Discovery of PPAR Alpha Lipid Pathway Modulators That Do Not Bind Directly to the Receptor as Potential Anti-Cancer Compounds
<p>Activity of PPARE-Luciferase in KAIMRC1 cells: KAIMRC1 cells were transfected with PPARE-Luciferase (PPARE) alone, with PPAR alpha (PRα) (<b>A</b>) or PPAR gamma (<b>B</b>). As indicated, the cells were treated with PPAR alpha agonist (GW7647), antagonist (GW6471) or PPAR gamma agonist (Rosiglitazone), or antagonist (T0070907) in the absence (no FBS) or presence of 10% FBS. The ratio of PPARE-Luciferase/Renilla-Luciferase is blotted.</p> "> Figure 2
<p>Schematic representation of screening cascade: KAIMRC1 cells transfected with PPARE-Luciferase and PPARα were treated with kinase inhibitors, epigenetic modulators, or stem cell differentiators. The identified compounds that inhibited the PPARE-Luciferase were characterized further as indicated.</p> "> Figure 3
<p>Inhibition of PPARE-Luciferase by selected compounds: the 11 compounds that inhibited by 40% the PPARE-Luciferase in the presence of PPAR alpha and did not affect the renilla or kill the KAIMRC1 cells were retested in the Luciferase reporter assay for confirmation after 24 h of treatment.</p> "> Figure 4
<p>Structures of GW6471, NSC3852, and PHA665752.</p> "> Figure 5
<p>Overlay of the docked pose of GW6471 (magenta sticks) and the X-ray crystal structure pose (yellow sticks). The SMRT co-repressor is shown as a teal carton, residues as platinum sticks, and hydrogen bonds as yellow dashed lines.</p> "> Figure 6
<p>The docked poses of (<b>A</b>) NSC3852 (pink sticks) and (<b>B</b>) PHA665752 (green sticks). The X-ray crystal structure pose of GW6471 is shown as yellow sticks, the SMRT co-repressor as a teal carton, residues as platinum sticks, hydrogen bonds as yellow dashed lines, and halogen bonds as gold dashed lines.</p> "> Figure 7
<p>TR-FRET-based competitive binding assay for PPAR alphawas conducted for one hour for the compounds GW7647, GW6471, NSC3852, and PHA665752 at three concentrations (0.1, 1, and 10 µM). GW7647 was used as a positive (agonist) ligand control for PPAR α. GW6471 was used as an antagonist for PPAR alpha, while DMSO was used as a negative control.</p> "> Figure 8
<p>PPARα expression in different cancer cell lines. Real-time quantitative PCR showing the relative quantification (RQ) of PPARα in KAIMRC1, MDA-MB231, and SW620 cells. The cells were grown for 48 h for RNA isolation, and cDNA was synthesized using gene-specific primers. Relative quantification values are means (bars) ± and standard deviations (error bars) from three biological replicates.</p> "> Figure 9
<p>Dose-response curve for the half-maximal inhibitory concentration IC<sub>50</sub> (μM) of (<b>A</b>) NSC3852 and (<b>B</b>) PHA665752 against KAIMRC1, MDAMB231, and SW620 cell lines. The X-axis is the log of concentrations in µM, and the Y-axis is normalized cell viability in percentages.</p> "> Figure 10
<p>Effect of PPAR alpha pathway inhibitors on KAIMRC1 cell stress pathway: (<b>A</b>) post-treatment multiplex protein profiling of KAIMRC1 cells. The human cell stress array was utilized to detect the expression of key proteins involved in the PPARα inhibition pathway. (<b>B</b>) Graphical representation of selected analytes. The X-axis shows compounds, and the y-axis denotes the mean pixel density.</p> "> Figure 10 Cont.
<p>Effect of PPAR alpha pathway inhibitors on KAIMRC1 cell stress pathway: (<b>A</b>) post-treatment multiplex protein profiling of KAIMRC1 cells. The human cell stress array was utilized to detect the expression of key proteins involved in the PPARα inhibition pathway. (<b>B</b>) Graphical representation of selected analytes. The X-axis shows compounds, and the y-axis denotes the mean pixel density.</p> "> Figure 11
<p>Profiling apoptosis proteins in treated KAIMRC1 cells. (<b>A</b>) Arrays were incubated with 400 µg of KAIMRC1 cell lysates treated with DMSO, NSC3852, PHA66575, and GW6471. The human apoptosis array detects multiple apoptosis-related proteins in treated KAIMRC1 cell lysates. Each protein was spotted in duplicate. The pairs of dots in each corner are the positive controls. (<b>B</b>) Graphical representation of selected lysates. The X-axis shows PPARA alpha modulators and the Y-axis denotes averaged pixel density.</p> "> Figure 11 Cont.
<p>Profiling apoptosis proteins in treated KAIMRC1 cells. (<b>A</b>) Arrays were incubated with 400 µg of KAIMRC1 cell lysates treated with DMSO, NSC3852, PHA66575, and GW6471. The human apoptosis array detects multiple apoptosis-related proteins in treated KAIMRC1 cell lysates. Each protein was spotted in duplicate. The pairs of dots in each corner are the positive controls. (<b>B</b>) Graphical representation of selected lysates. The X-axis shows PPARA alpha modulators and the Y-axis denotes averaged pixel density.</p> "> Figure 12
<p>Effect of PPAR alpha pathway inhibitor of expression of fatty acid metabolism genes. Gene expression of human fatty acid metabolism genes in KAIMRC1 cells treated with PPARα modulators (NSC3852 and PHA665752) in comparison to the PPARα antagonist (GW6471).</p> "> Figure 12 Cont.
<p>Effect of PPAR alpha pathway inhibitor of expression of fatty acid metabolism genes. Gene expression of human fatty acid metabolism genes in KAIMRC1 cells treated with PPARα modulators (NSC3852 and PHA665752) in comparison to the PPARα antagonist (GW6471).</p> "> Figure 13
<p>The protein–protein interaction network using the STRING app. Proteins are represented with color nodes, and interactions are represented with edges. Strong interactions are shown with thicker edges. The proteins are segregated into target, connector, and modulated proteins.</p> ">
Abstract
:1. Introduction
2. Results
2.1. PPAR Alpha Pathway Is Highly Active in KAIMRC1 Cells
2.2. Discovery of PPAR Alpha Pathway Inhibitors in KAIMRC1 Cells
2.3. PPAR Alpha Pathway Inhibitors Induce KAIMRC1 Cells Killing
Compound | IC50 (µM) | R2 | Target/Reference | |
---|---|---|---|---|
Control | Doxorubicin | 0.07579 | 0.9522 | Inhibit DNA synthesis by intercalation and inhibit topoisomerase II [38,39] |
Mitoxantrone | 0.01359 | 0.9695 | ||
GW6471 | 0.05605 | 0.9368 | PPAR alpha antagonist [24] | |
Epigenetic Modulators | PF 03814735 | 3.336 | 0.9024 | Aurora kinase A and B inhibitor [37] |
NSC3852 | 0.2967 | 0.9479 | Pan-histone deacetylase inhibitor [33] | |
U0126 | 118.4 | 0.9360 | Potent selective inhibitor of MEK1 and 2 [40] | |
UNC 0642 | 1.879 | 0.9918 | G9a and GLP histone lysine methyltransferase inhibitor [35] | |
Retinoic acid | 52.37 | 0.9338 | Activator of retinoic acid receptors [41] | |
Stem Cell Differentiators | GANT 61 | 7.242 | 0.957 | Transcription factors [42] |
BMS 453 | 297.6 | 0.9450 | Synthetic retinoid: RARβ agonist; RARα and RARγ antagonist [43] | |
Kinase Inhibitors | Purvalanol A | 17.95 | 0.7617 | Cdk inhibitor; potently inhibits cdk1, cdk2, and cdk5 [44] |
ZM 449829 | 8.332 | 0.9006 | Potent selective inhibitor of Janus tyrosine kinase 3 (JAK3) [45] | |
IMD 0354 | 1.682 | 0.9698 | Inhibitor of IκB kinase-2 (IKK-2, IKK-β) [34] | |
PHA665752 | 2.483 | 0.9816 | Potent, selective, and ATP-competitive inhibitor of c-Met kinase [36] |
2.4. Characterize the Killing Mechanism of PPAR Alpha Pathway Inhibitors in KAIMRC1 Cells
2.4.1. PHA665752 and NSC3852 Do Not Bind PPAR Alpha
2.4.2. NSC3852 and PHA665752 Cell Killing Dependency on PPAR Alpha Overexpression
KAIMRC1 | MDAMB231 | SW620 | ||||
---|---|---|---|---|---|---|
IC50 | R2 | IC50 | R2 | IC50 | R2 | |
NSC3852 | 0.26 | 0.93 | 7.7 | 0.91 | 10.82 | 0.97 |
PHA665752 | 3.3 | 0.94 | 2.5 | 0.99 | ~12.8 | 0.97 |
2.4.3. Effect of PPAR Alpha Pathway Inhibitors on Stress and Apoptosis Pathways
2.4.4. Effect of PPAR Alpha Pathway on Fatty Acid Metabolism in KAIMRC1 Cells
3. Materials and Methods
3.1. Biological and Chemical Reagents
3.2. Cell Culture
3.3. Cell Transfection and Luciferase Reporter Assays
3.4. Cell Proliferation Assays
3.5. Human Proteome Profiler Array
3.6. RNA Extraction and cDNA Synthesis
3.7. RT2 Profiler PCR Arrays
3.8. Quantitative Real-Time PCR (QPCR) of PPARα mRNA Expression
3.9. Molecular Docking of NSC3852 and PHA665752
3.10. PPARα TR-FRET-Based Competitive Receptor Binding Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Nuclear Receptors Nomenclature Committee. A Unified Nomenclature System for the Nuclear Receptor Superfamily. Cell 1999, 97, 161–163. Available online: https://www.researchgate.net/profile/Jamie-Bridgham/publication/293875665_Table_S6/data/56cb375308ae1106370b7b23/pbio1000497s015.pdf (accessed on 16 December 2024).
- Weigel, N.L.; Zhang, Y. Ligand-independent activation of steroid hormone receptors. J. Mol. Med. 1998, 76, 469–479. [Google Scholar] [CrossRef]
- Simons, S.S.; Edwards, D.P.; Kumar, R. Minireview: Dynamic Structures of Nuclear Hormone Receptors: New Promises and Challenges. Mol. Endocrinol. 2014, 28, 173–182. [Google Scholar] [CrossRef]
- Evans, R.M.; Mangelsdorf, D.J. Nuclear receptors, RXR, and the big bang. Cell 2014, 157, 255–266. [Google Scholar] [CrossRef]
- Bourguet, W.; Germain, P.; Gronemeyer, H. Nuclear receptor ligand-binding domains: Three-dimensional structures, molecular interactions and pharmacological implications. Trends Pharmacol. Sci. 2000, 21, 381–388. [Google Scholar] [CrossRef]
- Smirnov, A.N. Nuclear receptors: Nomenclature, ligands, mechanisms of their effects on gene expression. Biochemistry 2002, 67, 957–977. [Google Scholar] [CrossRef]
- Weigel, N.L.; Moore, N.L. Steroid Receptor Phosphorylation: A Key Modulator of Multiple Receptor Functions. Mol. Endocrinol. 2007, 21, 2311–2319. [Google Scholar] [CrossRef]
- Yin, Y.; Russell, R.G.; Dettin, L.E.; Bai, R.; Wei, Z.-L.; Kozikowski, A.P.; Kopleovich, L.; Glazer, R.I. Peroxisome Proliferator-Activated Receptor δ and γ Agonists Differentially Alter Tumor Differentiation and Progression During Mammary Carcinogenesis. Cancer Res. 2005, 65, 3950–3957. [Google Scholar] [CrossRef]
- Ward, R.D.; Weigel, N.L. Steroid receptor phosphorylation: Assigning function to site-specific phosphorylation. BioFactors 2009, 35, 528–536. [Google Scholar] [CrossRef]
- Bonofiglio, D.; Gabriele, S.; Aquila, S.; Catalano, S.; Gentile, M.; Middea, E.; Giordano, F.; Andò, S. Estrogen Receptor α Binds to Peroxisome Proliferator–Activated Receptor Response Element and Negatively Interferes with Peroxisome Proliferator–Activated Receptor γ Signaling in Breast Cancer Cells. Clin. Cancer Res. 2005, 11, 6139–6147. [Google Scholar] [CrossRef] [PubMed]
- Berry, D.A.; Cirrincione, C.; Henderson, I.C.; Citron, M.L.; Budman, D.R.; Goldstein, L.J.; Martino, S.; Perez, E.A.; Muss, H.B.; Norton, L.; et al. Estrogen-Receptor Status and Outcomes of Modern Chemotherapy for Patients with Node-Positive Breast Cancer. JAMA 2006, 295, 1658–1667. [Google Scholar] [CrossRef]
- Hudelist, G.; Czerwenka, K.; Kubista, E.; Marton, E.; Pischinger, K.; Singer, C.F. Expression of Sex Steroid Receptors and their Co-Factors in Normal and Malignant Breast Tissue: AIB1 is a Carcinoma-Specific Co-Activator. Breast Cancer Res. Treat. 2003, 78, 193–204. [Google Scholar] [CrossRef]
- Ishay-Ronen, D.; Diepenbruck, M.; Kalathur, R.K.R.; Sugiyama, N.; Tiede, S.; Ivanek, R.; Bantug, G.; Morini, M.F.; Wang, J.; Hess, C.; et al. Gain Fat—Lose Metastasis: Converting Invasive Breast Cancer Cells into Adipocytes Inhibits Cancer Metastasis. Cancer Cell 2019, 35, 17–32.e6. [Google Scholar] [CrossRef]
- Koeffler, H.P. Peroxisome Proliferator-activated Receptor γ and Cancers. Clin. Cancer Res. 2003, 9, 1–9. Available online: https://aacrjournals.org/clincancerres/article/9/1/1/289318/Peroxisome-Proliferator-activated-Receptor-and (accessed on 16 December 2024).
- Stebbins, K.J.; Broadhead, A.R.; Cabrera, G.; Correa, L.D.; Messmer, D.; Bundey, R.; Baccei, C.; Bravo, Y.; Chen, A.; Stock, N.S.; et al. In vitro and in vivo pharmacology of NXT629, a novel and selective PPARα antagonist. Eur. J. Pharmacol. 2017, 809, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Eastham, L.L.; Mills, C.N.; Niles, R.M. PPARα/γ Expression and Activity in Mouse and Human Melanocytes and Melanoma Cells. Pharm. Res. 2008, 25, 1327–1333. [Google Scholar] [CrossRef] [PubMed]
- Collett, G.P.; Betts, A.M.; Johnson, M.I.; Pulimood, A.B.; Cook Susan Neal, D.E.; Robson, C.N. Peroxisome Pro-liferator-activated Receptor α Is an Androgen-responsive Gene in Human Prostate and Is Highly Expressed in Prostatic Ade-nocarcinoma. Clin. Cancer Res. 2000, 6, 3241–3248. Available online: https://aacrjournals.org/clincancerres/article/6/8/3241/288452/Peroxisome-Proliferator-activated-Receptor-Is-an (accessed on 16 December 2024).
- E Spaner, D.; Lee, E.; Shi, Y.; Wen, F.; Li, Y.; Tung, S.; McCaw, L.; Wong, K.; Gary-Gouy, H.; Dalloul, A.; et al. PPAR-alpha is a therapeutic target for chronic lymphocytic leukemia. Leukemia 2013, 27, 1090–1099. [Google Scholar] [CrossRef]
- Kaipainen, A.; Kieran, M.W.; Huang, S.; Butterfield, C.; Bielenberg, D.; Mostoslavsky, G.; Mulligan, R.; Folkman, J.; Panigrahy, D. PPARα Deficiency in Inflammatory Cells Suppresses Tumor Growth. PLoS ONE 2007, 2, e260. [Google Scholar] [CrossRef]
- Fu, J.; Gaetani, S.; Oveisi, F.; Verme, J.L.; Serrano, A.; de Fonseca, F.R.; Rosengarth, A.; Luecke, H.; Di Giacomo, B.; Tarzia, G.; et al. Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-α. Nature 2003, 425, 90–93. [Google Scholar] [CrossRef]
- Devchand, P.R.; Keller, H.; Peters, J.M.; Vazquez, M.; Gonzalez, F.J.; Wahli, W. The PPARα–leukotriene B4 pathway to inflammation control. Nature 1996, 384, 39–43. [Google Scholar] [CrossRef]
- Bravo, Y.; Baccei, C.S.; Broadhead, A.; Bundey, R.; Chen, A.; Clark, R.; Correa, L.; Jacintho, J.D.; Lorrain, D.S.; Messmer, D.; et al. Identification of the first potent, selective and bioavailable PPARα antagonist. Bioorg. Med. Chem. Lett. 2014, 24, 2267–2272. [Google Scholar] [CrossRef]
- Kehrer, J.P.; Biswal, S.S.; LA, E.; Thuillier, P.; Datta, K.; Fischer, S.M.; Heuvel, J.P.V. Inhibition of peroxisome-proliferator-activated receptor (PPAR)α by MK886. Biochem. J. 2001, 356, 899–906. [Google Scholar] [CrossRef]
- Xu, H.E.; Stanley, T.B.; Montana, V.G.; Lambert, M.H.; Shearer, B.G.; Cobb, J.E.; McKee, D.D.; Galardi, C.M.; Plunket, K.D.; Nolte, R.T.; et al. Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPARα. Nature 2002, 415, 813–817. [Google Scholar] [CrossRef]
- Willson, T.M.; Brown, P.J.; Sternbach, D.D.; Henke, B.R. The PPARs: From Orphan Receptors to Drug Discovery. J. Med. Chem. 2000, 43, 527–550. [Google Scholar] [CrossRef]
- Zhang, L.; Yao, Y.; Liu, S. Targeting fatty acid metabolism for cancer therapy. Fundam. Res. 2024, in press. [CrossRef]
- Ruiz-Pérez, M.V.; Sainero-Alcolado, L.; Oliynyk, G.; Matuschek, I.; Balboni, N.; Ubhayasekera, S.K.A.; Snaebjornsson, M.T.; Makowski, K.; Aaltonen, K.; Bexell, D.; et al. Inhibition of fatty acid synthesis induces differentiation and reduces tumor burden in childhood neuroblastoma. iScience 2021, 24, 102128. [Google Scholar] [CrossRef]
- Ali, R.; Samman, N.; Al Zahrani, H.; Nehdi, A.; Rahman, S.; Khan, A.L.; Al Balwi, M.; Alriyees, L.A.; Alzaid, M.; Al Askar, A.; et al. Isolation and characterization of a new naturally immortalized human breast carcinoma cell line, KAIMRC1. BMC Cancer 2017, 17, 803. [Google Scholar] [CrossRef]
- Roongta, U.V.; Pabalan, J.G.; Wang, X.; Ryseck, R.P.; Fargnoli, J.; Henley, B.J.; Yang, W.P.; Zhu, J.; Madireddi, M.T.; Lawrence, R.M.; et al. Cancer cell dependence on unsaturated fatty acids implicates stea-royl-CoA desaturase as a target for cancer therapy. Mol. Cancer Res. 2011, 9, 1551–1561. [Google Scholar] [CrossRef]
- Chajès, V.; Cambot, M.; Moreau, K.; Lenoir, G.M.; Joulin, V.; Chajès, V. Acetyl-CoA Carboxylase α Is Essential to Breast Cancer Cell Survival. Cancer Res. 2006, 66, 5287–5294. [Google Scholar] [CrossRef]
- Castelli, V.; Catanesi, M.; Alfonsetti, M.; Laezza, C.; Lombardi, F.; Cinque, B.; Cifone, M.G.; Ippoliti, R.; Benedetti, E.; Cimini, A.; et al. PPARα-Selective Antagonist GW6471 Inhibits Cell Growth in Breast Cancer Stem Cells Inducing Energy Imbalance and Metabolic Stress. Biomedicines 2021, 9, 127. [Google Scholar] [CrossRef]
- Nehdi, A.; Ali, R.; Alhallaj, A.; Alzahrani, H.; Samman, N.; Mashhour, A.; Baz, O.; Barhoumi, T.; Alghanem, B.; Khan, A.; et al. Nuclear Receptors Are Differentially Expressed and Activated in KAIMRC1 Compared to MCF7 and MDA-MB231 Breast Cancer Cells. Molecules 2019, 24, 2028. [Google Scholar] [CrossRef] [PubMed]
- Wiggers, C.R.; Govers, A.M.; Lelieveld, D.; Egan, D.A.; Zwaan, C.M.; Sonneveld, E.; Coffer, P.J.; Bartels, M. Epigenetic drug screen identifies the histone deacetylase inhibitor NSC3852 as a potential novel drug for the treatment of pediatric acute myeloid leukemia. Pediatr. Blood Cancer 2019, 66, e27785. [Google Scholar] [CrossRef]
- Onai, Y.; Suzuki, J.-I.; Kakuta, T.; Maejima, Y.; Haraguchi, G.; Fukasawa, H.; Muto, S.; Itai, A.; Isobe, M. Inhibition of IκB phosphorylation in cardiomyocytes attenuates myocardial ischemia/reperfusion injury. Cardiovasc. Res. 2004, 63, 51–59. [Google Scholar] [CrossRef]
- Liu, F.; Barsyte-Lovejoy, D.; Li, F.; Xiong, Y.; Korboukh, V.; Huang, X.P.; Allali-Hassani, A.; Janzen, W.P.; Roth, B.L.; Frye, S.V.; et al. Discovery of an in vivo chemical probe of the lysine methyl-transferases G9a and GLP. J. Med. Chem. 2013, 56, 8931–8942. [Google Scholar] [CrossRef]
- Christensen, J.G.; Schreck, R.; Burrows, J.; Kuruganti, P.; Chan, E.; Le, P.; Chen, J.; Wang, X.; Ruslim, L.; Blake, R.; et al. A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo. Cancer Res. 2003, 63, 7345–7355. [Google Scholar]
- Hook, K.E.; Garza, S.J.; Lira, M.E.; Ching, K.A.; Lee, N.V.; Cao, J.; Yuan, J.; Ye, J.; Ozeck, M.; Shi, S.T.; et al. An Integrated Genomic Approach to Identify Predictive Biomarkers of Response to the Aurora Kinase Inhibitor PF-03814735. Mol. Cancer Ther. 2012, 11, 710–719. [Google Scholar] [CrossRef] [PubMed]
- Pommier, Y.; Leo, E.; Zhang, H.; Marchand, C. DNA topoisomerases and their poisoning by anticancer and anti-bacterial drugs. Cell Chem. Biol. 2010, 17, 421–433. [Google Scholar] [CrossRef]
- Mazerski, J.; Martelli, S.; Borowski, E. The geometry of intercalation complex of antitumor mitoxantrone and ametantrone with DNA: Molecular dynamics simulations. Acta Biochim. Pol. 1998, 45, 1–11. [Google Scholar] [CrossRef]
- Davies, S.P.; Reddy, H.; Caivano, M.; Cohen, P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 2000, 351, 95–105. [Google Scholar] [CrossRef]
- Apfel, C.; Bauer, F.; Crettaz, M.; Forni, L.; Kamber, M.; Kaufmann, F.; LeMotte, P.; Pirson, W.; Klaus, M. A retinoic acid receptor alpha antagonist selectively counteracts retinoic acid effects. Proc. Natl. Acad. Sci. USA 1992, 89, 7129–7133. [Google Scholar] [CrossRef]
- Lauth, M.; Bergström, Å.; Shimokawa, T.; Toftgård, R. Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc. Natl. Acad. Sci. USA 2007, 104, 8455–8460. [Google Scholar] [CrossRef]
- Chen, J.; Penco, S.; Ostrowski, J.; Balaguer, P.; Pons, M.; Starrett, J.; Reczek, P.; Chambon, P.; Gronemeyer, H. RAR-specific agonist/antagonists which dissociate transactivation and AP1 transrepression inhibit anchorage-independent cell proliferation. EMBO J. 1995, 14, 1187–1197. [Google Scholar] [CrossRef]
- Gray, N.S.; Wodicka, L.; Thunnissen, A.-M.W.H.; Norman, T.C.; Kwon, S.; Espinoza, F.H.; Morgan, D.O.; Barnes, G.; LeClerc, S.; Meijer, L.; et al. Exploiting Chemical Libraries, Structure, and Genomics in the Search for Kinase Inhibitors. Science 1998, 281, 533–538. [Google Scholar] [CrossRef]
- Brown, G.R.; Bamford, A.M.; Bowyer, J.; James, D.S.; Rankine, N.; Tang, E.; Torr, V.; Culbert, E.J. Naphthyl ketones: A new class of Janus kinase 3 inhibitors. Bioorg. Med. Chem. Lett. 2000, 10, 575–579. [Google Scholar] [CrossRef]
- Xu, H.E.; Lambert, M.H.; Montana, V.G.; Plunket, K.D.; Moore, L.B.; Collins, J.L.; Oplinger, J.A.; Kliewer, S.A.; Gampe, R.T., Jr.; McKee, D.D.; et al. Structural determinants of ligand binding selectivity between the peroxisome proliferator-activated receptors. Proc. Natl. Acad. Sci. USA 2001, 98, 13919–13924. [Google Scholar] [CrossRef]
- Ammazzalorso, A.; Bruno, I.; Florio, R.; de Lellis, L.; Laghezza, A.; Cerchia, C.; De Filippis, B.; Fantacuzzi, M.; Giampietro, L.; Maccallini, C.; et al. Sulfonimide and amide derivatives as novel PPARα antagonists: Synthesis, antiproliferative activity, and docking studies. ACS Med. Chem. Lett. 2020, 11, 624–632. [Google Scholar] [CrossRef]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Martirosyan, A.; Leonard, S.; Shi, X.; Griffith, B.; Gannett, P.; Strobl, J. Actions of a Histone Deacetylase Inhibitor NSC3852 (5-Nitroso-8-quinolinol) Link Reactive Oxygen Species to Cell Differentiation and Apoptosis in MCF-7 Human Mammary Tumor Cells. J. Pharmacol. Exp. Ther. 2006, 317, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Allison, D.; Condon, B.; Zhang, F.; Gheyi, T.; Zhang, A.; Ashok, S.; Russell, M.; MacEwan, I.; Qian, Y.; et al. The 2.5 Å Crystal Structure of the SIRT1 Catalytic Domain Bound to Nicotinamide Adenine Dinucleotide (NAD+) and an Indole (EX527 Analogue) Reveals a Novel Mechanism of Histone Deacetylase Inhibition. J. Med. Chem. 2013, 56, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Watson, P.J.; Millard, C.J.; Riley, A.M.; Robertson, N.S.; Wright, L.C.; Godage, H.Y.; Cowley, S.M.; Jamieson, A.G.; Potter, B.V.L.; Schwabe, J.W.R. Insights into the activation mechanism of class I HDAC complexes by inositol phosphates. Nat. Commun. 2016, 7, 11262. [Google Scholar] [CrossRef]
- Tamanini, E.; Miyamura, S.; Buck, I.M.; Cons, B.D.; Dawson, L.; East, C.; Futamura, T.; Goto, S.; Griffiths-Jones, C.; Hashimoto, T.; et al. Fragment-Based Discovery of a Novel, Brain Penetrant, Orally Active HDAC2 Inhibitor. ACS Med. Chem. Lett. 2022, 13, 1591–1597. [Google Scholar] [CrossRef]
- Luckhurst, C.A.; Aziz, O.; Beaumont, V.; Bürli, R.W.; Breccia, P.; Maillard, M.C.; Haughan, A.F.; Lamers, M.; Leonard, P.; Matthews, K.L.; et al. Development and characterization of a CNS-penetrant benzhydryl hydroxamic acid class IIa histone deacetylase inhibitor. Bioorg. Med. Chem. Lett. 2019, 29, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Hai, Y.; Christianson, D.W. Histone deacetylase 6 structure and molecular basis of catalysis and inhibition. Nat. Chem. Biol. 2016, 12, 741–747. [Google Scholar] [CrossRef]
- Lobera, M.; Madauss, K.P.; Pohlhaus, D.T.; Wright, Q.G.; Trocha, M.; Schmidt, D.R.; Baloglu, E.; Trump, R.P.; Head, M.S.; A Hofmann, G.; et al. Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group. Nat. Chem. Biol. 2013, 9, 319–325. [Google Scholar] [CrossRef]
- Tabackman, A.A.; Frankson, R.; Marsan, E.S.; Perry, K.; Cole, K.E. Structure of ‘linkerless’ hydroxamic acid inhibitor-HDAC8 complex confirms the formation of an isoform-specific subpocket. J. Struct. Biol. 2016, 195, 373–378. [Google Scholar] [CrossRef]
- Zhan, Z.; Ji, Y.; Su, H.; Fang, C.; Peng, X.; Liu, Q.; Dai, Y.; Lin, D.; Xu, Y.; Ai, J.; et al. Discovery of 10 H-Benzo[b]pyrido[2,3-e][1,4]oxazine AXL Inhibitors via Structure-Based Drug Design Targeting c-Met Kinase. J. Med. Chem. 2023, 66, 220–234. [Google Scholar] [CrossRef]
- The Human Protein Atlas. 2024. Available online: https://www.proteinatlas.org/ENSG00000186951-PPARA/cell+line (accessed on 24 August 2024).
- Jebara, F.; Weiss, C.; Azem, A. Hsp60 and Hsp70 Chaperones: Guardians of Mitochondrial Proteostasis. Encycl. Life Sci. 2017, 1–9. [Google Scholar] [CrossRef]
- Jayaraman, S.; Doucet, M.; Kominsky, S.L. CITED2 attenuates macrophage recruitment concordant with the downregulation of CCL20 in breast cancer cells. Oncol. Lett. 2017, 15, 871–878. [Google Scholar] [CrossRef]
- Yin, Z.; Haynie, J.; Yang, X.; Han, B.; Kiatchoosakun, S.; Restivo, J.; Yuan, S.; Prabhakar, N.R.; Herrup, K.; Conlon, R.A.; et al. The essential role of Cited2, a negative regulator for HIF-1α, in heart development and neurulation. Proc. Natl. Acad. Sci. USA 2002, 99, 10488–10493. [Google Scholar] [CrossRef]
- Fernandes, M.T.; Calado, S.M.; Mendes-Silva, L.; Bragança, J. CITED2 and the modulation of the hypoxic response in cancer. World J. Clin. Oncol. 2020, 11, 260–274. [Google Scholar] [CrossRef]
- Gonzalez, Y.R.; Zhang, Y.; Behzadpoor, D.; Cregan, S.; Bamforth, S.; Slack, R.S.; Park, D.S. CITED2 Signals through Peroxisome Proliferator-Activated Receptor-γ to Regulate Death of Cortical Neurons after DNA Damage. J. Neurosci. 2008, 28, 5559–5569. [Google Scholar] [CrossRef] [PubMed]
- Canovas, B.; Nebreda, A.R. Diversity and versatility of p38 kinase signalling in health and disease. Nat. Rev. Mol. Cell Biol. 2021, 22, 346–366. [Google Scholar] [CrossRef]
- Infantino, V.; Santarsiero, A.; Convertini, P.; Todisco, S.; Iacobazzi, V. Cancer Cell Metabolism in Hypoxia: Role of HIF-1 as Key Regulator and Therapeutic Target. Int. J. Mol. Sci. 2021, 22, 5703. [Google Scholar] [CrossRef] [PubMed]
- Weidemann, A.; Johnson, R.S. Biology of HIF-1α. Cell Death Differ. 2008, 15, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, K.; Jimenez-Martinez, M.; Jimenez-Segovia, A.; Chico-Calero, I.; Conde, E.; Galán-Martínez, J.; Ruiz, J.; Pascual, A.; Barrocal, B.; López-Pérez, R.; et al. Prostaglandins induce early growth response 1 transcription factor mediated microsomal prostaglandin E2 synthase up-regulation for colorectal cancer progression. Oncotarget 2015, 6, 39941–39959. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Rao, S.; Reddy, J.K. Peroxisome Proliferator-Activated Receptors, Fatty Acid Oxidation, Steatohepatitis and Hepatocarcinogenesis. Curr. Mol. Med. 2003, 3, 561–572. [Google Scholar] [CrossRef]
- Tourneur, L.; Chiocchia, G. FADD: A regulator of life and death. Trends Immunol. 2010, 31, 260–269. [Google Scholar] [CrossRef]
- Harmse, L.; Gangat, N.; Martins-Furness, C.; Dam, J.; de Koning, C.B. Copper-imidazo[1,2-a]pyridines induce intrinsic apoptosis and modulate the expression of mutated p53, haem-oxygenase-1 and apoptotic inhibitory proteins in HT-29 colorectal cancer cells. Apoptosis 2019, 24, 623–643. [Google Scholar] [CrossRef]
- Guicciardi, M.E.; Mott, J.L.; Bronk, S.F.; Kurita, S.; Fingas, C.D.; Gores, G.J. Cellular inhibitor of apoptosis 1 (cIAP-1) degradation by caspase 8 during TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Exp. Cell Res. 2010, 317, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Soustiel, J.F.; Larisch, S. Mitochondrial Damage: A Target for New Therapeutic Horizons. Neurotherapeutics 2010, 7, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Greijer, A.E.; van der Wall, E. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J. Clin. Pathol. 2004, 57, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.K.; Liu, W.; Sikder, K.; Addya, S.; Sarkar, A.; Wei, Y.; Rafiq, K. HMGCS2 is a key ketogenic enzyme potentially involved in type 1 diabetes with high cardiovascular risk. Sci. Rep. 2017, 7, 4590. [Google Scholar] [CrossRef]
- Bjørklund, S.S.; Kristensen, V.N.; Seiler, M.; Kumar, S.; Alnæs GI, G.; Ming, Y.; Kerrigan, J.; Naume, B.; Sachidanandam, R.; Bhanot, G.; et al. Expression of an estrogen-regulated variant transcript of the peroxi-somal branched chain fatty acid oxidase ACOX2 in breast carcinomas. BMC Cancer 2015, 15, 524. [Google Scholar] [CrossRef]
- Fadó, R.; Zagmutt, S.; Herrero, L.; Muley, H.; Rodríguez-Rodríguez, R.; Bi, H.; Serra, D.; Casals, N. To be or not to be a fat burner, that is the question for cpt1c in cancer cells. Cell Death Dis. 2023, 14, 57. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, J.; Hooi, S.C.; Jiang, Y.M.; Lu, G.D. Fatty acid activation in carcinogenesis and cancer development: Essential roles of long-chain acyl-CoA synthetases. Oncol. Lett. 2018, 16, 1390–1396. [Google Scholar] [CrossRef] [PubMed]
- Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB). Available online: http://www.rcsb.org/ (accessed on 25 October 2020).
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2023 update. Nucleic Acids Res. 2023, 51, D1373–D1380. [Google Scholar] [CrossRef]
- The PyMOL Molecular Graphics System, version 2.5.2; Schrödinger, LLC: New York, NY, USA, 2024. Available online: http://www.pymol.org (accessed on 25 August 2024).
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Besler, B.H.; Merz, K.M.; Kollman, P.A. Atomic charges derived from semiempirical methods. J. Comput. Chem. 1990, 11, 431–439. [Google Scholar] [CrossRef]
- Ammazzalorso, A.; Carrieri, A.; Verginelli, F.; Bruno, I.; Carbonara, G.; D’Angelo, A.; De Filippis, B.; Fantacuzzi, M.; Florio, R.; Fracchiolla, G.; et al. Synthesis, in vitro evaluation, and molecular modeling investigation of benzenesulfonimide peroxisome proliferator-activated receptors α antagonists. Eur. J. Med. Chem. 2016, 114, 191–200. [Google Scholar] [CrossRef]
- Youssef, J.; Badr, M. Peroxisome proliferator-activated receptors and cancer: Challenges and opportunities. Br. J. Pharmacol. 2011, 164, 68–82. [Google Scholar] [CrossRef]
- Zhao, B.; Xin, Z.; Ren, P.; Wu, H. The Role of PPARs in Breast Cancer. Cells 2022, 12, 130. [Google Scholar] [CrossRef]
- Carracedo, A.; Cantley, L.C.; Pandolfi, P.P. Cancer metabolism: Fatty acid oxidation in the limelight. Nat. Rev. Cancer 2013, 13, 227–232. [Google Scholar] [CrossRef]
- Zhao, Y.; Butler, E.B.; Tan, M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 2013, 4, e532. [Google Scholar] [CrossRef]
- Sun, J.; Yu, L.; Qu, X.; Huang, T. The role of peroxisome proliferator-activated receptors in the tumor microenvi-ronment, tumor cell metabolism, and anticancer therapy. Front. Pharmacol. 2023, 14, 1184794. [Google Scholar] [CrossRef]
- McKillop, I.H.; Girardi, C.A.; Thompson, K.J. Role of fatty acid binding proteins (FABPs) in cancer development and progression. Cell. Signal. 2019, 62, 109336. [Google Scholar] [CrossRef]
- Kamphorst, J.J.; Cross, J.R.; Fan, J.; de Stanchina, E.; Mathew, R.; White, E.P.; Thompson, C.B.; Rabinowitz, J.D. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc. Natl. Acad. Sci. USA 2013, 110, 8882–8887. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wu, D.; Fan, Z.; Yang, J.; Li, Y.; Meng, Y.; Gao, C.; Zhan, H. FABP4 in obesity-associated carcinogenesis: Novel insights into mechanisms and therapeutic implications. Front. Mol. Biosci. 2022, 9, 973955. [Google Scholar] [CrossRef]
- Suchanek, K.M.; May, F.J.; Robinson, J.A.; Lee, W.J.; Holman, N.A.; Monteith, G.R.; Roberts-Thomson, S.J. Peroxisome proliferator–activated receptor α in the human breast cancer cell lines MCF-7 and MDA-MB-231. Mol. Carcinog. 2002, 34, 165–171. [Google Scholar] [CrossRef]
- Wagner, N.; Wagner, K.-D. Peroxisome Proliferator-Activated Receptors and the Hallmarks of Cancer. Cells 2022, 11, 2432. [Google Scholar] [CrossRef]
- Nath, A.; Chan, C. Genetic alterations in fatty acid transport and metabolism genes are associated with metastatic progression and poor prognosis of human cancers. Sci. Rep. 2016, 6, 18669. [Google Scholar] [CrossRef] [PubMed]
- Young, R.M.; Ackerman, D.; Quinn, Z.L.; Mancuso, A.; Gruber, M.; Liu, L.; Giannoukos, D.N.; Bobrovnikova-Marjon, E.; Diehl, J.A.; Keith, B.; et al. Dysregulated mTORC1 renders cells critically dependent on desaturated lipids for survival under tumor-like stress. Genes Dev. 2013, 27, 1115–1131. [Google Scholar] [CrossRef] [PubMed]
- Drukala, J.; Urbanska, K.; Wilk, A.; Grabacka, M.; Wybieralska, E.; Del Valle, L.; Madeja, Z.; Reiss, K. ROS accu-mulation and IGF-IR inhibition contribute to fenofibrate/PPARα -mediated inhibition of Glioma cell motility in vitro. Mol. Cancer 2010, 9, 159. [Google Scholar] [CrossRef]
- Okumura, M.; Yamamoto, M.; Sakuma, H.; Kojima, T.; Maruyama, T.; Jamali, M.; Cooper, D.R.; Yasuda, K. Leptin and high glucose stimulate cell proliferation in MCF-7 human breast cancer cells: Reciprocal involvement of PKC-α and PPAR expression. Biochim. Biophys. Acta Mol. Cell Res. 2002, 1592, 107–116. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Q.; Zhang, J.; Yang, G.; Shao, Z.; Luo, J.; Fan, M.; Ni, C.; Wu, Z.; Hu, X. Fenofibrate induces apoptosis of triple-negative breast cancer cells via activation of NF-κB pathway. BMC Cancer 2014, 14, 96. [Google Scholar] [CrossRef] [PubMed]
- Puri, N.; Khramtsov, A.; Ahmed, S.; Nallasura, V.; Hetzel, J.T.; Jagadeeswaran, R.; Karczmar, G.; Salgia, R. A Selective Small Molecule Inhibitor of c-Met, PHA665752, Inhibits Tumorigenicity and Angiogenesis in Mouse Lung Cancer Xenografts. Cancer Res. 2007, 67, 3529–3534. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Huang, Y.; Zeng, H.; Hu, B.; Guan, L.; Zhang, H.; Yu, A.-M.; Johnson, C.H.; Gonzalez, F.J.; et al. PPARα regulates tumor cell proliferation and senescence via a novel target gene carnitine palmitoyltransferase 1C. Carcinog. 2017, 38, 474–483. [Google Scholar] [CrossRef]
- Amiri, M.; Yousefnia, S.; Forootan, F.S.; Peymani, M.; Ghaedi, K.; Esfahani, M.H.N. Diverse roles of fatty acid binding proteins (FABPs) in development and pathogenesis of cancers. Gene 2018, 676, 171–183. [Google Scholar] [CrossRef]
- Hancke, K.; Grubeck, D.; Hauser, N.; Kreienberg, R.; Weiss, J.M. Adipocyte fatty acid-binding protein as a novel prognostic factor in obese breast cancer patients. Breast Cancer Res. Treat. 2010, 119, 367–377. [Google Scholar] [CrossRef]
- Kostiuk, M.A.; Keller, B.O.; Berthiaume, L.G. Palmitoylation of ketogenic enzyme HMGCS2 enhances its interaction with PPARα and transcription at the Hmgcs2 PPRE. FASEB J. 2010, 24, 1914–1924. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-H.; Liu, C.-L.; Chiu, W.-C.; Twu, Y.-C.; Liao, Y.-J. HMGCS2 Mediates Ketone Production and Regulates the Proliferation and Metastasis of Hepatocellular Carcinoma. Cancers 2019, 11, 1876. [Google Scholar] [CrossRef]
- Wang, J.; Shidfar, A.; Ivancic, D.; Ranjan, M.; Liu, L.; Choi, M.-R.; Parimi, V.; Gursel, D.B.; Sullivan, M.E.; Najor, M.S.; et al. Overexpression of lipid metabolism genes and PBX1 in the contralateral breasts of women with estrogen receptor-negative breast cancer. Int. J. Cancer 2017, 140, 2484–2497. [Google Scholar] [CrossRef]
- Martinez-Outschoorn, U.E.; Lin, Z.; Whitaker-Menezes, D.; Howell, A.; Sotgia, F.; Lisanti, M.P. Ketone body utilization drives tumor growth and metastasis. Cell Cycle 2012, 11, 3964–3971. [Google Scholar] [CrossRef]
- Yu, L.; Wan, F.; Dutta, S.; Welsh, S.; Liu, Z.; Freundt, E.; Baehrecke, E.H.; Lenardo, M. Autophagic programmed cell death by selective catalase degradation. Proc. Natl. Acad. Sci. USA 2006, 103, 4952–4957. [Google Scholar] [CrossRef]
- Azenha, D.; Lopes, M.C.; Martins, T.C. Claspin functions in cell homeostasis—A link to cancer? DNA Repair 2017, 59, 27–33. [Google Scholar] [CrossRef]
Target Name | PDB ID | Resolution (Å) | Co-Crystallized Inhibitor | Compound | ||
---|---|---|---|---|---|---|
Docking Score (kcal/mol) | RMSD | Docking Score (kcal/mol) | Interacting Residues | |||
Nicotinamide adenine dinucleotide-dependent protein deacetylase sirtuin-1 (SIRT1) | 4I5I [51] | 2.50 | −11.8 | 0.004 | NSC3852 | |
−7.6 | Phe 273 | |||||
Histone deacetylase 1 (HDAC1) | 5ICN [52] | 3.30 | −6.1 | 2.492 | NSC3852 | |
−6.2 | - | |||||
Histone deacetylase 2 (HDAC2) | 8A0B [53] | 1.75 | −10.8 | 0.964 | NSC3852 | |
−6.9 | Gly 143, His 145, and His 146 | |||||
Histone deacetylase 4 (HDAC4) | 6FYZ [54] | 2.15 | −10.9 | 0.932 | NSC3852 | |
−7.1 | His 802 and His 803 | |||||
Histone deacetylase 6 (HDAC6) | 5EDU [55] | 2.79 | −8.4 | 1.340 | NSC3852 | |
−6.2 | His 651 and Phe 680 | |||||
Histone deacetylase 7 (HDAC7) | 3ZNR [56] | 2.40 | −10.8 | 0.883 | NSC3852 | |
−7.0 | Glu 840 | |||||
Histone deacetylase 8 (HDAC8) | 5FCW [57] | 1.98 | −9.7 | 0.870 | NSC3852 | |
−6.2 | Tyr 154 | |||||
Hepatocyte growth factor receptor (c-Met kinase) | 7V3R [58] | 1.70 | −12.6 | 0.833 | PHA665752 | |
−9.2 | Glu 1127 |
Gene Name | Sequence [5′ ⟶ 3′) |
---|---|
PPARα Forward | TTCGCAATCCATCGGCGAG |
PPARα Reverse | CCACAGGATAAGTCACCGAGG |
GAPDH Forward | ACCACAGTCCATGCCATCAC |
GAPDH Reverse | TCCACCACCCTGTTGCTGTA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Subait, A.; Alghamdi, R.H.; Ali, R.; Alsharidah, A.; Huwaizi, S.; Alkhodier, R.A.; Almogren, A.S.; Alzomia, B.A.; Alaskar, A.; Boudjelal, M. Discovery of PPAR Alpha Lipid Pathway Modulators That Do Not Bind Directly to the Receptor as Potential Anti-Cancer Compounds. Int. J. Mol. Sci. 2025, 26, 736. https://doi.org/10.3390/ijms26020736
Al Subait A, Alghamdi RH, Ali R, Alsharidah A, Huwaizi S, Alkhodier RA, Almogren AS, Alzomia BA, Alaskar A, Boudjelal M. Discovery of PPAR Alpha Lipid Pathway Modulators That Do Not Bind Directly to the Receptor as Potential Anti-Cancer Compounds. International Journal of Molecular Sciences. 2025; 26(2):736. https://doi.org/10.3390/ijms26020736
Chicago/Turabian StyleAl Subait, Arwa, Raghad H. Alghamdi, Rizwan Ali, Amani Alsharidah, Sarah Huwaizi, Reem A. Alkhodier, Aljawharah Saud Almogren, Barrak A. Alzomia, Ahmad Alaskar, and Mohamed Boudjelal. 2025. "Discovery of PPAR Alpha Lipid Pathway Modulators That Do Not Bind Directly to the Receptor as Potential Anti-Cancer Compounds" International Journal of Molecular Sciences 26, no. 2: 736. https://doi.org/10.3390/ijms26020736
APA StyleAl Subait, A., Alghamdi, R. H., Ali, R., Alsharidah, A., Huwaizi, S., Alkhodier, R. A., Almogren, A. S., Alzomia, B. A., Alaskar, A., & Boudjelal, M. (2025). Discovery of PPAR Alpha Lipid Pathway Modulators That Do Not Bind Directly to the Receptor as Potential Anti-Cancer Compounds. International Journal of Molecular Sciences, 26(2), 736. https://doi.org/10.3390/ijms26020736