Unveiling the Mechanism of Action of Palmitic Acid, a Human Topoisomerase 1B Inhibitor from the Antarctic Sponge Artemisina plumosa
<p>Relaxation of supercoiled DNA in presence of PA. (<b>A</b>) 2D structure representation of PA. (<b>B</b>) Relaxation of negative supercoiled DNA plasmid by hTOP1 at increasing PA concentrations (lanes 2–8), lane 1 DMSO and lane 9 with 200 μM PA and no protein added. (<b>C</b>) Relaxation of negative supercoiled DNA plasmid in a time course experiment with DMSO (lanes 1–6), with 100 µM PA (lanes 7–12), and 100 μM CPT (lanes 13–18); lanes 19 and 20 correspond to samples with 100 µM PA and 100 µM CPT, respectively, with no protein added. Reaction products were resolved on agarose gel and visualized with ethidium bromide (EtBr). DSC—dimer supercoiled DNA plasmid; MSC—monomer super-coiled DNA plasmid; C—negative control (corresponding to samples with 100 µM PA and 100 µM CPT, respectively, with no protein added).</p> "> Figure 2
<p>Analysis of religation of hTOP1 catalytic mechanism using FITC (fluorescein isothiocyanate) oligonucleotide labeled SS. (<b>A</b>) Top panel displays sequences of fluorescently FITC labeled SS used in religation assay, asterisk indicates that FITC was conjugated to guanine. (<b>B</b>) Representation of a denaturing polyacrylamide gel of the religation assay. Samples were incubated for 1 h at 25 °C followed by 30 min at 37 °C. Reaction was initiated by adding a 200-fold excess of R11 oligonucleotide, either with or without 100 µM PA, then stopped at various time points with 0.5% SDS. CL1 represents cleaved strand (TOP1cc), C is negative control (no protein added), and 0 denotes TOP1cc starting condition before addition of R11. (<b>C</b>) Plot illustrates percentage of religated bands over time from religation assay. Figure presents cumulative data with mean ± SD from three independent experiments. Statistical significance is indicated with asterisks: *** <span class="html-italic">p</span> ≤ 0.001.</p> "> Figure 3
<p>hTOP1–DNA cleavage complex reversal assay. (<b>A</b>) Top panel displays sequences of fluorescently labeled SS used in the assay. (<b>B</b>) Polyacrylamide gel reporting kinetics of formation of PA and CPT induced hTOP1-mediated DNA cleavage complexes. 3′-6-FAM end labeled 48 bp oligonucleotide was reacted with hTOP1 in presence or absence of 1 µM CPT, 10 µM PA, or both at 25 °C for 20 min. DNA cleavage was reversed by adding 0.35 M NaCl and monitored over time. (<b>C</b>) Graph reporting 35 bp band quantification as function of time for PA and CPT (blue line), CPT (red line), PA (black line), and hTOP1 (green line) as control. Samples are represented as mean value ± SD. * <span class="html-italic">p</span> < 0.05 *** <span class="html-italic">p</span> < 0.001.</p> "> Figure 4
<p>Pre-incubation dose-dependent relaxation assay. Relaxation of negative supercoiled plasmid DNA in a dose-dependent experiment with DMSO (lane 1), 150 μM and 200 μM PA in pre-incubation condition, indicated as PRE (lanes 2–3), and 150 μM and 200 μM PA in simultaneous condition, indicated as SIM (lane 4–5), with no protein added in lane 6. Reaction products are resolved on agarose gel and visualized with EtBr. C indicates negative control.</p> "> Figure 5
<p>Essential motions of MD simulations. (<b>A</b>) Representation of two extreme projections of motions described by first eigenvector (PC1), interpolated onto 3D structures of hTOP1-DNA (left), hTOP1-DNA-CPT (center) and hTOP1-DNA-CPT-PAs (right) systems. Direction and amplitude of the internal motions are shown as color shift from blue to red and width of ribbons, respectively. (<b>B</b>) 2D projections of first (PC1) and second (PC2) eigenvectors of hTOP1-DNA (left), hTOP1DNA-CPT (center) and hTOP1-DNA-CPT-PAs (right) systems. Color coding shows progression from starting (violet) to final (yellow) stages of the simulations.</p> "> Figure 6
<p>MD of PA-DNA systems. Representative snapshots for first replica are shown at 0 ns, 75 ns, 125 ns, and 250 ns. For each figure, DNA is shown using a cyan surface representation, while PA molecules are shown in Van der Waals representation.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Antarctic Invertebrate Extracts Inhibit hTOP1 Relaxation of Supercoiled DNA
2.2. PA Inhibits the Catalytic Activity of hTOP1
2.3. PA Inhibits hTOP1-Mediated DNA Religation
2.4. HTOP1–DNA Cleavage Complex Reversal Assay
2.5. Pre-Incubation Dose-Dependent Assay
2.6. Computational Analyses
2.7. Principal Component Analysis
2.8. MM/PBSA
2.9. Computational Analyses of DNA-PA Systems
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Bioassay-Guided Fractionation of PA from Artemisina plumosa
4.3. Dose-Dependent and Time Course Relaxation Assays
4.4. Religation Kinetics
4.5. HTOP1-Mediated DNA Cleavage Reactions
4.6. Molecular Modeling
4.7. Molecular Dynamics Simulations
4.8. Trajectory Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McKie, S.J.; Neuman, K.C.; Maxwell, A. DNA Topoisomerases: Advances in Understanding of Cellular Roles and Multi-Protein Complexes via Structure-Function Analysis. Bioessays 2021, 43, e2000286. [Google Scholar] [CrossRef] [PubMed]
- Talukdar, A.; Kundu, B.; Sarkar, D.; Goon, S.; Mondal, M.A. Topoisomerase I Inhibitors: Challenges, Progress and the Road Ahead. Eur. J. Med. Chem. 2022, 236, 114304. [Google Scholar] [CrossRef] [PubMed]
- Bondarev, A.D.; Jonsson, J.; Chubarev, V.N.; Tarasov, V.V.; Lagunas-Rangel, F.A.; Schiöth, H.B. Recent Developments of Topoisomerase Inhibitors: Clinical Trials, Emerging Indications, Novel Molecules and Global Sales. Pharmacol. Res. 2024, 209, 107431. [Google Scholar] [CrossRef] [PubMed]
- Wojtaszek, J.L.; Williams, R.S. From the TOP: Formation, Recognition and Resolution of Topoisomerase DNA Protein Crosslinks. DNA Repair. 2024, 142, 103751. [Google Scholar] [CrossRef]
- Delgado, J.L.; Hsieh, C.-M.; Chan, N.-L.; Hiasa, H. Topoisomerases as Anticancer Targets. Biochem. J. 2018, 475, 373–398. [Google Scholar] [CrossRef]
- Capranico, G.; Marinello, J.; Chillemi, G. Type I DNA Topoisomerases. J. Med. Chem. 2017, 60, 2169–2192. [Google Scholar] [CrossRef]
- Batty, P.; Gerlich, D.W. Mitotic Chromosome Mechanics: How Cells Segregate Their Genome. Trends Cell Biol. 2019, 29, 717–726. [Google Scholar] [CrossRef]
- Sharma, N.K.; Bahot, A.; Sekar, G.; Bansode, M.; Khunteta, K.; Sonar, P.V.; Hebale, A.; Salokhe, V.; Sinha, B.K. Understanding Cancer’s Defense against Topoisomerase-Active Drugs: A Comprehensive Review. Cancers 2024, 16, 680. [Google Scholar] [CrossRef]
- Yakkala, P.A.; Penumallu, N.R.; Shafi, S.; Kamal, A. Prospects of Topoisomerase Inhibitors as Promising Anti-Cancer Agents. Pharm. 2023, 16, 1456. [Google Scholar] [CrossRef]
- Martino, E.; Della Volpe, S.; Terribile, E.; Benetti, E.; Sakaj, M.; Centamore, A.; Sala, A.; Collina, S. The Long Story of Camptothecin: From Traditional Medicine to Drugs. Bioorganic Med. Chem. Lett. 2017, 27, 701–707. [Google Scholar] [CrossRef]
- Mei, C.; Lei, L.; Tan, L.-M.; Xu, X.-J.; He, B.-M.; Luo, C.; Yin, J.-Y.; Li, X.; Zhang, W.; Zhou, H.-H.; et al. The Role of Single Strand Break Repair Pathways in Cellular Responses to Camptothecin Induced DNA Damage. Biomed. Pharmacother. 2020, 125, 109875. [Google Scholar] [CrossRef]
- Westhorpe, R.; Roske, J.J.; Yeeles, J.T.P. Mechanisms Controlling Replication Fork Stalling and Collapse at Topoisomerase 1 Cleavage Complexes. Mol. Cell 2024, 84, 3469–3481.e7. [Google Scholar] [CrossRef] [PubMed]
- Stewart, L.; Ireton, G.C.; Champoux, J.J. A Functional Linker in Human Topoisomerase I Is Required for Maximum Sensitivity to Camptothecin in a DNA Relaxation Assay. J. Biol. Chem. 1999, 274, 32950–32960. [Google Scholar] [CrossRef]
- Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; et al. Cancer Chemotherapy and beyond: Current Status, Drug Candidates, Associated Risks and Progress in Targeted Therapeutics. Genes. Dis. 2023, 10, 1367–1401. [Google Scholar] [CrossRef] [PubMed]
- Odeniran, P.O.; Madlala, P.; Mkhwanazi, N.P.; Soliman, M.E.S. Camptothecin and Its Derivatives from Traditional Chinese Medicine in Combination with Anticancer Therapy Regimens: A Systematic Review and Meta-Analysis. Cancers 2024, 16, 3802. [Google Scholar] [CrossRef] [PubMed]
- Khaiwa, N.; Maarouf, N.R.; Darwish, M.H.; Alhamad, D.W.M.; Sebastian, A.; Hamad, M.; Omar, H.A.; Orive, G.; Al-Tel, T.H. Camptothecin’s Journey from Discovery to WHO Essential Medicine: Fifty Years of Promise. Eur. J. Med. Chem. 2021, 223, 113639. [Google Scholar] [CrossRef]
- Convey, P.; Peck, L.S. Antarctic Environmental Change and Biological Responses. Sci. Adv. 2019, 5, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Bakus, G.J.; Green, G. Toxicity in Sponges and Holothurians: A Geographic Pattern. Science 1974, 185, 951–953. [Google Scholar] [CrossRef]
- Núñez-Pons, L.; Avila, C. Natural Products Mediating Ecological Interactions in Antarctic Benthic Communities: A Mini-Review of the Known Molecules. Nat. Prod. Rep. 2015, 32, 1114–1130. [Google Scholar] [CrossRef]
- Soldatou, S.; Baker, B.J. Cold-Water Marine Natural Products, 2006 to 2016. Nat. Prod. Rep. 2017, 34, 585–626. [Google Scholar] [CrossRef]
- Avila, C. Biological and Chemical Diversity in Antarctica: From New Species to New Natural Products. Biodivers. 2016, 17, 5–11. [Google Scholar] [CrossRef]
- Karna, S.; Lim, W.B.; Kim, J.S.; Kim, S.W.; Zheng, H.; Bae, K.H.; Cho, M.S.; Oh, H.K.; Kim, O.S.; Choi, H.R.; et al. Saturated Fatty Acid Induced Autophagy in A549 Cells through Topoisomerase I Inhibition. FNS 2012, 3, 1220–1227. [Google Scholar] [CrossRef]
- Harada, H.; Yamashita, U.; Kurihara, H.; Fukushi, E.; Kawabata, J.; Kamei, Y. Antitumor Activity of Palmitic Acid Found as a Selective Cytotoxic Substance in a Marine Red Alga. Anticancer. Res. 2002, 22, 2587–2590. [Google Scholar] [PubMed]
- Pourquier, P.; Ueng, L.-M.; Fertala, J.; Wang, D.; Park, H.-J.; Essigmann, J.M.; Bjornsti, M.-A.; Pommier, Y. Induction of Reversible Complexes between Eukaryotic DNA Topoisomerase I and DNA-Containing Oxidative Base Damages: 7,8-DIHYDRO-8-OXOGUANINE AND 5-HYDROXYCYTOSINE. J. Biol. Chem. 1999, 274, 8516–8523. [Google Scholar] [CrossRef]
- Dexheimer, T.S.; Pommier, Y. DNA Cleavage Assay for the Identification of Topoisomerase I Inhibitors. Nat. Protoc. 2008, 3, 1736–1750. [Google Scholar] [CrossRef]
- Pommier, Y.; Leo, E.; Zhang, H.; Marchand, C. DNA Topoisomerases and Their Poisoning by Anticancer and Antibacterial Drugs. Chem. Biol. 2010, 17, 421–433. [Google Scholar] [CrossRef]
- Peng, H.; Marians, K.J. Escherichia Coli Topoisomerase IV. Purification, Characterization, Subunit Structure, and Subunit Interactions. J. Biol. Chem. 1993, 268, 24481–24490. [Google Scholar] [CrossRef]
- Staker, B.L.; Feese, M.D.; Cushman, M.; Pommier, Y.; Zembower, D.; Stewart, L.; Burgin, A.B. Structures of Three Classes of Anticancer Agents Bound to the Human Topoisomerase I-DNA Covalent Complex. J. Med. Chem. 2005, 48, 2336–2345. [Google Scholar] [CrossRef]
- Salomon-Ferrer, R.; Case, D.A.; Walker, R.C. An Overview of the Amber Biomolecular Simulation Package. WIREs Comput. Mol. Sci. 2013, 3, 198–210. [Google Scholar] [CrossRef]
- Ivani, I.; Dans, P.D.; Noy, A.; Pérez, A.; Faustino, I.; Hospital, A.; Walther, J.; Andrio, P.; Goñi, R.; Balaceanu, A.; et al. Parmbsc1: A Refined Force Field for DNA Simulations. Nat. Methods 2016, 13, 55–58. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2025 update. Nucleic Acids Res. 2025, 53, D1516–D1525. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Zhang, J.; Huang, W.; Zhang, Z.; Jia, X.; Wang, Z.; Shi, L.; Li, C.; Wolynes, P.G.; Zheng, S. DynamicBind: Predicting Ligand-Specific Protein-Ligand Complex Structure with a Deep Equivariant Generative Model. Nat. Commun. 2024, 15, 1071. [Google Scholar] [CrossRef] [PubMed]
- Martínez, L.; Andrade, R.; Birgin, E.G.; Martínez, J.M. PACKMOL: A Package for Building Initial Configurations for Molecular Dynamics Simulations. J. Comput. Chem. 2009, 30, 2157–2164. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate Structure Prediction of Biomolecular Interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Tian, C.; Kasavajhala, K.; Belfon, K.; Raguette, L.; Huang, H.; Migues, A.; Bickel, J.; Wang, Y. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution. J. Chem. Theory Comput. 2020, 16, 528–552. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Goga, N.; Rzepiela, A.J.; de Vries, A.H.; Marrink, S.J.; Berendsen, H.J.C. Efficient Algorithms for Langevin and DPD Dynamics. J. Chem. Theory Comput. 2012, 8, 3637–3649. [Google Scholar] [CrossRef]
- Aoki, K.M.; Yoneya, M.; Yokoyama, H. Constant Pressure Md Simulation Method. Mol. Cryst. Liq. Cryst. 2004, 413, 109–116. [Google Scholar] [CrossRef]
- Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H.J.C. Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. J. Comput. Phys. 1977, 23, 327–341. [Google Scholar] [CrossRef]
- Case, D.A.; Cheatham, T.E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber Biomolecular Simulation Programs. J. Comput. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef] [PubMed]
- Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA Methods to Estimate Ligand-Binding Affinities. Expert. Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef]
System | Interaction Energy (kcal/mol) | Electrostatic (kcal/mol) | VdW (kcal/mol) |
---|---|---|---|
hTOP1-DNA-CPT | −33.08 ± 3.86 | −19.39 ± 8.83 | −49.02 ± 3.07 |
hTOP1-DNA-CPT-PAs | −43.45 ± 3.39 | −29.83 ± 7.80 | −53.77 ± 2.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ottaviani, A.; Pietrafesa, D.; Soren, B.C.; Dasari, J.B.; Olsen, S.S.H.; Messina, B.; Demofonti, F.; Chicarella, G.; Agama, K.; Pommier, Y.; et al. Unveiling the Mechanism of Action of Palmitic Acid, a Human Topoisomerase 1B Inhibitor from the Antarctic Sponge Artemisina plumosa. Int. J. Mol. Sci. 2025, 26, 2018. https://doi.org/10.3390/ijms26052018
Ottaviani A, Pietrafesa D, Soren BC, Dasari JB, Olsen SSH, Messina B, Demofonti F, Chicarella G, Agama K, Pommier Y, et al. Unveiling the Mechanism of Action of Palmitic Acid, a Human Topoisomerase 1B Inhibitor from the Antarctic Sponge Artemisina plumosa. International Journal of Molecular Sciences. 2025; 26(5):2018. https://doi.org/10.3390/ijms26052018
Chicago/Turabian StyleOttaviani, Alessio, Davide Pietrafesa, Bini Chhetri Soren, Jagadish Babu Dasari, Stine S. H. Olsen, Beatrice Messina, Francesco Demofonti, Giulia Chicarella, Keli Agama, Yves Pommier, and et al. 2025. "Unveiling the Mechanism of Action of Palmitic Acid, a Human Topoisomerase 1B Inhibitor from the Antarctic Sponge Artemisina plumosa" International Journal of Molecular Sciences 26, no. 5: 2018. https://doi.org/10.3390/ijms26052018
APA StyleOttaviani, A., Pietrafesa, D., Soren, B. C., Dasari, J. B., Olsen, S. S. H., Messina, B., Demofonti, F., Chicarella, G., Agama, K., Pommier, Y., Morozzo della Rocca, B., Iacovelli, F., Romeo, A., Falconi, M., Baker, B. J., & Fiorani, P. (2025). Unveiling the Mechanism of Action of Palmitic Acid, a Human Topoisomerase 1B Inhibitor from the Antarctic Sponge Artemisina plumosa. International Journal of Molecular Sciences, 26(5), 2018. https://doi.org/10.3390/ijms26052018