem. 1995, 53, 285–293. [Google Scholar] [CrossRef]
- Pan, A.D.; Zeng, H.Y.; Alain, G.B.; Feng, B. Heat-pretreatment and enzymolysis behavior of the lotus seed protein. Food Chem. 2016, 201, 230–236. [Google Scholar] [CrossRef]
- Pearce, K.N.; Kinsella, J.E. Emulsifying properties of proteins: Evaluation of a turbidimetric technique. J. Agric. Food Chem. 1978, 26, 716–723. [Google Scholar] [CrossRef]
- Dong, Z.Y.; Li, M.Y.; Tian, G.; Zhang, T.H.; Ren, H.; Quek, S.Y. Effects of ultrasonic pretreatment on the structure and functionality of chicken bone protein prepared by enzymatic method. Food Chem. 2019, 299, 125103. [Google Scholar] [CrossRef]
- Gao, C.F.; Jia, J.Q.; Yang, Y.; Ge, S.M.; Song, X.Y.; Yu, J.H.; Wu, Q.Y. Structural change and functional improvement of wheat germ protein promoted by extrusion. Food Hydrocolloid. 2023, 137, 108389. [Google Scholar] [CrossRef]
- Kirley, T.L. Determination of three disulfide bonds and one free sulfhydryl in the β subunit of (Na, K)-ATPase. J. Biol. Chem. 1989, 264, 7185–7192. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.S.; Liu, L.; Xu, J.J.; Zeng, M.Y.; Zhao, Y.H. Amino acid composition and digestibility of Pacific oyster (Crassostrea gigas) proteins isolated from different parts. LWT-Food Sci. Technol. 2019, 116, 108591. [Google Scholar] [CrossRef]
- He, H.J.; Wang, Y.M.; Farkas, B.; Nagy, Z.K.; Molnar, K. Analysis and prediction of the diameter and orientation of AC electrospun nanofibers by response surface methodology. Mater. Des. 2020, 194, 108902. [Google Scholar] [CrossRef]
- Liu, L.; Luo, T.; Kuang, X.J.; Wan, X.Q.; Liang, X.H.; Jiang, G.M.; Cong, H.L.; He, H.J. Analysis and optimization of electrospinning parameters for fabricating thermoplastic polyurethanes (TPU) nanofibers by response surface methodology. Express Polym. Lett. 2024, 18, 807–818. [Google Scholar] [CrossRef]
- Li, X.T.; Luo, T.; Wang, L.F.; Song, H.Z.; Wang, F.; Weng, Z.B.; Zhou, J.X.; Xiang, X.Y.; Xiong, L.; Shen, X.C. Emulsifying properties of wheat germ protein: Effect of different ultrasonic treatment. Ultrason. Sonochem. 2023, 98, 106479. [Google Scholar] [CrossRef]
- Arzeni, C.; Martínez, K.; Zema, P.; Arias, A.; Pérez, O.E.; Pilosof, A.M.R. Comparative study of high intensity ultrasound effects on food proteins functionality. J. Food Eng. 2012, 108, 463–472. [Google Scholar] [CrossRef]
- Shi, L.S.; Yang, X.Y.; Gong, T.; Hu, C.Y.; Shen, Y.H.; Meng, Y.H. Ultrasonic treatment improves physical and oxidative stabilities of walnut protein isolate-based emulsion by changing protein structure. LWT-Food Sci. Technol. 2023, 173, 114269. [Google Scholar] [CrossRef]
- Thongrattanatrai, K.; Impaprasert, R.; Suntornsuk, W.; Srzednicki, G. Effect of ultrasonic-assisted enzymatic hydrolysis on functional properties and antioxidant activity of eri silkworm pupa protein isolate. Int. J. Food. Sci. 2023, 2023, 9409710. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.L.; Xie, T.T.; Hong, X.; Zhou, Y.L.; Fan, L.P.; Liu, Y.F.; Li, J.W. Modification of functional properties of perilla protein isolate by high-intensity ultrasonic treatment and the stability of o/w emulsion. Food Chem. 2022, 368, 130848. [Google Scholar] [CrossRef]
- Cruz-Torres, L.F.; Celestino, V.R.; Leija, S.C.; Posada, H.S.; Magaña, S.G.; Padilla, J.A.; Margalli, N.A.; Castro, J.A. Development of a rapid, high-sensitivity, low-cost fluorescence method for protein surface hydrophobicity determination using a Nanodrop fluorospectrometer. Food Chem. 2022, 396, 133681. [Google Scholar] [CrossRef]
- Chen, L.; Chen, J.S.; Ren, J.Y.; Zhao, M.M. Effects of ultrasound pretreatment on the enzymatic hydrolysis of soy protein isolates and on the emulsifying properties of hydrolysates. J. Agric. Food Chem. 2011, 59, 2600–2609. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.T.; Yang, J.M.; Lai, C.W.; Cheng, Y.H.; Lin, C.C.; Yeh, C.W. Characterization and adsorption properties of eggshells and eggshell membrane. Bioresour. Technol. 2006, 97, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghouti, M.A.; Khan, M. Eggshell membrane as a novel bio sorbent for remediation of boron from desalinated water. J. Environ. Manage. 2018, 207, 405–416. [Google Scholar] [CrossRef]
- Chen, J.M.; Ji, X.R.; Huang, Z.Q.; Zhang, R.; Liu, L.L.; Geng, R.Q.; Ji, Q.Z. Adsorption performance and mechanism of different modified eggshell membranes for Ni(II) in aqueous solutions. Biomass Convers. Bior. 2024, 13, 104385. [Google Scholar] [CrossRef]
- Aderinola, T.A.; Alashi, A.M.; Nwachukwu, I.D.; Fagbemi, T.N.; Enujiugha, V.N.; Aluko, R.E. In vitro digestibility, structural and functional properties of Moringa oleifera seed proteins. Food Hydrocolloid. 2020, 101, 105574. [Google Scholar] [CrossRef]
- Singh, J.; Karmakar, S.; Banerjee, R. Extraction and nutritional properties of protein derived from rice (Oryza sativa) based distillery byproducts: A potential substrate for food formulation. Biocatal. Agr. Biotech. 2019, 22, 101364. [Google Scholar] [CrossRef]
- Quanten, T.; Savic, N.D.; Parac-Vogt, T.N. Hydrolysis of peptide bonds in protein micelles promoted by a Zirconium(IV)-substituted polyoxometalate as an artificial protease. Chem.-Eur. J. 2020, 26, 11170–11179. [Google Scholar] [CrossRef]
- Gundogan, R.; Karaca, A.C. Physicochemical and functional properties of proteins isolated from local beans of Turkey. LWT-Food Sci. Technol. 2020, 130, 109609. [Google Scholar] [CrossRef]
- Yu, C.P.; Wu, F.; Cha, Y.; Qin, Y.T.; Du, M. Effects of ultrasound on structure and functional properties of mussel (Mytilus edulis) protein isolates. J. Food. Process. Pres. 2018, 42, e13690. [Google Scholar] [CrossRef]
- Zhang, H.X.; Chen, G.J.; Liu, M.; Mei, X.F.; Yu, Q.Q.; Kan, J.Q. Effects of multi-frequency ultrasound on physicochemical properties, structural characteristics of gluten protein and the quality of noodle. Ultrason. Sonochem. 2020, 67, 105135. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.L.; Zhou, X.F.; Zheng, Y.R.; Wang, D.F.; Deng, Y.; Zhao, Y.Y. Impact of ultrasonication/shear emulsifying/microwave-assisted enzymatic extraction on rheological, structural, and functional properties of Akebia trifoliata (Thunb.) Koidz. seed protein isolates. Food Hydrocolloid. 2021, 112, 106355. [Google Scholar] [CrossRef]
- Kobayashi, K.; Sanada, Y.; Katunuma, N. Selective cleavage of peptide bonds by a serine protease from rat skeletal muscle. J. Biochem. 1978, 84, 477–481. [Google Scholar] [CrossRef]
- Hu, H.; Wu, J.H.; Li-Chan, E.C.Y.; Zhu, L.; Zhang, F.; Xu, X.Y.; Fan, G.; Wang, L.F.; Huang, X.J.; Pan, S.Y. Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions. Food Hydrocolloid. 2013, 30, 647–655. [Google Scholar] [CrossRef]
- Wierenga, P.A.; Meinders, M.B.J.; Egmond, M.R.; Voragen, F.A.G.J.; de Jongh, H.H.J. Protein exposed hydrophobicity reduces the kinetic barrier for adsorption of ovalbumin to the air-water interface. Langmuir 2003, 19, 8964–8970. [Google Scholar] [CrossRef]
- Templeton, H.L.; Sommer, H.H. Subcritical water hydrolysis of eggshell membrane and its physicochemical characteristics. Food Chem. 2025, 471, 142848. [Google Scholar] [CrossRef]
- Sun, Y.J.; Chen, J.H.; Zhang, S.W.; Li, H.J.; Lu, J.; Liu, L.; Uluko, H.; Su, Y.L.; Cui, W.M.; Ge, W.P.; et al. Effect of power ultrasound pre-treatment on the physical and functional properties of reconstituted milk protein concentrate. J. Food Eng. 2014, 124, 11–18. [Google Scholar] [CrossRef]
- Karabulut, G.; Yemiş, O. Modification of hemp seed protein isolate (Cannabis sativa L.) by high-intensity ultrasound treatment. part 1: Functional properties. Food Chem. 2022, 375, 131843. [Google Scholar] [CrossRef]
- Huang, Z.Y.; Kuang, J.Z.; Yuan, W.Q.; Yu, M.M.; Wang, X.Y. Regulation mechanism of ultrasonication on surface hydrophobicity of scheelite. Colloid. Surface. A 2021, 629, 127412. [Google Scholar] [CrossRef]
- Elango, J.; Lee, J.W.; Wang, S.; Henrotin, Y.; De Val, J.E.M.S.; Regenstein, M.; Lim, S.Y.; Bao, B.; Wu, W. Evaluation of differentiated bone cells proliferation by blue shark skin collagen via biochemical for bone tissue engineering. Mar. Drugs 2018, 16, 350. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.Z.; Liu, Y.J.; Li, L.; Qi, B.K.; Ju, M.N.; Xu, Y.; Zhang, Y.; Sui, X.N. Covalent conjugates of anthocyanins to soy protein: Unravelling their structure features and in vitro gastrointestinal digestion fate. Food Res. Int. 2019, 120, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.Y.; Chen, Z.Z.; Lu, X.M.; Mu, J.L.; Ma, Q.Y.; Li, X.Y. Soy protein/polyvinyl-alcohol (PVA)-based packaging films reinforced by nano-TiO2. Polymers 2023, 15, 1764. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, Y.L.; Li, S.Y.; Oladejo, A.O.; Wang, Y.C.; Huang, S.F.; Zhou, C.S.; Wang, Y.; Li, M.; Zhang, Y.Y.; et al. Effects of low power density multi-frequency ultrasound pretreatment on the enzymolysis and the structure characterization of defatted wheat germ protein. Ultrason. Sonochem. 2017, 38, 410–420. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Xiang, X.L.; Liu, L.; An, F.P.; Geng, F.; Huang, Q.; Wei, S.F. Ultrasound-assisted succinylation comprehensively improved functional properties of egg white protein. LWT-Food Sci. Technol. 2022, 171, 114155. [Google Scholar] [CrossRef]
- Yang, J.; Duan, Y.Q.; Zhang, H.H.; Huang, F.H.; Wan, C.Y.; Cheng, C.; Wang, L.; Peng, D.F.; Deng, Q.C. Ultrasound coupled with weak alkali cycling-induced exchange of free sulfhydryl-disulfide bond for remodeling interfacial flexibility of flaxseed protein isolates. Food Hydrocolloid. 2023, 140, 108597. [Google Scholar] [CrossRef]
- Liang, X.H.; Cong, H.L.; Jiang, G.M.; Rao, R.P.; He, H.J.; Ramakrishna, S. Eggshell membrane: Structure, purification, properties and multifunctional applications. Food Biosci. 2024, 60, 104487. [Google Scholar] [CrossRef]
- Du, H.; Zhang, J.; Wang, S.; Manyande, A.; Wang, J. Effect of high-intensity ultrasonic treatment on the physicochemical, structural, rheological, behavioral, and foaming properties of pumpkin (Cucurbita moschata Duch.)-seed protein isolates. LWT-Food Sci. Technol. 2022, 155, 112952. [Google Scholar] [CrossRef]
- Kumar, M.; Tomar, M.; Potkule, J.; Punia, S.; Dhakane-Lad, J.; Singh, S.; Dhumal, S.; Pradhan, P.C.; Bhushan, B.; Anitha, T. Functional characterization of plant-based protein to determine its quality for food applications. Food Hydrocolloid. 2022, 123, 106986. [Google Scholar] [CrossRef]
- Nakano, T.; Ikawa, N.I.; Ozimek, L. Chemical composition of chicken eggshell and shell membranes. Poult. Sci. 2003, 82, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.C.; Gu, M.; Wu, K.; Li, G.Y. Unraveling the role of hydroxyproline in maintaining the thermal stability of the collagen triple helix structure using simulation. J. Phys. Chem. B 2019, 123, 7754–7763. [Google Scholar] [CrossRef] [PubMed]
- Rodziewicz-Motowidło, S.; Śladewska, A.; Mulkiewicz, E.; Kołodziejczyk, A.; Aleksandrowicz, A.; Miszkiewicz, J.; Stepnowski, P. Isolation and characterization of a thermally stable collagen preparation from the outer skin of the silver carp Hypophthalmichthys molitrix. Aquaculture 2008, 285, 130–134. [Google Scholar] [CrossRef]
- Xue, H.Y.; Jin, J.; Tan, Z.; Chen, K.L.; Lu, G.X.; Zeng, Y.S.; Hu, X.L.; Peng, X.C.; Jiang, L.M.; Wu, J.G. Flexible, biodegradable ultrasonic wireless electrotherapy device based on highly self-aligned piezoelectric biofilms. Sci. Adv. 2024, 10, eadn0260. [Google Scholar] [CrossRef]
- Chen, B.; Cao, Y.D.; Li, Q.Y.; Yan, Z.; Liu, R.; Zhao, Y.J.; Zhang, X.; Wu, M.Y.; Qin, Y.X.; Sun, C.; et al. Liquid metal-tailored gluten network for protein-based e-skin. Nat. Commun. 2022, 13, 1206–1214. [Google Scholar] [CrossRef]
- Karan, S.K.; Maiti, S.; Paria, S.; Maitra, A.; Si, S.K.; Kim, J.K.; Khatua, B.B. A new insight towards eggshell membrane as high energy conversion efficient bio-piezoelectric energy harvester. Mater. Today Energy 2018, 9, 114–125. [Google Scholar] [CrossRef]
- GB/T 1040.3-2006; Plastics–Determination of Tensile Properties–Part 3: Test Conditions for Films and Sheets. Standardization Administration of China: Beijing, China, 2006.
Amino Acid | ESMP | PSC | UPSC |
---|---|---|---|
Aspartic acid (Asp) | 8.53 | 5.43 | 5.15 |
Threonine (Thr) | 6.85 | 2.52 | 2.16 |
Serine (Ser) | 9.33 | 4.61 | 4.23 |
Glutamic acid (Glu) | 11.28 | 5.84 | 5.35 |
Glycine (Gly) | 10.81 | 25.85 | 26.42 |
Alanine (Ala) | 4.35 | 11.94 | 12.14 |
Valine (Val) | 7.47 | 2.63 | 2.74 |
Methionine (Met) | 2.51 | 1.21 | 1.03 |
Isoleucine (lle) | 3.35 | 1.52 | 1.61 |
Leucine (Leu) | 5.22 | 2.61 | 2.67 |
Tyrosine (Tyr) | 2.13 | 0.86 | 0.71 |
Phenylalanine (Phe) | 1.52 | 1.03 | 1.12 |
Histidine (His) | 4.25 | 1.23 | 1.02 |
Lysine (Lys) | 3.41 | 2.25 | 2.04 |
Arginine (Arg) | 5.82 | 8.06 | 8.23 |
Proline (Pro) | 11.75 | 12.56 | 13.17 |
Hydroxyproline (Hyp) | 1.42 | 9.85 | 10.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Cong, H.; Jiang, G.; He, H. Enhancing Physicochemical and Piezoelectric Properties of Eggshell Membrane Proteins by Ultrasonic-Assisted Enzymes for Food and Sensor Applications. Int. J. Mol. Sci. 2025, 26, 2190. https://doi.org/10.3390/ijms26052190
Liang X, Cong H, Jiang G, He H. Enhancing Physicochemical and Piezoelectric Properties of Eggshell Membrane Proteins by Ultrasonic-Assisted Enzymes for Food and Sensor Applications. International Journal of Molecular Sciences. 2025; 26(5):2190. https://doi.org/10.3390/ijms26052190
Chicago/Turabian StyleLiang, Xinhua, Honglian Cong, Gaoming Jiang, and Haijun He. 2025. "Enhancing Physicochemical and Piezoelectric Properties of Eggshell Membrane Proteins by Ultrasonic-Assisted Enzymes for Food and Sensor Applications" International Journal of Molecular Sciences 26, no. 5: 2190. https://doi.org/10.3390/ijms26052190
APA StyleLiang, X., Cong, H., Jiang, G., & He, H. (2025). Enhancing Physicochemical and Piezoelectric Properties of Eggshell Membrane Proteins by Ultrasonic-Assisted Enzymes for Food and Sensor Applications. International Journal of Molecular Sciences, 26(5), 2190. https://doi.org/10.3390/ijms26052190