COVID-19 Induces Greater NLRP3 Inflammasome Activation in Obese Patients than Other Chronic Illnesses: A Case–Control Study
<p>Biomarkers with higher expression in group B. Graphical representation of the percentage of immunoexpression per high-power field (HPF, 400× magnification) for interleukin-6 (IL-6, panel (<b>A</b>)), interleukin-18 (IL-18, panel (<b>B</b>)), caspase-9 (CASP-9, panel (<b>C</b>)), and hypoxia-inducible factor (HIF, panel (<b>D</b>)). Statistical analysis revealed significant differences, with lower tissue expression levels (highlighted by red arrows) observed in group A (COVID-19) compared to group B (Control). The corresponding <span class="html-italic">p</span>-values were as follows: IL-6 (<span class="html-italic">p</span> < 0.0001), IL-18 (<span class="html-italic">p</span> = 0.002), CASP-9 (<span class="html-italic">p</span> < 0.0001), and HIF (<span class="html-italic">p</span> = 0.0327). Statistical significance was determined using the non-parametric Mann–Whitney test (<span class="html-italic">p</span> < 0.05). Scale bar = 50 μm.</p> "> Figure 2
<p>Biomarkers with higher expression in group A. Graphical representation of the percentage of immunoexpression per high-power field (HPF, 400× magnification) for apoptosis-associated speck-like protein (ASC, panel (<b>A</b>)) and caspase-1 (CASP-1, panel (<b>B</b>)). Statistical analysis indicated significant differences, with higher tissue expression levels (highlighted by red arrows) observed in group A (COVID-19) compared to group B (Control). The corresponding <span class="html-italic">p</span>-values were as follows: ASC (<span class="html-italic">p</span> = 0.0387) and CASP-1 (<span class="html-italic">p</span> = 0.0142). Statistical significance was determined using the non-parametric Mann–Whitney test (<span class="html-italic">p</span> < 0.05). Scale bar = 50 μm.</p> "> Figure 3
<p>Biomarkers with no statistical difference between the studied groups. Graphical representation of the percentage of immunoexpression per high-power field (HPF, 400× magnification) for interleukin-8 (IL-8, panel (<b>A</b>)), tumor necrosis factor alpha (TNF-α, panel (<b>B</b>)), nuclear factor-kappa B (NF-κB, panel (<b>C</b>)), interleukin-1β (IL-1β, panel (<b>E</b>)), and gasdermin D (GASD-D, panel (<b>F</b>)). The NOD-like receptor protein 3 (NLRP3, panel (<b>D</b>)) is presented using the Allred score per HPF. None of the analyzed markers showed statistically significant differences in tissue expression (highlighted by red arrows) observed in group A (COVID-19) compared to group B (Control). The <span class="html-italic">p</span>-values were as follows: IL-8 (<span class="html-italic">p</span> = 0.8291), TNF-α (<span class="html-italic">p</span> = 0.2349), NF-κB (<span class="html-italic">p</span> = 0.9784), NLRP3 (<span class="html-italic">p</span> > 0.9999), IL-1β (<span class="html-italic">p</span> = 0.5856), and GASD-D (<span class="html-italic">p</span> = 0.6883). Statistical analyses were performed using the non-parametric Mann–Whitney test (<span class="html-italic">p</span> < 0.05). Scale bar = 50 μm.</p> ">
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Javier, F.; Sánchez, M.; Martínez-Sellés, M.; Molero Garcia, J.M.; Moreno Guillén, S.; Rodríguez-Artalejo, F.J.; Ruiz-Galiana, J.; Cantón, R.; De Lucas Ramos, P.; García-Botella, A.; et al. Review Insights for COVID-19 in 2023. Rev. Esp. Quimioter. 2023, 36, 114–124. [Google Scholar] [CrossRef]
- Biancolella, M.; Colona, V.L.; Luzzatto, L.; Watt, J.L.; Mattiuz, G.; Conticello, S.G.; Kaminski, N.; Mehrian-Shai, R.; Ko, A.I.; Gonsalves, G.S.; et al. COVID-19 Annual Update: A Narrative Review. Hum. Genomics 2023, 17, 68. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Piernas, C.; Astbury, N.M.; Hippisley-Cox, J.; O’Rahilly, S.; Aveyard, P.; Jebb, S.A. Associations between Body-Mass Index and COVID-19 Severity in 6.9 Million People in England: A Prospective, Community-Based, Cohort Study. Lancet Diabetes Endocrinol. 2021, 9, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Tchang, B.G.; Askin, G.; Sahagun, A.; Hwang, J.; Huang, H.; Mendelsohn Curanaj, F.A.; Seley, J.J.; Safford, M.M.; Alonso, L.C.; Aronne, L.J.; et al. The Independent Risk of Obesity and Diabetes and Their Interaction in COVID-19: A Retrospective Cohort Study. Obesity 2021, 29, 971–975. [Google Scholar] [CrossRef] [PubMed]
- Dragon-Durey, M.A.; Chen, X.; Kirilovsky, A.; Hamouda, N.B.; Sissy, C.E.; Russick, J.; Charpentier, E.; Binois, Y.; Marliot, F.; Meylan, M.; et al. Differential Association between Inflammatory Cytokines and Multiorgan Dysfunction in COVID-19 Patients with Obesity. PLoS ONE 2021, 16, e0252026. [Google Scholar] [CrossRef]
- Belchior-Bezerra, M.; Lima, R.S.; Medeiros, N.I.; Gomes, J.A.S. COVID-19, Obesity, and Immune Response 2 Years after the Pandemic: A Timeline of Scientific Advances. Obes. Rev. 2022, 23, e13496. [Google Scholar] [CrossRef]
- Michalakis, K.; Panagiotou, G.; Ilias, I.; Pazaitou-Panayiotou, K. Obesity and COVID-19: A Jigsaw Puzzle with Still Missing Pieces. Clin. Obes. 2021, 11, e12420. [Google Scholar] [CrossRef]
- Korakas, E.; Ikonomidis, I.; Kousathana, F.; Balampanis, K.; Kountouri, A.; Raptis, A.; Palaiodimou, L.; Kokkinos, A.; Lambadiari, V. Obesity and COVID-19: Immune and Metabolic Derangement as a Possible Link to Adverse Clinical Outcomes. Am. J. Physiol. Endocrinol. Metab. 2020, 319, E105–E109. [Google Scholar] [CrossRef]
- Yu, W.; Rohli, K.E.; Yang, S.; PJ, S. Impact of Obesity on COVID-19 Patients. J. Diabetes Complicat. 2021, 35, 107817. [Google Scholar] [CrossRef]
- Higham, A.; Singh, D. Increased ACE2 Expression in Bronchial Epithelium of COPD Patients Who Are Overweight. Obesity 2020, 28, 1586–1589. [Google Scholar] [CrossRef]
- De Lorenzo, A.; Estato, V.; Castro-Faria-Neto, H.C.; Tibirica, E. Obesity-Related Inflammation and Endothelial Dysfunction in COVID-19: Impact on Disease Severity. J. Inflamm. Res. 2021, 14, 2267–2276. [Google Scholar] [CrossRef] [PubMed]
- De Lima, J.C.; Moura-Assis, A.; Cintra, R.M.; Quinaglia, T.; Velloso, L.A.; Sposito, A.C. Central Role of Obesity in Endothelial Cell Dysfunction and Cardiovascular Risk. Rev. Assoc. Med. Bras. 2019, 65, 87–97. [Google Scholar] [CrossRef] [PubMed]
- O’Rourke, R.W.; Lumeng, C.N. Pathways to Severe COVID-19 for People with Obesity. Obesity 2021, 29, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Kwaifa, I.K.; Bahari, H.; Yong, Y.K.; Md Noor, S. Endothelial Dysfunction in Obesity-Induced Inflammation: Molecular Mechanisms and Clinical Implications. Biomolecules 2020, 10, 291. [Google Scholar] [CrossRef]
- Virdis, A.; Masi, S.; Colucci, R.; Chiriacò, M.; Uliana, M.; Puxeddu, I.; Bernardini, N.; Blandizzi, C.; Taddei, S. Microvascular Endothelial Dysfunction in Patients with Obesity. Curr. Hypertens. Rep. 2019, 21, 32. [Google Scholar] [CrossRef]
- Farías, M.A.; Diethelm-Varela, B.; Navarro, A.J.; Kalergis, A.M.; González, P.A. Interplay between Lipid Metabolism, Lipid Droplets, and DNA Virus Infections. Cells 2022, 11, 2224. [Google Scholar] [CrossRef]
- Gammone, M.A.; D’Orazio, N. COVID-19 and Obesity: Overlapping of Two Pandemics. Obes. Facts 2021, 14, 579–585. [Google Scholar] [CrossRef]
- Ryan, P.M.D.; Caplice, N.M. Is Adipose Tissue a Reservoir for Viral Spread, Immune Activation, and Cytokine Amplification in Coronavirus Disease 2019? Obesity 2020, 28, 1191–1194. [Google Scholar] [CrossRef]
- Sefik, E.; Qu, R.; Junqueira, C.; Kaffe, E.; Mirza, H.; Zhao, J.; Brewer, J.R.; Han, A.; Steach, H.R.; Israelow, B.; et al. Inflammasome Activation in Infected Macrophages Drives COVID-19 Pathology. Nature 2022, 606, 585–593. [Google Scholar] [CrossRef]
- Kulasinghe, A.; Tan, C.W.; dos Santos Miggiolaro, A.F.R.; Monkman, J.; SadeghiRad, H.; Bhuva, D.D.; Motta Junior, J.S.; Paula, C.B.V.; Nagashima, S.; Baena, C.P.; et al. Profiling of Lung SARS-CoV-2 and Influenza Virus Infection Dissects Virus-Specific Host Responses and Gene Signatures. Eur. Respir. J. 2022, 59, 2101881. [Google Scholar] [CrossRef]
- Bertocchi, I.; Foglietta, F.; Collotta, D.; Eva, C.; Brancaleone, V.; Thiemermann, C.; Collino, M. The Hidden Role of NLRP3 Inflammasome in Obesity-Related COVID-19 Exacerbations: Lessons for Drug Repurposing. Br. J. Pharmacol. 2020, 177, 4921–4930. [Google Scholar] [CrossRef] [PubMed]
- López-Reyes, A.; Martinez-Armenta, C.; Espinosa-Velázquez, R.; Vázquez-Cárdenas, P.; Cruz-Ramos, M.; Palacios-Gonzalez, B.; Gomez-Quiroz, L.E.; Martínez-Nava, G.A. NLRP3 Inflammasome: The Stormy Link Between Obesity and COVID-19. Front. Immunol. 2020, 11, 570251. [Google Scholar] [CrossRef] [PubMed]
- Vigneron, C.; Py, B.F.; Monneret, G.; Venet, F. The Double Sides of NLRP3 Inflammasome Activation in Sepsis. Clin. Sci. 2023, 137, 333–351. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Zhao, Y.; Wang, K.; Shi, X.; Wang, Y.; Huang, H.; Zhuang, Y.; Cai, T.; Wang, F.; Shao, F. Cleavage of GSDMD by Inflammatory Caspases Determines Pyroptotic Cell Death. Nature 2015, 526, 660–665. [Google Scholar] [CrossRef]
- You, R.; He, X.; Zeng, Z.; Zhan, Y.; Xiao, Y.; Xiao, R. Pyroptosis and Its Role in Autoimmune Disease: A Potential Therapeutic Target. Front. Immunol. 2022, 13, 1–17. [Google Scholar] [CrossRef]
- Frank, D.; Vince, J.E. Pyroptosis versus Necroptosis: Similarities, Differences, and Crosstalk. Cell Death Differ. 2019, 26, 99–114. [Google Scholar] [CrossRef]
- Yuan, J.; Najafov, A.; Py, B.F. Roles of Caspases in Necrotic Cell Death. Cell 2016, 167, 1693–1704. [Google Scholar] [CrossRef]
- Brentnall, M.; Rodriguez-Menocal, L.; De Guevara, R.L.; Cepero, E.; Boise, L.H. Caspase-9, Caspase-3 and Caspase-7 Have Distinct Roles During Intrinsic Apoptosis. BMC Cell Biol. 2013, 14, 32. [Google Scholar] [CrossRef]
- Leu, S.Y.; Tsang, Y.L.; Ho, L.C.; Yang, C.C.; Shao, A.N.; Chang, C.Y.; Lin, H.; Tsai, P.; Sung, J.; Tsai, Y. NLRP3 Inflammasome Activation, Metabolic Danger Signals, and Protein Binding Partners. J. Endocrinol. 2023, 257, 1–16. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, S.; Xiao, Y.; Zhang, W.; Wu, S.; Qin, T.; Yue, Y.; Qian, W.; Li, L. NLRP3 Inflammasome and Inflammatory Diseases. Oxid. Med. Cell. Longev. 2020, 2020, 4063562. [Google Scholar] [CrossRef]
- Zhao, N.; Di, B.; Xu, L. The NLRP3 inflammasome and COVID-19: Activation, pathogenesis and therapeutic strategies. Cytokine Growth Factor Rev. 2021, 61, 2–15. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Wu, H. Structural Mechanisms of NLRP3 Inflammasome Assembly and Activation. Annu. Rev. Immunol. 2023, 41, 301–316. [Google Scholar] [CrossRef]
- Moretti, J.; Blander, J.M. Increasing complexity of NLRP3 inflammasome regulation. J. Leukoc. Biol. 2021, 109, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Akther, M.; Haque, M.E.; Park, J.; Kang, T.B.; Lee, K.H. Nlrp3 ubiquitination—A new approach to target nlrp3 inflammasome activation. Int. J. Mol. Sci. 2021, 22, 8780. [Google Scholar] [CrossRef]
- Liao, Y.; Kong, Y.; Chen, H.; Xia, J.; Zhao, J.; Zhou, Y. Unraveling the priming phase of NLRP3 inflammasome activation: Molecular insights and clinical relevance. Int. Immunopharmacol. 2025, 146, 113821. [Google Scholar] [CrossRef]
- Toldo, S.; Bussani, R.; Nuzzi, V.; Bonaventura, A.; Mauro, A.G.; Cannatà, A.; Pillappa, R.; Sinagra, G.; Nana-Sinkam, P.; Sime, P. Inflammasome formation in the lungs of patients with fatal COVID-19. Inflammation Res. 2021, 70, 7–10. [Google Scholar] [CrossRef]
- Jones, S.A.; Jenkins, B.J. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat. Rev. Immunol. 2018, 18, 773–789. [Google Scholar] [CrossRef]
- Olajide, O.A.; Iwuanyanwu, V.U.; Lepiarz-Raba, I.; Al-Hindawi, A.A. Induction of exaggerated cytokine production in human peripheral blood mononuclear cells by a recombinant SARS-CoV-2 spike glycoprotein S1 and its inhibition by dexamethasone. Inflammation 2021, 44, 1865–1877. [Google Scholar] [CrossRef]
- Yao, X.; Huang, J.; Zhong, H.; Shen, N.; Faggioni, R.; Fung, M.; Yao, Y. Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacol. Ther. 2014, 141, 125–139. [Google Scholar] [CrossRef]
- Ridker, P.M.; Rane, M. Interleukin-6 signaling and anti-interleukin-6 therapeutics in cardiovascular disease. Circ. Res. 2021, 128, 1728–1746. [Google Scholar] [CrossRef]
- Landskron, G.; De La Fuente, M.; Thuwajit, P.; Thuwajit, C.; Hermoso, M.A. Chronic inflammation and cytokines in the tumor microenvironment. J. Immunol. Res. 2014, 2014, 149185. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.G.; Simpson, L.J.; Ferreira, A.M.; Rustagi, A.; Roque, J.; Asuni, A.; Ranganath, T.; Grant, P.M.; Subramanian, A.; Rossenberg-Hasson, Y.; et al. Cytokine profile in plasma of severe COVID-19 does not differ from ARDS and sepsis. JCI Insight 2020, 5, e140289. [Google Scholar] [CrossRef] [PubMed]
- Unamuno, X.; Gómez-Ambrosi, J.; Ramírez, B.; Rodríguez, A.; Becerril, S.; Valentí, V.; Moncada, R.; Silva, C.; Salvador, J.; Fruhbeck, G.; et al. NLRP3 inflammasome blockade reduces adipose tissue inflammation and extracellular matrix remodeling. Cell Mol. Immunol. 2021, 18, 1045–1057. [Google Scholar] [CrossRef] [PubMed]
- Battineni, G.; Sagaro, G.G.; Chintalapudi, N.; Amenta, F.; Tomassoni, D.; Tayebati, S.K. Impact of obesity-induced inflammation on cardiovascular diseases (CVD). Int. J. Mol. Sci. 2021, 22, 4798. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef]
- Matsumoto, H.; Ogura, H.; Shimizu, K.; Ikeda, M.; Hirose, T.; Matsuura, H.; Kang, S.; Takahashi, K.; Tanaka, T.; Shimazu, T. The clinical importance of a cytokine network in the acute phase of sepsis. Sci. Rep. 2018, 8, 13995. [Google Scholar] [CrossRef]
- Kang, S.; Narazaki, M.; Metwally, H.; Kishimoto, T. Historical overview of the interleukin-6 family cytokine. J. Exp. Med. 2020, 217, e20190347. [Google Scholar] [CrossRef]
- Kelley, N.; Jeltema, D.; Duan, Y.; He, Y. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. Int. J. Mol. Sci. 2019, 20, 3328. [Google Scholar] [CrossRef]
- Mirea, A.M.; Stienstra, R.; Kanneganti, T.D.; Tack, C.J.; Chavakis, T.; Toonen, E.J.M.; Joosten, L.A.B. Mice deficient in the IL-1β activation genes Prtn3, Elane, and Casp1 are protected against the development of obesity-induced NAFLD. Inflammation 2020, 43, 1054–1064. [Google Scholar] [CrossRef]
- Finucane, O.M.; Lyons, C.L.; Murphy, A.M.; Reynolds, C.M.; Klinger, R.; Healy, N.P.; Coll, R.C.; McAllan, L.; Nilaweera, K.N.; O’Reilly, M.E. Monounsaturated fatty acid-enriched high-fat diets impede adipose NLRP3 inflammasome-mediated IL-1β secretion and insulin resistance despite obesity. Diabetes 2015, 64, 2116–2128. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, Y.; Huang, Y.M.; Wang, M.; Ling, W.; Sui, Y.; Zhao, H. Obesity in patients with COVID-19: A systematic review and meta-analysis. Metabolism 2020, 113, 154378. [Google Scholar] [CrossRef] [PubMed]
- Ihim, S.A.; Abubakar, S.D.; Zian, Z.; Sasaki, T.; Saffarioun, M.; Maleknia, S.; Azizi, G. Interleukin-18 cytokine in immunity, inflammation, and autoimmunity: Biological role in induction, regulation, and treatment. Front. Immunol. 2022, 13, 919973. [Google Scholar] [CrossRef] [PubMed]
- Vandanmagsar, B.; Youm, Y.H.; Ravussin, A.; Galgani, J.E.; Stadler, K.; Mynatt, R.L.; Ravussin, E.; Stephens, J.M.; Dixit, V.D. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 2011, 17, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Nedeva, I.; Gateva, A.; Assyov, Y.; Karamfilova, V.; Hristova, J.; Yamanishi, K.; Kamenov, Z.; Okamura, H. IL-18 serum level in subjects with obesity, prediabetes, and newly identified type 2 diabetes. Iran. J. Immunol. 2022, 19, 193–200. [Google Scholar] [CrossRef]
- Scirica, B.M.; Lincoff, A.M.; Lingvay, I.; Bogdanski, P.; Buscemi, S.; Colhoun, H.; Craciun, A.; Ezhov, M.; Hardt-Lindberg, S.; Jeppesen, O.K.; et al. The effect of semaglutide on mortality and COVID-19–related deaths: An analysis from the SELECT trial. J. Am. Coll. Cardiol. 2024, 84, 1632–1642. [Google Scholar] [CrossRef]
- Yasuda, K.; Nakanishi, K.; Tsutsui, H. Interleukin-18 in Health and Disease. Int. J. Mol. Sci. 2019, 20, 649. [Google Scholar] [CrossRef]
- Kuipers, M.T.; Aslami, H.; Janczy, J.R.; Van Der Sluijs, K.F.; Vlaar, A.P.J.; Wolthuis, E.K.; Choi, G.; Roelofs, J.J.T.H.; Flavell, R.A.; Sutterwala, F.S.; et al. Ventilator-induced Lung Injury Is Mediated by the NLRP3. Inflammasome 2012, 116, 1104–1115. [Google Scholar] [CrossRef]
- Grailer, J.J.; Canning, B.A.; Kalbitz, M.; Haggadone, M.D.; Dhond, R.M.; Andjelkovic, A.V.; Zetoune, F.; Ward, P. Critical role for the NLRP3 inflammasome during acute lung injury. J. Immunol. 2014, 192, 5974–5983. [Google Scholar] [CrossRef]
- Wu, J.; Yan, Z.; Schwartz, D.E.; Yu, J.; Malik, A.B.; Hu, G. Activation of NLRP3 inflammasome in alveolar macrophages contributes to mechanical stretch-induced lung inflammation and injury. J. Immunol. 2013, 190, 3590–3599. [Google Scholar] [CrossRef]
- AbdelMassih, A.; Yacoub, E.; Husseiny, R.J.; Kamel, A.; Hozaien, R.; El Shershaby, M.; Rajab, M.; Yacoub, S.; Eid, M.A.; Elahmady, M.; et al. Hypoxia-inducible factor (HIF): The link between obesity and COVID-19. Obes. Med. 2021, 22, 100317. [Google Scholar] [CrossRef]
- Tian, M.; Liu, W.; Li, X.; Zhao, P.; Shereen, M.A.; Zhu, C.; Huang, S.; Liu, S.; Yu, X.; Yue, M. HIF-1α promotes SARS-CoV-2 infection and aggravates inflammatory responses to COVID-19. Signal Transduct. Target Ther. 2021, 6, 308. [Google Scholar] [CrossRef] [PubMed]
- Wicks, E.E.; Semenza, G.L. Hypoxia-inducible factors: Cancer progression and clinical translation. J. Clin. Investig. 2022, 132, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jahani, M.; Dokaneheifard, S.; Mansouri, K. Hypoxia: A key feature of COVID-19 launching activation of HIF-1 and cytokine storm. J. Inflamm. 2020, 17, 33. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Geng, X.; Warren, J.; Cosky, E.P.; Kaura, S.; Stone, C.; Li, F.; Ding, Y. Hypoxia-inducible factor-1α (HIF-1α) mediates NLRP3 inflammasome-dependent-pyroptotic and apoptotic cell death following ischemic stroke. Neuroscience 2020, 448, 126–139. [Google Scholar] [CrossRef]
- Copple, B.L. Hypoxia stimulates hepatocyte epithelial to mesenchymal transition by hypoxia-inducible factor and transforming growth factor-β-dependent mechanisms. Liver Int. 2010, 30, 669–682. [Google Scholar] [CrossRef]
- Nath, B.; Szabo, G. Hypoxia and hypoxia-inducible factors: Diverse roles in liver diseases. Hepatology 2012, 55, 622–633. [Google Scholar] [CrossRef]
- Kerget, B.; Afşin, D.E.; Aksakal, A.; Aşkin, S.; Araz, Ö. Could HIF-1α be a novel biomarker for the clinical course and treatment of pulmonary embolism? Turk. J. Med. Sci. 2020, 50, 963–968. [Google Scholar] [CrossRef]
- Korbecki, J.; Simińska, D.; Gąssowska-Dobrowolska, M.; Listos, J.; Gutowska, I.; Chlubek, D.; Baranowska-Bosiacka, I. Chronic and cycling hypoxia: Drivers of cancer chronic inflammation through HIF-1 and NF-κB activation. Int. J. Mol. Sci. 2021, 22, 10701. [Google Scholar] [CrossRef]
- Smith, K.B.; Smith, M.S. Obesity Statistics. Prim. Care Clin. Off. Pract. 2016, 43, 121–135. [Google Scholar] [CrossRef]
Variable | Group A (n = 14) | Group B (n = 9) | |
---|---|---|---|
Age (years) 1 | 68.0 (19.5) | 65 (23.0) | |
Sex 2 | Male | 11 (78.6 %) | 6 (66.6 %) |
Female | 3 (21.4%) | 3 (33.4%) | |
Time from hospitalization to death (days) 1 | 20.5 (13.8) | 1 (1) | |
Mechanical ventilation (days) 1 | 15.5 (10.5) | 1 (1) |
Biomarkers | Group A (n = 14) | Group B (n = 9) | p-Value |
---|---|---|---|
ASC | 12.4 (10.5) | 2.93 (3.53) | 0.0387 * |
IL-6 | 3.90 (4.20) | 31.1 (9.19) | 0.0001 * |
IL-18 | 4.90 (19.0) | 29.1 (4.17) | 0.002 * |
CASP-1 | 39.2 (31.3) | 16.3 (17.5) | 0.0142 * |
CASP-9 | 2.47 (5.19) | 29.0 (9.06) | 0.0001 * |
HIF | 2.40 (1.26) | 4.21 (3.12) | 0.0327 * |
IL-8 | 3.70 (5.22) | 3.11 (4.90) | 0.8291 |
TNF-α | 2.84 (19.4) | 8.50 (6.04) | 0.2349 |
IL-1β | 30.9 (21.5) | 24.1 (10.1) | 0.5856 |
NF-kB | 5.00 (2.00) | 4.50 (1.25) | 0.9784 |
NLRP3 | 8.00 (0.00) | 8.00 (0.00) | 0.9999 |
Gasdermin-D | 1.14 (9.61) | 3.55 (4.11) | 0.6883 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Amico, R.C.; Nagashima, S.; Carstens, L.B.; Bertoldi, K.d.G.; Mataruco, S.; Honório D’Agostini, J.C.; Hlatchuk, E.C.; da Silva, S.B.; de Noronha, L.; Baena, C.P. COVID-19 Induces Greater NLRP3 Inflammasome Activation in Obese Patients than Other Chronic Illnesses: A Case–Control Study. Int. J. Mol. Sci. 2025, 26, 1541. https://doi.org/10.3390/ijms26041541
D’Amico RC, Nagashima S, Carstens LB, Bertoldi KdG, Mataruco S, Honório D’Agostini JC, Hlatchuk EC, da Silva SB, de Noronha L, Baena CP. COVID-19 Induces Greater NLRP3 Inflammasome Activation in Obese Patients than Other Chronic Illnesses: A Case–Control Study. International Journal of Molecular Sciences. 2025; 26(4):1541. https://doi.org/10.3390/ijms26041541
Chicago/Turabian StyleD’Amico, Raíssa Campos, Seigo Nagashima, Lucas Baena Carstens, Karina de Guadalupe Bertoldi, Sabrina Mataruco, Júlio Cesar Honório D’Agostini, Elisa Carolina Hlatchuk, Sofia Brunoro da Silva, Lucia de Noronha, and Cristina Pellegrino Baena. 2025. "COVID-19 Induces Greater NLRP3 Inflammasome Activation in Obese Patients than Other Chronic Illnesses: A Case–Control Study" International Journal of Molecular Sciences 26, no. 4: 1541. https://doi.org/10.3390/ijms26041541
APA StyleD’Amico, R. C., Nagashima, S., Carstens, L. B., Bertoldi, K. d. G., Mataruco, S., Honório D’Agostini, J. C., Hlatchuk, E. C., da Silva, S. B., de Noronha, L., & Baena, C. P. (2025). COVID-19 Induces Greater NLRP3 Inflammasome Activation in Obese Patients than Other Chronic Illnesses: A Case–Control Study. International Journal of Molecular Sciences, 26(4), 1541. https://doi.org/10.3390/ijms26041541