Chronic Gastrointestinal Disorders and miRNA-Associated Disease: An Up-to-Date
<p>Principal etiopathogenetic factors involved in IBD and IBS, including external exposome factors (diet, environmental pollution, smoking, etc.), specific external exposome factors (exposure to antibiotics, gut microbiota composition, stress) and internal exposome factors (immune response, epigenetics, etc.).</p> "> Figure 2
<p>Graphical representation of the investigation scheme. An initial set of 300 articles on IBS and IBD was automatically retrieved from the PUBMED database. We then manually selected 121 articles, excluding those that were off-topic, were overly generic in terms of miRNA analysis/assay, or had a low impact factor. From the miRNAs mentioned in the articles, we focused on those studied in more than three articles (Abd > 2). The outcome of this workflow includes two tables: one listing the selected miRNAs and the other detailing the associated biological pathways.</p> "> Figure 3
<p><b>Inflammation and immune recruitment.</b> The pathway mostly involved in the inflammation induced by miRNAs deregulation is TNF-a/IL-6/STAT3. Here, the main miRNAs involved in this process and how they contribute to IBD-IBS development are reported. Image created with Biorender (online version @2024).</p> "> Figure 4
<p><b>Apoptosis and cell proliferation.</b> The pathway mostly involved in apoptosis induction is the PI3K/AKT axis; miRNAs also act on BCL2 gene expression, which has a pivotal role in anti-apoptotic processes. Here, the main miRNAs involved in this process and how they contribute to IBD-IBS development are reported. Image created with Biorender (online version @2024).</p> "> Figure 5
<p><b>Oxidative Stress.</b> NRF2, NOX4, and NFkB are among the proteins mostly involved in oxidative stress modulation. Here, the main miRNAs involved in this process and how they contribute to IBD-IBS development are reported. Image created with Biorender (online version @2024).</p> "> Figure 6
<p><b>Cell mobility and tissue permeability.</b> Here, we report three miRNAs among those mostly involved in chemokine production, which in turn contributes to gut epithelial barrier permeability disruption. Image created with Biorender (online version @2024).</p> "> Figure 7
<p><b>Oncogenesis.</b> The pathways mostly involved in colorectal cancer (CRC) rise are PI3K/AKT axis and STAT3 and its downstream genes. Moreover, there is a modulation of interleukin accumulation and hypoxic state promotion. Here, the main miRNAs involved in this process and how they contribute to CRC onset are reported. Image created with Biorender (online version @2024).</p> "> Figure 8
<p><b>miRNAs involved in IBD and IBS onset.</b> This image recapitulates the most cited miRNAs implicated in IBD and IBS development, and through which pathways they influence the pathology. Image created with Biorender (online version @2024).</p> ">
Abstract
:1. Introduction
2. Chronic Gastrointestinal Disorders
2.1. IBDs: Definition
2.1.1. IBD: Etiopathogenetic Mechanisms
2.1.2. Epigenetic Alterations
2.1.3. The Interaction Between Diet and Intestinal Microbiota
2.1.4. Environmental Factors
2.1.5. Air Pollution
2.2. IBS Clinical Definition
2.2.1. IBS Etiopathogenetic Mechanisms
2.2.2. Epigenetic Factors
2.2.3. Diet and Intestinal Microbiota
2.2.4. Environmental Factors
3. miRNAs as Regulators of Hallmarks of IBD and IBS
4. The Approach: Bibliographic Research and Data Extraction
4.1. Automated Data Retrieval from PubMed
4.2. Manually Curated Extraction of miRNA and Biological Mechanisms
4.3. Technical Approaches and Methodologies Used in the Study of IBD and IBS Disease
5. IBD and IBS Hallmarks: The Regulatory Role of microRNAs
5.1. Inflammation and Immune Recruitment
5.2. Apoptosis and Cell Proliferation
5.3. Oxidative Stress
5.4. Cell Motility and Tissue Permeability in IBD and IBS
5.5. Oncogenesis
6. Conclusions and Clinical Impact
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- M’Koma, A.E. Inflammatory Bowel Disease: Clinical Diagnosis and Surgical Treatment-Overview. Medicina 2022, 58, 567. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.Y.; Wang, F.Y.; Lv, M.; Ma, X.X.; Tang, X.D.; Lv, L. Irritable bowel syndrome: Epidemiology, overlap disorders, pathophysiology and treatment. World J. Gastroenterol. 2023, 29, 4120–4135. [Google Scholar] [CrossRef] [PubMed]
- Borowitz, S.M. The epidemiology of inflammatory bowel disease: Clues to pathogenesis? Front. Pediatr. 2023, 10, 1103713. [Google Scholar] [CrossRef] [PubMed]
- Ventham, N.T.; Kennedy, N.A.; Adams, A.T.; Kalla, R.; Heath, S.; O’Leary, K.R.; Drummond, H.; Wilson, D.C.; Gut, I.G.; Nimmo, E.R.; et al. Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease. Nat. Commun. 2016, 7, 13507. [Google Scholar] [CrossRef]
- Dothel, G.; Barbaro, M.R.; Di Vito, A.; Ravegnini, G.; Gorini, F.; Monesmith, S.; Coschina, E.; Benuzzi, E.; Fuschi, D.; Palombo, M.; et al. New insights into irritable bowel syndrome pathophysiological mechanisms: Contribution of epigenetics. J. Gastroenterol. 2023, 58, 605–621. [Google Scholar] [CrossRef]
- Alfaifi, J.; Germain, A.; Heba, A.-C.; Arnone, D.; Gailly, L.; Ndiaye, N.C.; Viennois, E.; Caron, B.; Peyrin-Biroulet, L.; Dreumont, N. Deep Dive Into MicroRNAs in Inflammatory Bowel Disease. Inflamm. Bowel. Dis. 2023, 29, 986–999. [Google Scholar] [CrossRef]
- Noble, A.J.; Nowak, J.K.; Adams, A.T.; Uhlig, H.H.; Satsangi, J. Defining Interactions Between the Genome, Epigenome, and the Environment in Inflammatory Bowel Disease: Progress and Prospects. Gastroenterology 2023, 165, 44–60.e2. [Google Scholar] [CrossRef]
- Agrawal, M.; Allin, K.H.; Petralia, F.; Colombel, J.F.; Jess, T. Multiomics to elucidate inflammatory bowel disease risk factors and pathways. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 399–409. [Google Scholar] [CrossRef]
- Lo Presti, A.; Zorzi, F.; Del Chierico, F.; Altomare, A.; Cocca, S.; Avola, A.; De Biasio, F.; Russo, A.; Cella, E.; Reddel, S.; et al. Fecal and mucosal microbiota profiling in irritable bowel syndrome and inflammatory bowel disease. Front. Microbiol. 2019, 10, 1655. [Google Scholar] [CrossRef]
- Carco, C.; Young, W.; Gearry, R.B.; Talley, N.J.; McNabb, W.C.; Roy, N.C. Increasing Evidence That Irritable Bowel Syndrome and Functional Gastrointestinal Disorders Have a Microbial Pathogenesis. Front. Cell. Infect. Microbiol. 2020, 10, 468. [Google Scholar] [CrossRef]
- Balmus, I.-M.; Ilie, O.-D.; Ciobica, A.; Cojocariu, R.; Stanciu, C.; Trifan, A.; Cimpeanu, M.; Cimpeanu, C.; Gorgan, D.L. Irritable Bowel Syndrome between Molecular Approach and Clinical Expertise—Searching for Gap Fillers in the Oxidative Stress Way of Thinking. Medicina 2020, 56, 38. [Google Scholar] [CrossRef] [PubMed]
- Lacy, B.E.; Pimentel, M.; Brenner, D.M.; Chey, W.D.; Keefer, L.A.; Long, M.D.; Moshiree, B. ACG Clinical Guideline: Management of Irritable Bowel Syndrome. Am. J. Gastroenterol. 2021, 116, 17–44. [Google Scholar] [CrossRef] [PubMed]
- Krishnachaitanya, S.S.; Liu, M.; Fujise, K.; Li, Q. MicroRNAs in Inflammatory Bowel Disease and Its Complications. Int. J. Mol. Sci. 2022, 23, 8751. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Kim, J.S.; Lee, K.H.; Tizaoui, K.; Terrazzino, S.; Cargnin, S.; Smith, L.; Koyanagi, A.; Jacob, L.; Li, H.; et al. Roles of micrornas in inflammatory bowel disease. Int. J. Biol. Sci. 2021, 17, 2112–2123. [Google Scholar] [CrossRef]
- Kalla, R.; Ventham, N.T.; A Kennedy, N.; Quintana, J.F.; Nimmo, E.R.; Buck, A.H.; Satsangi, J. MicroRNAs: New players in IBD. Gut 2015, 64, 504–517. [Google Scholar] [CrossRef]
- Pauley, K.M.; Cha, S.; Chan, E.K.L. MicroRNA in autoimmunity and autoimmune diseases. J. Autoimmun. 2009, 32, 189–194. [Google Scholar] [CrossRef]
- Stefani, G.; Slack, F.J. Small non-coding RNAs in animal development. Nat. Rev. Mol. Cell Biol. 2008, 9, 219–230. [Google Scholar] [CrossRef]
- Giammona, A.; Mangiapane, L.R.; Di Franco, S.; Benfante, A.; Todaro, M.; Stassi, G. Innovative therapeutic strategies targeting colorectal cancer stem cells. Curr. Colorectal. Cancer Rep. 2017, 13, 91–100. [Google Scholar] [CrossRef]
- Cena, H.; Labra, M. Biodiversity and planetary health: A call for integrated action. Lancet 2024, 403, 1985–1986. [Google Scholar] [CrossRef]
- Aggeletopoulou, I.; Konstantakis, C.; Assimakopoulos, S.F.; Triantos, C. The role of the gut microbiota in the treatment of inflammatory bowel diseases. Microb. Pathog. 2019, 137, 103774. [Google Scholar] [CrossRef]
- M’Koma, A.E. Inflammatory bowel disease: An expanding global health problem. Clin. Med. Insights Gastroenterol. 2013, 6, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Geboes, K.; Van Eyken, P. Inflammatory bowel disease unclassified and indeterminate colitis: The role of the pathologist. J. Clin. Pathol. 2009, 62, 201–205. [Google Scholar] [CrossRef] [PubMed]
- James, S.D.; Hawkins, A.T.; Um, J.W.; Ballard, B.R.; Smoot, D.T.; M’Koma, A.E. The MYTHS of De novo Crohn’s Disease After Restorative Proctocolectomy with Ileal Pouch-anal Anastomosis for Ulcerative Colitis. Jpn. J. Gastroenterol. Hepatol. 2020, 3. [Google Scholar]
- Lopetuso, L.; Gasbarrini, A. IBD: Colite ulcerosa. Recenti. Prog. Med. 2016, 107, 297–308. [Google Scholar]
- Truelove, S.C.; Horler, A.R.; Richards, W.C.D. Serial biopsy in ulcerative colitis. Br. Med. J. 1955, 2, 1590–1594. [Google Scholar] [CrossRef]
- Sun, L.; Han, Y.; Wang, H.; Liu, H.; Liu, S.; Yang, H.; Ren, X.; Fang, Y. MicroRNAs as potential biomarkers for the diagnosis of inflammatory bowel disease: A systematic review and meta-analysis. J. Int. Med. Res. 2022, 50, 3000605221089503. [Google Scholar] [CrossRef]
- Di Rosa, C.; Altomare, A.; Imperia, E.; Spiezia, C.; Khazrai, Y.M.; Guarino, M.P.L. The Role of Dietary Fibers in the Management of IBD Symptoms. Nutrients 2022, 14, 4775. [Google Scholar] [CrossRef]
- Eckburg, P.B.; Relman, D.A. The role of microbes in Crohn’s disease. Clin. Infect. Dis. 2007, 44, 256–262. [Google Scholar] [CrossRef]
- Guan, Q. A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease. J. Immunol. Res. 2019, 2019, 7247238. [Google Scholar] [CrossRef]
- Altajar, S.; Moss, A. Inflammatory Bowel Disease Environmental Risk Factors: Diet and Gut Microbiota. Curr. Gastroenterol. Rep. 2020, 22, 57. [Google Scholar] [CrossRef]
- Balestrieri, P.; Ribolsi, M.; Guarino, M.P.L.; Emerenziani, S.; Altomare, A.; Cicala, M. Nutritional aspects in inflammatory bowel diseases. Nutrients 2020, 12, 372. [Google Scholar] [CrossRef] [PubMed]
- Neuman, M.G.; Nanau, R.M. Inflammatory bowel disease: Role of diet, microbiota, life style. Transl. Res. 2012, 160, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Rundle, A.G.; Gallagher, D.; Herbstman, J.B.; Goldsmith, J.; Holmes, D.; Hassoun, A.; Oberfield, S.; Miller, R.L.; Andrews, H.; Widen, E.M.; et al. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and childhood growth trajectories from age 5–14 years. Environ. Res. 2019, 177, 108595. [Google Scholar] [CrossRef] [PubMed]
- McConnell, R.; Shen, E.; Gilliland, F.D.; Jerrett, M.; Wolch, J.; Chang, C.-C.; Lurmann, F.; Berhane, K. A longitudinal cohort study of body mass index and childhood exposure to secondhand tobacco smoke and air pollution: The Southern California Children’s Health Study. Environ. Health Perspect. 2015, 123, 360–366. [Google Scholar] [CrossRef]
- Fleisch, A.F.; Luttmann-Gibson, H.; Perng, W.; Rifas-Shiman, S.L.; Coull, B.A.; Kloog, I.; Koutrakis, P.; Schwartz, J.D.; Zanobetti, A.; Mantzoros, C.S.; et al. Prenatal and early life exposure to traffic pollution and cardiometabolic health in childhood. Pediatr. Obes. 2017, 12, 48–57. [Google Scholar] [CrossRef]
- Ruokolainen, L.; Von Hertzen, L.; Fyhrquist, N.; Laatikainen, T.; Lehtomäki, J.; Auvinen, P.; Karvonen, A.M.; Hyvärinen, A.; Tillmann, V.; Niemelä, O.; et al. Green areas around homes reduce atopic sensitization in children. Allergy: Eur. J. Allergy Clin. Immunol. 2015, 70, 195–202. [Google Scholar] [CrossRef]
- Ribeiro, A.I.; Tavares, C.; Guttentag, A.; Barros, H. Association between neighbourhood green space and biological markers in school-aged children. Findings from the Generation XXI birth cohort. Environ. Int. 2019, 132, 105070. [Google Scholar] [CrossRef]
- Elten, M.; Benchimol, E.I.; Fell, D.B.; Kuenzig, M.E.; Smith, G.; Chen, H.; Kaplan, G.G.; Lavigne, E. Ambient air pollution and the risk of pediatric-onset inflammatory bowel disease: A population-based cohort study. Environ. Int. 2020, 138, 105676. [Google Scholar] [CrossRef]
- Carreras-Torres, R.; Ibáñez-Sanz, G.; Obón-Santacana, M.; Duell, E.J.; Moreno, V. Identifying environmental risk factors for inflammatory bowel diseases: A Mendelian randomization study. Sci. Rep. 2020, 10, 19273. [Google Scholar] [CrossRef]
- Mearin, F.; Lacy, B.E.; Chang, L.; Chey, W.D.; Lembo, A.J.; Simren, M.; Spiller, R. Bowel disorders. Gastroenterology 2016, 150, 1393–1407.e5. [Google Scholar] [CrossRef]
- Canakis, A.; Haroon, M.; Weber, H.C. Irritable bowel syndrome and gut microbiota. Curr. Opin. Endocrinol. Diabetes Obes. 2020, 27, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Ford, A.C.; Sperber, A.D.; Corsetti, M.; Camilleri, M. Irritable bowel syndrome. Lancet 2020, 396, 1675–1688. [Google Scholar] [CrossRef] [PubMed]
- Patrizia, B.; Marco, R.; Carmela, L. MALATTIE DELL’APPARATO DIGERENTE-EDIZIONE 2022–2025; HOEPLL it La Grande Libreria Online: Milano, Italy, 2022. [Google Scholar]
- Dimidi, E.; Cox, S.R.; Rossi, M.; Whelan, K. Fermented foods: Definitions and characteristics, impact on the gut microbiota and effects on gastrointestinal health and disease. Nutrients 2019, 11, 1806. [Google Scholar] [CrossRef] [PubMed]
- Mahurkar-Joshi, S.; Chang, L. Epigenetic Mechanisms in Irritable Bowel Syndrome. Front. Psychiatry 2020, 11, 805. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, D.; Yang, Y.; Li, X.; Li, H.; Zhang, X.; Long, J.; Lu, Y.; Liu, L.; Yang, G.; et al. Suppression of microRNA-222-3p ameliorates ulcerative colitis and colitis-associated colorectal cancer to protect against oxidative stress via targeting BRG1 to activate Nrf2/HO-1 signaling pathway. Front. Immunol. 2023, 14, 1089809. [Google Scholar] [CrossRef]
- El-Salhy, M.; Hatlebakk, J.G.; Hausken, T. Diet in irritable bowel syndrome (IBS): Interaction with gut microbiota and gut hormones. Nutrients 2019, 11, 1824. [Google Scholar] [CrossRef]
- Guarino, M.P.L.; Altomare, A.; Emerenziani, S.; Di Rosa, C.; Ribolsi, M.; Balestrieri, P.; Iovino, P.; Rocchi, G.; Cicala, M. Mechanisms of action of prebiotics and their effects on gastro-intestinal disorders in adults. Nutrients 2020, 12, 1037. [Google Scholar] [CrossRef]
- Bertin, L.; Zanconato, M.; Crepaldi, M.; Marasco, G.; Cremon, C.; Barbara, G.; Barberio, B.; Zingone, F.; Savarino, E.V. The Role of the FODMAP Diet in IBS. Nutrients 2024, 16, 370. [Google Scholar] [CrossRef]
- Marasco, G.; Savarino, E.V.; Barbara, G. The IBS and SIBO dilemma: Here we go again. Dig. Liver Dis. 2024, 56, 2025–2026. [Google Scholar] [CrossRef]
- Dupont, P.T.; Izaguirre-Hernández, I.Y.; Troche, J.M.R. Contribution of MicroRNAs in the Development of Irritable Bowel Syndrome Symptoms. J. Gastrointest. Liver Dis. 2023, 32, 230–240. [Google Scholar] [CrossRef]
- Nakov, R.; Snegarova, V.; Dimitrova-Yurukova, D.; Velikova, T. Biomarkers in Irritable Bowel Syndrome: Biological Rationale and Diagnostic Value. Dig. Dis. 2022, 40, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Strasser, B.; Wolters, M.; Weyh, C.; Krüger, K.; Ticinesi, A. The effects of lifestyle and diet on gut microbiota composition, inflammation and muscle performance in our aging society. Nutrients 2021, 13, 2045. [Google Scholar] [CrossRef] [PubMed]
- Altomare, A.; Del Chierico, F.; Rocchi, G.; Emerenziani, S.; Nuglio, C.; Putignani, L.; Angeletti, S.; Presti, A.L.; Ciccozzi, M.; Russo, A.; et al. Association between dietary habits and fecal microbiota composition in irritable bowel syndrome patients: A pilot study. Nutrients 2021, 13, 1479. [Google Scholar] [CrossRef]
- Di Rosa, C.; Altomare, A.; Terrigno, V.; Carbone, F.; Tack, J.; Cicala, M.; Guarino, M.P.L. Constipation-Predominant Irritable Bowel Syndrome (IBS-C): Effects of Different Nutritional Patterns on Intestinal Dysbiosis and Symptoms. Nutrients 2023, 15, 1647. [Google Scholar] [CrossRef]
- Barbara, G.; Barbaro, M.R.; Fuschi, D.; Palombo, M.; Falangone, F.; Cremon, C.; Marasco, G.; Stanghellini, V. Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front. Nutr. 2021, 8, 718356. [Google Scholar] [CrossRef]
- Ng, Q.X.; Yaow, C.Y.L.; Moo, J.R.; Koo, S.W.K.; Loo, E.X.L.; Siah, K.T.H. A systematic review of the association between environmental risk factors and the development of irritable bowel syndrome. J. Gastroenterol. Hepatol. 2024, 39, 1780–1787. [Google Scholar] [CrossRef]
- Alderete, T.L.; Jones, R.B.; Chen, Z.; Kim, J.S.; Habre, R.; Lurmann, F.; Gilliland, F.D.; Goran, M.I. Exposure to traffic-related air pollution and the composition of the gut microbiota in overweight and obese adolescents. Environ. Res. 2018, 161, 472–478. [Google Scholar] [CrossRef]
- de Oliveira, E.C.S.; Quaglio, A.E.V.; Grillo, T.G.; Di Stasi, L.C.; Sassaki, L.Y. MicroRNAs in inflammatory bowel disease: What do we know and what can we expect? World J. Gastroenterol. 2024, 30, 2184–2190. [Google Scholar] [CrossRef]
- Masi, L.; Capobianco, I.; Magrì, C.; Marafini, I.; Petito, V.; Scaldaferri, F. MicroRNAs as Innovative Biomarkers for Inflammatory Bowel Disease and Prediction of Colorectal Cancer. Int. J. Mol. Sci. 2022, 23, 7991. [Google Scholar] [CrossRef]
- Moein, S.; Vaghari-Tabari, M.; Qujeq, D.; Majidinia, M.; Nabavi, S.M.; Yousefi, B. MiRNAs and inflammatory bowel disease: An interesting new story. J. Cell Physiol. 2018, 234, 3277–3293. [Google Scholar] [CrossRef]
- Chapman, C.G.; Pekow, J. The emerging role of miRNAs in inflammatory bowel disease: A review. Therap. Adv. Gastroenterol. 2014, 8, 4–22. [Google Scholar] [CrossRef] [PubMed]
- Padua, D.; Mahurkar-Joshi, S.; Law, I.K.M.; Polytarchou, C.; Vu, J.P.; Pisegna, J.R.; Shih, D.; Iliopoulos, D.; Pothoulakis, C. A long noncoding RNA signature for ulcerative colitis identifies IFNG-AS1 as an enhancer of inflammation. Am. J. Physiol.-Gastrointest. Liver Physiol. 2016, 311, G446–G457. [Google Scholar] [CrossRef] [PubMed]
- Ramos, G.P.; Papadakis, K.A. Mechanisms of Disease: Inflammatory Bowel Diseases. Mayo Clin. Proc. 2019, 94, 155–165. [Google Scholar] [CrossRef]
- Giammona, A.; Remedia, S.; Porro, D.; Lo Dico, A.; Bertoli, G. The biological interplay between air pollutants and {miRNAs} regulation in cancer. Front. Cell Dev. Biol. 2024, 12, 1343385. [Google Scholar] [CrossRef]
- Kaser, A.; Zeissig, S.; Blumberg, R.S. Genes and Environment: How Will Our Concepts on the Pathophysiology of IBD Develop in the Future? Dig. Dis. 2010, 28, 395–405. [Google Scholar] [CrossRef]
- Kaser, A.; Zeissig, S.; Blumberg, R.S. Inflammatory Bowel Disease. Annu. Rev. Immunol. 2010, 28, 573–621. [Google Scholar] [CrossRef]
- Corridoni, D.; Arseneau, K.O.; Cominelli, F. Inflammatory bowel disease. Immunol. Lett. 2014, 161, 231–235. [Google Scholar] [CrossRef]
- Park, S.C.; Jeen, Y.T. Genetic Studies of Inflammatory Bowel Disease-Focusing on Asian Patients. Cells 2019, 8, 404. [Google Scholar] [CrossRef]
- Wu, H.J.; Wu, E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 2012, 3, 4–14. [Google Scholar] [CrossRef]
- Hou, K.; Wu, Z.-X.; Chen, X.-Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef]
- Kany, S.; Vollrath, J.T.; Relja, B. Cytokines in Inflammatory Disease. Int. J. Mol. Sci. 2019, 20, 6008. [Google Scholar] [CrossRef]
- Vebr, M.; Pomahačová, R.; Sýkora, J.; Schwarz, J. A Narrative Review of Cytokine Networks: Pathophysiological and Therapeutic Implications for Inflammatory Bowel Disease Pathogenesis. Biomedicines 2023, 11, 3229. [Google Scholar] [CrossRef] [PubMed]
- Kałużna, A.; Olczyk, P.; Komosińska-Vassev, K. The Role of Innate and Adaptive Immune Cells in the Pathogenesis and Development of the Inflammatory Response in Ulcerative Colitis. J. Clin. Med. 2022, 11, 400. [Google Scholar] [CrossRef] [PubMed]
- Casalegno Garduño, R.; Däbritz, J. New Insights on CD8+ T Cells in Inflammatory Bowel Disease and Therapeutic Approaches. Front. Immunol. 2021, 12, 738762. [Google Scholar] [CrossRef]
- Zhou, D.; Li, Y. Gut microbiota and tumor-associated macrophages: Potential in tumor diagnosis and treatment. Gut Microbes. 2023, 15, 2276314. [Google Scholar] [CrossRef]
- Zhou, R.W.; Harpaz, N.; Itzkowitz, S.H.; Parsons, R.E. Molecular mechanisms in colitis-associated colorectal cancer. Oncogenesis 2023, 12, 48. [Google Scholar] [CrossRef]
- He, D.-G.; Chen, X.-J.; Huang, J.-N.; Chen, J.-G.; Lv, M.-Y.; Huang, T.-Z.; Lan, P.; He, X.-S. Increased risk of colorectal neoplasia in inflammatory bowel disease patients with post-inflammatory polyps: A systematic review and meta-analysis. World J. Gastrointest. Oncol. 2022, 14, 348–361. [Google Scholar] [CrossRef]
- Jabandziev, P.; Kakisaka, T.; Bohosova, J.; Pinkasova, T.; Kunovsky, L.; Slaby, O.; Goel, A. MicroRNAs in Colon Tissue of Pediatric Ulcerative Pancolitis Patients Allow Detection and Prognostic Stratification. J. Clin. Med. 2021, 10, 1325. [Google Scholar] [CrossRef]
- Salama, R.M.; Darwish, S.F.; El Shaffei, I.; Elmongy, N.F.; Fahmy, N.M.; Afifi, M.S.; Abdel-Latif, G.A. Morus macroura Miq. Fruit extract protects against acetic acid-induced ulcerative colitis in rats: Novel mechanistic insights on its impact on miRNA-223 and on the TNFα/NFκB/NLRP3 inflammatory axis. Food Chem. Toxicol. 2022, 165, 113146. [Google Scholar] [CrossRef]
- Valmiki, S.; Ahuja, V.; Puri, N.; Paul, J. miR-125b and miR-223 Contribute to Inflammation by Targeting the Key Molecules of NFκB Pathway. Front. Med. 2020, 6, 313. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C.; Guo, Z.; Da, B.; Zhu, W.; Li, Q. miR-223 improves intestinal inflammation through inhibiting the IL-6/STAT3 signaling pathway in dextran sodium sulfate-induced experimental colitis. Immun. Inflamm. Dis. 2020, 9, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Feng, Y.; Li, X.; Jiang, Z.; Bei, B.; Zhang, L.; Han, Y.; Li, Y.; Li, N. Post-transcriptional Gene Regulation in Colitis Associated Cancer. Front. Genet. 2019, 10, 585. [Google Scholar] [CrossRef] [PubMed]
- Verdier, J.; Breunig, I.R.; Ohse, M.C.; Roubrocks, S.; Kleinfeld, S.; Roy, S.; Streetz, K.; Trautwein, C.; Roderburg, C.; Sellge, G. Faecal Micro-RNAs in Inflammatory Bowel Diseases. J. Crohns. Colitis. 2019, 14, 110–117. [Google Scholar] [CrossRef]
- Chang, X.; Song, Y.; Xia, T.; He, Z.; Zhao, S.; Wang, Z.; Gu, L.; Li, Z.; Xu, C.; Wang, S.; et al. Macrophage-derived exosomes promote intestinal mucosal barrier dysfunction in inflammatory bowel disease by regulating TMIGD1 via mircroRNA-223. Int. Immunopharmacol. 2023, 121, 110447. [Google Scholar] [CrossRef]
- Ardali, R.; Kazemipour, N.; Nazifi, S.; Bagheri Lankarani, K.; Razeghian Jahromi, I.; Sepehrimanesh, M. Pathophysiological role of Atg5 in human ulcerative colitis. Intest. Res. 2020, 18, 421–429. [Google Scholar] [CrossRef]
- Lim, C.X.; Lee, B.; Geiger, O.; Passegger, C.; Beitzinger, M.; Romberger, J.; Stracke, A.; Högenauer, C.; Stift, A.; Stoiber, H.; et al. miR-181a Modulation of ERK-MAPK Signaling Sustains DC-SIGN Expression and Limits Activation of Monocyte-Derived Dendritic Cells. Cell Rep. 2020, 30, 3793–3805.e5. [Google Scholar] [CrossRef]
- Shen, Q.; Huang, Z.; Ma, L.; Yao, J.; Luo, T.; Zhao, Y.; Xiao, Y.; Jin, Y. Extracellular vesicle miRNAs promote the intestinal microenvironment by interacting with microbes in colitis. Gut Microbes. 2022, 14, 2128604. [Google Scholar] [CrossRef]
- Mirzakhani, M.; Khalili, A.; Shahbazi, M.; Abediankenari, S.; Ebrahimpour, S.; Mohammadnia-Afrouzi, M. Under-expression of microRNA-146a and 21 and their association with Crohn’s disease. Indian J. Gastroenterol. 2020, 39, 405–410. [Google Scholar] [CrossRef]
- Koike, Y.; Koike, Y.; Yin, C.; Yin, C.; Sato, Y.; Sato, Y.; Nagano, Y.; Nagano, Y.; Yamamoto, A.; Yamamoto, A.; et al. Promoter methylation levels of microRNA-124 in non-neoplastic rectal mucosa as a potential biomarker for ulcerative colitis-associated colorectal cancer in pediatric-onset patients. Surg. Today 2023, 54, 347–355. [Google Scholar] [CrossRef]
- Huang, L.; Sun, T.; Hu, L.; Hu, S.; Sun, H.; Zhao, F.; Wu, B.; Yang, S.; Ji, F.; Zhou, D. Elevated miR-124-3p in the aging colon disrupts mucus barrier and increases susceptibility to colitis by targeting T-synthase. Aging Cell 2020, 19, e13252. [Google Scholar] [CrossRef]
- Luo, Y.; Yu, M.; Yan, Y.; Zhou, Y.; Qin, S.; Huang, Y.; Qin, J.; Zhong, M. Rab27A promotes cellular apoptosis and ROS production by regulating the miRNA-124-3p/STAT3/RelA signalling pathway in ulcerative colitis. J. Cell. Mol. Med. 2020, 24, 11330–11342. [Google Scholar] [CrossRef]
- Qin, Z.; Wang, P.-Y.; Wan, J.-J.; Zhang, Y.; Wei, J.; Sun, Y.; Liu, X. MicroRNA124-IL6R Mediates the Effect of Nicotine in Inflammatory Bowel Disease by Shifting Th1/Th2 Balance Toward Th1. Front. Immunol. 2020, 11, 235. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Shao, C.; Ying, Y.; Wu, Y.; Liu, W.; Tian, Y.; Yin, Z.; Li, X.; Yu, Z.; Shuai, J. The spring-like effect of microRNA-31 in balancing inflammatory and regenerative responses in colitis. Front. Microbiol. 2022, 13, 1089729. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.F.; Li, H.; Cui, J.; Chen, Y.H.; Cui, Y. Effects of Kalimeris indica (L.) Sch Bip on colitis-associated colorectal cancer. Front. Pharmacol. 2023, 13, 1119091. [Google Scholar] [CrossRef]
- Toyonaga, T.; Steinbach, E.C.; Keith, B.P.; Barrow, J.B.; Schaner, M.R.; Wolber, E.A.; Beasley, C.; Huling, J.; Wang, Y.; Allbritton, N.L.; et al. Decreased Colonic Activin Receptor-Like Kinase 1 Disrupts Epithelial Barrier Integrity in Patients With Crohn’s Disease. Cell. Mol. Gastroenterol. Hepatol. 2020, 10, 779–796. [Google Scholar] [CrossRef]
- Alrafas, H.R.; Busbee, P.B.; Nagarkatti, M.; Nagarkatti, P.S. Resveratrol Downregulates miR-31 to Promote T Regulatory Cells during Prevention of TNBS-Induced Colitis. Mol. Nutr. Food Res. 2019, 64, 1900633. [Google Scholar] [CrossRef]
- Sun, J.; Liang, W.; Yang, X.; Li, Q.; Zhang, G. Cytoprotective effects of galacto-oligosaccharides on colon epithelial cells via up-regulating miR-19b. Life Sci. 2019, 231, 116589. [Google Scholar] [CrossRef]
- Fouad, M.R.; Salama, R.M.; Zaki, H.F.; El-Sahar, A.E. Vildagliptin attenuates acetic acid-induced colitis in rats via targeting PI3K/Akt/NFκB, Nrf2 and CREB signaling pathways and the expression of lncRNA IFNG-AS1 and miR-146a. Int. Immunopharmacol. 2021, 92, 107354. [Google Scholar] [CrossRef]
- Daskalaki, M.G.; Vyrla, D.; Harizani, M.; Doxaki, C.; Eliopoulos, A.G.; Roussis, V.; Ioannou, E.; Tsatsanis, C.; Kampranis, S.C. Neorogioltriol and Related Diterpenes from the Red Alga Laurencia Inhibit Inflammatory Bowel Disease in Mice by Suppressing M1 and Promoting M2-Like Macrophage Responses. Mar. Drugs. 2019, 17, 97. [Google Scholar] [CrossRef]
- Li, Y.; Tan, S.; Shen, Y.; Guo, L. miR-146a-5p negatively regulates the IL-1β-stimulated inflammatory response via downregulation of the IRAK1/TRAF6 signaling pathway in human intestinal epithelial cells. Exp. Ther. Med. 2022, 24, 615. [Google Scholar] [CrossRef]
- Xia, X.; Yang, Q.; Han, X.; Du, Y.; Guo, S.; Hua, M.; Fang, F.; Ma, Z.; Ma, H.; Yuan, H.; et al. Explore on the Mechanism of miRNA-146a/TAB1 in the Regulation of Cellular Apoptosis and Inflammation in Ulcerative Colitis Based on NF-κB Pathway. Curr. Mol. Med. 2024, 24, 330–342. [Google Scholar] [CrossRef] [PubMed]
- Apte, A.; Bardill, J.R.; Canchis, J.; Skopp, S.M.; Fauser, T.; Lyttle, B.; Vaughn, A.E.; Seal, S.; Jackson, D.M.; Liechty, K.W.; et al. Targeting Inflammation and Oxidative Stress to Improve Outcomes in a TNBS Murine Crohn’s Colitis Model. Nanomaterials 2024, 14, 894. [Google Scholar] [CrossRef] [PubMed]
- Guz, M.; Dworzański, T.; Jeleniewicz, W.; Cybulski, M.; Kozicka, J.; Stepulak, A.; Celiński, K. Elevated MiRNA Inversely Correlates with E-Cadherin Gene Expression in Tissue Biopsies from Crohn Disease Patients in Contrast to Ulcerative Colitis Patients. Biomed. Res. Int. 2020, 2020, 4250329. [Google Scholar] [CrossRef]
- Garo, L.P.; Ajay, A.K.; Fujiwara, M.; Gabriely, G.; Raheja, R.; Kuhn, C.; Kenyon, B.; Skillin, N.; Kadowaki-Saga, R.; Saxena, S.; et al. MicroRNA-146a limits tumorigenic inflammation in colorectal cancer. Nat. Commun. 2021, 12, 2419. [Google Scholar] [CrossRef]
- Wu, H.; Fan, H.; Shou, Z.; Xu, M.; Chen, Q.; Ai, C.; Dong, Y.; Liu, Y.; Nan, Z.; Wang, Y.; et al. Extracellular vesicles containing miR-146a attenuate experimental colitis by targeting TRAF6 and IRAK1. Int. Immunopharmacol. 2019, 68, 204–212. [Google Scholar] [CrossRef]
- Hu, W.; Fang, T.; Chen, X. Identification of Differentially Expressed Genes and MiRNAs for Ulcerative Colitis Using Bioinformatics Analysis. Front. Genet. 2022, 13, 914384. [Google Scholar] [CrossRef]
- James, S.; Aparna, J.S.; Babu, A.; Paul, A.M.; Lankadasari, M.B.; Athira, S.R.; Kumar, S.S.; Vijayan, Y.; Namitha, N.N.; Mohammed, S.; et al. Cardamonin Attenuates Experimental Colitis and Associated Colorectal Cancer. Biomolecules 2021, 11, 661. [Google Scholar] [CrossRef]
- He, S.; Song, W.; Cui, S.; Li, J.; Jiang, Y.; Chen, X.; Peng, L. Modulation of miR-146b by N6-methyladenosine modification remodels tumor-associated macrophages and enhances anti-PD-1 therapy in colorectal cancer. Cell. Oncol. 2023, 46, 1731–1746. [Google Scholar] [CrossRef]
- Adamowicz, M.; Stukan, I.; Milkiewicz, P.; Bialek, A.; Milkiewicz, M.; Kempinska-Podhorodecka, A. Modulation of Mismatch Repair and the SOCS1/p53 Axis by microRNA-155 in the Colon of Patients with Primary Sclerosing Cholangitis. Int. J. Mol. Sci. 2022, 23, 4905. [Google Scholar] [CrossRef]
- Lu, X.; Song, Z.; Hao, J.; Kong, X.; Yuan, W.; Shen, Y.; Zhang, C.; Yang, J.; Yu, P.; Qian, Y.; et al. Proton Pump Inhibitors Enhance Macropinocytosis-mediated Extracellular Vesicle Endocytosis by Inducing Membrane V-ATPase Assembly. J. Extracell. Vesicles 2024, 13, e12426. [Google Scholar] [CrossRef]
- Síbia, C.d.F.d.; Quaglio, A.E.V.; Oliveira, E.C.S.d.; Pereira, J.N.; Ariede, J.R.; Lapa, R.M.L.; Severino, F.E.; Reis, P.P.; Sassaki, L.Y.; Saad-Hossne, R. MicroRNA–MRNA Networks Linked to Inflammation and Immune System Regulation in Inflammatory Bowel Disease. Biomedicines 2024, 12, 422. [Google Scholar] [CrossRef] [PubMed]
- Amerikanou, C.; Papada, E.; Gioxari, A.; Smyrnioudis, I.; Kleftaki, S.-A.; Valsamidou, E.; Bruns, V.; Banerjee, R.; Trivella, M.G.; Milic, N.; et al. Mastiha Has Efficacy in Immune-Mediated Inflammatory Diseases through a MicroRNA-155 Th17 Dependent Action. Pharmacol. Res. 2021, 171, 105753. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Peng, S.; Wang, S.; Li, X.; Li, H.; Shen, L. Pristimerin Reduces Dextran Sulfate Sodium-Induced Colitis in Mice by Inhibiting MicroRNA-155. Int. Immunopharmacol. 2021, 94, 107491. [Google Scholar] [CrossRef]
- Din, A.U.; Hassan, A.; Zhu, Y.; Zhang, K.; Wang, Y.Y.; Li, T.; Wang, Y.Y.; Wang, G. Inhibitory Effect of Bifidobacterium Bifidum {ATCC} 29521 on Colitis and Its Mechanism. J. Nutr. Biochem. 2020, 79, 108353. [Google Scholar] [CrossRef]
- Yu, D.; Ungureanu, B.S.; Liu, Z. Matrine Protects Intestinal Barrier Function via MicroRNA-155 Through ROCK1-Signaling Pathway. Turk. J. Gastroenterol. 2023, 34, 831–838. [Google Scholar] [CrossRef]
- Tang, Y.; Kline, K.T.; Zhong, X.S.; Xiao, Y.; Lian, H.; Peng, J.; Liu, X.; Powell, D.W.; Tang, G.; Li, Q. Chronic Colitis Upregulates MicroRNAs Suppressing Brain-Derived Neurotrophic Factor in the Adult Heart. PLoS ONE 2021, 16, e0257280. [Google Scholar] [CrossRef]
- Lai, L.; Li, H.; Feng, Q.; Shen, J.; Ran, Z. Multi-Factor Mediated Functional Modules Identify Novel Classification of Ulcerative Colitis and Functional Gene Panel. Sci. Rep. 2021, 11, 5669. [Google Scholar] [CrossRef]
- Malham, M.; James, J.P.; Jakobsen, C.; Hoegdall, E.; Holmstroem, K.; Wewer, V.; Nielsen, B.S.; Riis, L.B. Mucosal MicroRNAs Relate to Age and Severity of Disease in Ulcerative Colitis. Aging 2021, 13, 6359–6374. [Google Scholar] [CrossRef]
- Yang, Z.-B.; Qiu, L.-Z.; Chen, Q.; Lin, J.-D. Artesunate Alleviates the Inflammatory Response of Ulcerative Colitis by Regulating the Expression of MiR-155. Pharm. Biol. 2021, 59, 95–103. [Google Scholar] [CrossRef]
- Unkovič, A.; Boštjančič, E.; Belič, A.; Perše, M. Selection and Evaluation of MRNA and MiRNA Reference Genes for Expression Studies (QPCR) in Archived Formalin-Fixed and Paraffin-Embedded (FFPE) Colon Samples of DSS-Induced Colitis Mouse Model. Biology 2023, 12, 190. [Google Scholar] [CrossRef]
- Guo, J.-G.; Rao, Y.-F.; Jiang, J.; Li, X.; Zhu, S.-M. MicroRNA-155-5p Inhibition Alleviates Irritable Bowel Syndrome by Increasing Claudin-1 and ZO-1 Expression. Ann. Transl. Med. 2023, 11, 34. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Pan, B.; Xu, S.; Xu, Z.; Lu, G.; Wang, F.; Fang, B.; Xu, C. Detection of Inflammatory Bowel Disease (IBD)-Associated MicroRNAs by Two Color DNA-Templated Silver Nanoclusters Fluorescent Probes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 276, 121185. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Kelly, O.B.; Smith, M.I.; Kabakchiev, B.; Silverberg, M.S. Differential MiRNA Expression in Ileal and Colonic Tissues Reveals an Altered Immunoregulatory Molecular Profile in Individuals With Crohn’s Disease versus Healthy Subjects. J. Crohn’s Colitis 2019, 13, 1459–1469. [Google Scholar] [CrossRef] [PubMed]
- Wohnhaas, C.T.; Schmid, R.; Rolser, M.; Kaaru, E.; Langgartner, D.; Rieber, K.; Strobel, B.; Eisele, C.; Wiech, F.; Jakob, I.; et al. Fecal MicroRNAs Show Promise as Noninvasive Crohn’s Disease Biomarkers. Crohn’s Colitis 2020, 360. [Google Scholar] [CrossRef]
- Wu, X.; Pan, S.; Luo, W.; Shen, Z.; Meng, X.; Xiao, M.; Tan, B.; Nie, K.; Tong, T.; Wang, X. Roseburia intestinalis-derived Flagellin Ameliorates Colitis by Targeting MiR-223-3p-mediated Activation of NLRP3 Inflammasome and Pyroptosis. Mol. Med. Rep. 2020, 22, 2695–2704. [Google Scholar] [CrossRef]
- Quintanilla, I.; Jung, G.; Jimeno, M.; Lozano, J.J.; Sidorova, J.; Camps, J.; Carballal, S.; Bujanda, L.; Vera, M.I.; Quintero, E.; et al. Differentially Deregulated MicroRNAs as Novel Biomarkers for Neoplastic Progression in Ulcerative Colitis. Clin. Transl. Gastroenterol. 2022, 13, e00489. [Google Scholar] [CrossRef]
- Tocia, C.; Dumitru, A.; Mateescu, B.; Negreanu, L.; State, M.; Cozaru, G.C.; Mitroi, A.F.; Brinzan, C.; Popescu, R.; Leopa, N.; et al. Tissue and Circulating MicroRNA-31, MicroRNA-200b, and MicroRNA-200c Reflects Disease Activity in Crohn‘s Disease Patients: Results from the BIOMIR Study. J. Gastrointest. Liver Dis. 2023, 32, 30–38. [Google Scholar] [CrossRef]
- Sun, T.; Li, Y.; Zhao, F.; Sun, H.; Gao, Y.; Wu, B.; Yang, S.; Ji, F.; Zhou, D. MiR-1-3p and MiR-124-3p Synergistically Damage the Intestinal Barrier in the Ageing Colon. J. Crohn’s Colitis 2021, 16, 656–667. [Google Scholar] [CrossRef]
- Yang, Y.; Hounye, A.H.; Chen, Y.; Liu, Z.; Shi, G.; Xiao, Y. Characterization of PANoptosis-Related Genes in Crohn’s Disease by Integrated Bioinformatics, Machine Learning and Experiments. Sci. Rep. 2024, 14, 11731. [Google Scholar] [CrossRef]
- Atreya, R.; Neurath, M.F. Induction of MicroRNA-124 as a Novel Therapeutic Concept in Ulcerative Colitis. Lancet Gastroenterol. Hepatol. 2022, 7, 977–978. [Google Scholar] [CrossRef]
- Aishwarya, S.; Gunasekaran, K. Differential Gene Expression Profiles Involved in the Inflammations Due to COVID-19 and Inflammatory Bowel Diseases and the Investigation of Predictive Biomarkers. Biochem. Genet. 2023, 62, 311–332. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Lu, T.; Bai, Y.; Han, X.; Zhang, W.; Zhang, L.; Chen, S.; Lin, C.; Liu, C.; Yuan, C. The Critical Role of MicroRNA-21 in Non-Alcoholic Fatty Liver Disease. Curr. Pharm. Des. 2023, 29, 904–913. [Google Scholar] [CrossRef] [PubMed]
- Shahnazari, M.; Afshar, S.; Emami, M.H.; Amini, R.; Jalali, A. Novel Biomarkers for Neoplastic Progression from Ulcerative Colitis to Colorectal Cancer: A Systems Biology Approach. Sci. Rep. 2023, 13, 3413. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.-Y.; Yao, J.-P.; Li, Y.-Q.; Zhang, W.; Xi, M.-H.; Chen, M.; Li, Y. Global Trends in Research on MiRNA–Microbiome Interaction from 2011 to 2021: A Bibliometric Analysis. Front. Pharmacol. 2022, 13, 974741. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Ren, F.; Fang, X.; Yuan, L.; Liu, G.; Wang, S. Exosomal MicroRNA-181a Derived From Mesenchymal Stem Cells Improves Gut Microbiota Composition, Barrier Function, and Inflammatory Status in an Experimental Colitis Model. Front. Med. 2021, 8, 660614. [Google Scholar] [CrossRef]
- Ji, L.; Li, F.; Zhao, P.; Weng, L.; Wei, J.; Yan, J.; Liu, L. Silencing Interleukin 1α Underlies a Novel Inhibitory Role of MiR-181c-5p in Alleviating Low-grade Inflammation of Rats with Irritable Bowel Syndrome. J. Cell. Biochem. 2019, 120, 15268–15279. [Google Scholar] [CrossRef]
- Buonpane, C.; Ares, G.; Benyamen, B.; Yuan, C.; Hunter, C.J. Identification of Suitable Reference MicroRNA for QPCR Analysis in Pediatric Inflammatory Bowel Disease. Physiol. Genom. 2019, 51, 169–175. [Google Scholar] [CrossRef]
- Atanassova, A.; Georgieva, A. Circulating MiRNA-16 in Inflammatory Bowel Disease and Some Clinical Correlations—A Cohort Study in Bulgarian Patients. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 6310–6315. [Google Scholar] [CrossRef]
- Olyaiee, A.; Yadegar, A.; Mirsamadi, E.S.; Sadeghi, A.; Mirjalali, H. Profiling of the Fecal Microbiota and Circulating MicroRNA-16 in IBS Subjects with Blastocystis Infection: A Case–Control Study. Eur. J. Med. Res. 2023, 28, 483. [Google Scholar] [CrossRef]
- Peng, S.; Shen, L.; Yu, X.; Wu, J.; Zha, L.; Xia, Y.; Luo, H. miR-200a attenuated oxidative stress, inflammation, and apoptosis in dextran sulfate sodium-induced colitis through activation of Nrf2. Front. Immunol. 2023, 14, 1196065. [Google Scholar] [CrossRef]
- Wei, X.; Yu, S.; Zhang, T.; Liu, L.; Wang, X.; Wang, X.; Chan, Y.-S.; Wang, Y.; Meng, S.; Chen, Y.-G. MicroRNA-200 Loaded Lipid Nanoparticles Promote Intestinal Epithelium Regeneration in Canonical MicroRNA-Deficient Mice. ACS Nano 2023, 17, 22901–22915. [Google Scholar] [CrossRef] [PubMed]
- Shaker, O.G.; Ali, M.A.; Ahmed, T.I.; Zaki, O.M.; Ali, D.Y.; Hassan, E.A.; Hemeda, N.F.; AbdelHafez, M.N. Association between LINC00657 and miR-106a Serum Expression Levels and Susceptibility to Colorectal Cancer, Adenomatous Polyposis, and Ulcerative Colitis in Egyptian Population. IUBMB Life 2019, 71, 1322–1335. [Google Scholar] [CrossRef]
- Li, D.; Liu, L.; Du, X.; Ma, W.; Zhang, J.; Piao, W. MiRNA-374b-5p and MiRNA-106a-5p Are Related to Inflammatory Bowel Disease via Regulating IL-10 and STAT3 Signaling Pathways. BMC Gastroenterol. 2022, 22, 492. [Google Scholar] [CrossRef] [PubMed]
- Sanctuary, M.R.; Huang, R.H.; Jones, A.A.; Luck, M.E.; Aherne, C.M.; Jedlicka, P.; de Zoeten, E.F.; Collins, C.B. MiR-106a Deficiency Attenuates Inflammation in Murine IBD Models. Mucosal Immunol. 2019, 12, 200–211. [Google Scholar] [CrossRef]
- Lian, H.; Zhong, X.S.; Xiao, Y.; Sun, Z.; Shen, Y.; Zhao, K.; Ma, X.; Li, Y.; Niu, Q.; Liu, M.; et al. Exosomal MiR-29b of Gut Origin in Patients With Ulcerative Colitis Suppresses Heart Brain-Derived Neurotrophic Factor. Front. Mol. Biosci. 2022, 9, 759689. [Google Scholar] [CrossRef]
- Lee, S.-H.; Moon, S.-J.; Woo, S.H.; Ahn, G.; Kim, W.K.; Lee, C.-H.; Hwang, J.H. CrebH Protects against Liver Injury Associated with Colonic Inflammation via Modulation of Exosomal MiRNA. Cell Biosci. 2023, 13, 116. [Google Scholar] [CrossRef]
- Shumway, A.J.; Shanahan, M.T.; Hollville, E.; Chen, K.; Beasley, C.; Villanueva, J.W.; Albert, S.; Lian, G.; Cure, M.R.; Schaner, M.; et al. Aberrant MiR-29 Is a Predictive Feature of Severe Phenotypes in Pediatric Crohn’s Disease. JCI Insight 2024, 9, e168800. [Google Scholar] [CrossRef]
- Wang, Y.; Ke, W.; Gan, J.; Zhu, H.; Xie, X.; He, G.; Liu, S.; Huang, Y.; Tang, H. MicroRNA-29b-3p Promotes Intestinal Permeability in IBS-D via Targeting TRAF3 to Regulate the NF-ΚB-MLCK Signaling Pathway. PLoS ONE 2023, 18, e0287597. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, J.; Chen, X.; Deng, J.; Gong, H.; Li, F.; Ouyang, M. MicroRNA-182-5p Aggravates Ulcerative Colitis by Inactivating the Wnt/β-Catenin Signaling Pathway through DNMT3A-Mediated SMARCA5 Methylation. Genomics 2022, 114, 110360. [Google Scholar] [CrossRef]
- Tang, S.; Guo, W.; Kang, L.; Liang, J. MiRNA-182-5p Aggravates Experimental Ulcerative Colitis via Sponging Claudin-2. J. Mol. Histol. 2021, 52, 1215–1224. [Google Scholar] [CrossRef]
- James, J.P.; Riis, L.B.; Søkilde, R.; Malham, M.; Høgdall, E.; Langholz, E.; Nielsen, B.S. Short Noncoding RNAs as Predictive Biomarkers for the Development from Inflammatory Bowel Disease Unclassified to Crohn’s Disease or Ulcerative Colitis. PLoS ONE 2024, 19, e0297353. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xuan, J.; Zhang, W.; An, Z.; Fan, X.; Lu, M.; Tian, Y. Long non-coding RNA SNHG5 regulates ulcerative colitis via microRNA-375 / Janus kinase-2 axis. Bioengineered 2021, 12, 4150–4158. [Google Scholar] [CrossRef]
- Chen, Z.; Gu, Q.; Chen, R. Promotive role of IRF7 in ferroptosis of colonic epithelial cells in ulcerative colitis by the miR-375-3p/SLC11A2 axis. Bosn. J. Basic Med. Sci. 2022, 23. [Google Scholar] [CrossRef]
- Wu, Z.; Tian, Y.; Wang, C.; Zhang, J.; Lin, J. MiRNA-192-5p-targeted activated leukocyte cell adhesion molecule improved inflammatory injury of neonatal necrotizing enterocolitis. Pediatr. Surg. Int. 2024, 40, 126. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.-W.; Rouzigu, A.; Teng, L.-H.; Liu, W.-L. The Construction and Comprehensive Analysis of Inflammation-Related CeRNA Networks and Tissue-Infiltrating Immune Cells in Ulcerative Colitis Progression. Biomed. Res. Int. 2021, 2021, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Erfan, R.; Shaker, O.G.; Khalil, M.A.F.; Mahmoud, F.A.M.; Gomaa, M.S.; Abu-El-Azayem, A.K.; Zaki, O.M.; Ahmed, A.M.; Samy, A.; Mohammed, A. Circulating MiR-199a and Long Noncoding-RNA ANRIL as Promising Diagnostic Biomarkers for Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2024, 30, 1500–1509. [Google Scholar] [CrossRef]
- Ma, L.; Lyu, W.; Song, Y.; Chen, K.; Lv, L.; Yang, H.; Wang, W.; Xiao, Y. Anti-Inflammatory Effect of Clostridium Butyricum-Derived Extracellular Vesicles in Ulcerative Colitis: Impact on Host MicroRNAs Expressions and Gut Microbiome Profiles. Mol. Nutr. Food Res. 2023, 67, 202200884. [Google Scholar] [CrossRef]
- Martini, E.; Krug, S.M.; Siegmund, B.; Neurath, M.F.; Becker, C. Mend Your Fences. Cell. Mol. Gastroenterol. Hepatol. 2017, 4, 33–46. [Google Scholar] [CrossRef]
- Kaur, A.; Goggolidou, P. Ulcerative colitis: Understanding its cellular pathology could provide insights into novel therapies. J. Inflamm. 2020, 17, 15. [Google Scholar] [CrossRef]
- Liu, C.Y.; Cham, C.M.; Chang, E.B. Epithelial wound healing in inflammatory bowel diseases: The next therapeutic frontier. Transl. Res. 2021, 236, 35–51. [Google Scholar] [CrossRef]
- Andoh, A.; Nishida, A. Molecular Basis of Intestinal Fibrosis in Inflammatory Bowel Disease. Inflamm. Intest. Dis. 2022, 7, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Khoramjoo, S.M.; Kazemifard, N.; Ghavami, S.B.; Farmani, M.; Shahrokh, S.; Aghdaei, H.A.; Sherkat, G.; Zali, M.R. Overview of Three Proliferation Pathways (Wnt, Notch, and Hippo) in Intestine and Immune System and Their Role in Inflammatory Bowel Diseases (IBDs). Front. Med. 2022, 9, 865131. [Google Scholar] [CrossRef] [PubMed]
- Nunes, T.; Bernardazzi, C.; de Souza, H.S. Cell Death and Inflammatory Bowel Diseases: Apoptosis, Necrosis, and Autophagy in the Intestinal Epithelium. Biomed. Res. Int. 2014, 2014, 218493. [Google Scholar] [CrossRef] [PubMed]
- Günther, C.; Neumann, H.; Neurath, M.F.; Becker, C. Apoptosis, necrosis and necroptosis: Cell death regulation in the intestinal epithelium. Gut 2013, 62, 1062–1071. [Google Scholar] [CrossRef] [PubMed]
- Martínez, C.; González-Castro, A.; Vicario, M. Cellular and Molecular Basis of Intestinal Barrier Dysfunction in the Irritable Bowel Syndrome. Gut Liver 2012, 6, 305–315. [Google Scholar] [CrossRef]
- Hagiwara, C.; Tanaka, M.; Kudo, H. Increase in colorectal epithelial apoptotic cells in patients with ulcerative colitis ultimately requiring surgery. J. Gastroenterol. Hepatol. 2002, 17, 758–764. [Google Scholar] [CrossRef]
- Ina, K.; Itoh, J.; Fukushima, K.; Kusugami, K.; Yamaguchi, T.; Kyokane, K.; Imada, A.; Binion, D.G.; Musso, A.; West, G.A.; et al. Resistance of Crohn’s Disease T Cells to Multiple Apoptotic Signals Is Associated with a Bcl-2/Bax Mucosal Imbalance. J. Immunol. 1999, 163, 1081–1090. [Google Scholar] [CrossRef]
- Saez, A.; Herrero-Fernandez, B.; Gomez-Bris, R.; Sánchez-Martinez, H.; Gonzalez-Granado, J.M. Pathophysiology of Inflammatory Bowel Disease: Innate Immune System. Int. J. Mol. Sci. 2023, 24, 1526. [Google Scholar] [CrossRef]
- Naser, S.A. Role of ATG16L, NOD2 and IL23R in Crohn’s disease pathogenesis. World J. Gastroenterol. 2012, 18, 412. [Google Scholar] [CrossRef]
- Xi, M.; Zhao, P.; Li, F.; Bao, H.; Ding, S.; Ji, L.; Yan, J. MicroRNA-16 inhibits the TLR4/NF-κB pathway and maintains tight junction integrity in irritable bowel syndrome with diarrhea. J. Biol. Chem. 2022, 298, 102461. [Google Scholar] [CrossRef]
- Chen, Y.; Shan, T.; Qu, H.; Chen, Y.; Wang, N.; Xia, J. Inhibition of miR-16 Ameliorates Inflammatory Bowel Disease by Modulating Bcl-2 in Mouse Models. J. Surg. Res. 2020, 253, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Thorlacius-Ussing, G.; Schnack Nielsen, B.; Andersen, V.; Holmstrøm, K.; Pedersen, A.E. Expression and Localization of miR-21 and miR-126 in Mucosal Tissue from Patients with Inflammatory Bowel Disease. Inflamm. Bowel. Dis. 2017, 23, 739–752. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Yu, Y.; Tan, S. The role of the miR215pmediated inflammatory pathway in ulcerative colitis. Exp. Ther. Med. 2020, 19, 981–989. [Google Scholar] [CrossRef] [PubMed]
- Yarani, R.; Shojaeian, A.; Palasca, O.; Doncheva, N.T.; Jensen, L.J.; Gorodkin, J.; Pociot, F. Differentially Expressed miRNAs in Ulcerative Colitis and Crohn’s Disease. Front. Immunol. 2022, 13, 865777. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, D.; Liu, F. miR-146b suppresses LPS-induced M1 macrophage polarization via inhibiting the FGL2-activated NF-κB/MAPK signaling pathway in inflammatory bowel disease. Clinics 2022, 77, 100069. [Google Scholar] [CrossRef]
- Cicala, M.; Gori, M.; Balestrieri, P.; Altomare, A.; Tullio, A.; Di Cola, S.; Dejongh, S.; Graziani, M.G.; Pagnini, C.; Carotti, S.; et al. Colonic Epithelial Permeability to Ions Is Restored after Vedolizumab Treatment and May Predict Clinical Response in Inflammatory Bowel Disease Patients. Int. J. Mol. Sci. 2024, 25, 5817. [Google Scholar] [CrossRef]
- D’ambrosio, A.; Altomare, A.; Boscarino, T.; Gori, M.; Balestrieri, P.; Putignani, L.; Del Chierico, F.; Carotti, S.; Cicala, M.; Guarino, M.P.L.; et al. Mathematical Modeling of Vedolizumab Treatment’s Effect on Microbiota and Intestinal Permeability in Inflammatory Bowel Disease Patients. Bioengineering 2024, 11, 710. [Google Scholar] [CrossRef]
- Abdul Rani, R.; Raja Ali, R.A.; Lee, Y.Y. Irritable bowel syndrome and inflammatory bowel disease overlap syndrome: Pieces of the puzzle are falling into place. Intest. Res. 2016, 14, 297. [Google Scholar] [CrossRef]
- Camilleri, M.; Lasch, K.; Zhou, W. Irritable Bowel Syndrome: Methods, Mechanisms, and Pathophysiology. The confluence of increased permeability, inflammation, and pain in irritable bowel syndrome. Am. J. Physiol.-Gastrointest. Liver Physiol. 2012, 303, G775–G785. [Google Scholar] [CrossRef]
- Michielan, A.; D’Incà, R. Intestinal Permeability in Inflammatory Bowel Disease: Pathogenesis, Clinical Evaluation, and Therapy of Leaky Gut. Mediators. Inflamm. 2015, 2015, 628157. [Google Scholar] [CrossRef]
- Cichon, C.; Sabharwal, H.; Rüter, C.; Schmidt, M.A. MicroRNAs regulate tight junction proteins and modulate epithelial/endothelial barrier functions. Tissue Barriers. 2014, 2, e944446. [Google Scholar] [CrossRef] [PubMed]
- Suri, K.; Bubier, J.A.; Wiles, M.V.; Shultz, L.D.; Amiji, M.M.; Hosur, V. Role of MicroRNA in Inflammatory Bowel Disease: Clinical Evidence and the Development of Preclinical Animal Models. Cells 2021, 10, 2204. [Google Scholar] [CrossRef] [PubMed]
- Dhuppar, S.; Murugaiyan, G. miRNA effects on gut homeostasis: Therapeutic implications for inflammatory bowel disease. Trends. Immunol. 2022, 43, 917–931. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Vitetta, L. Is miR-223 Upregulation in Inflammatory Bowel Diseases a Protective Response? Front. Biosci.-Elite 2023, 15, 5. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chao, K.; Ng, S.C.; Bai, A.H.; Yu, Q.; Yu, J.; Li, M.; Cui, Y.; Chen, M.; Hu, J.-F.; et al. Pro-inflammatory miR-223 mediates the cross-talk between the IL23 pathway and the intestinal barrier in inflammatory bowel disease. Genome Biol. 2016, 17, 58. [Google Scholar] [CrossRef]
- Lu, Z.-J.; Wu, J.-J.; Jiang, W.-L.; Xiao, J.-H.; Tao, K.-Z.; Ma, L.; Zheng, P.; Wan, R.; Wang, X.-P. MicroRNA-155 promotes the pathogenesis of experimental colitis by repressing SHIP-1 expression. World J. Gastroenterol. 2017, 23, 976. [Google Scholar] [CrossRef]
- Pathak, S.; Grillo, A.R.; Scarpa, M.; Brun, P.; D’Incà, R.; Nai, L.; Banerjee, A.; Cavallo, D.; Barzon, L.; Palù, G.; et al. MiR-155 modulates the inflammatory phenotype of intestinal myofibroblasts by targeting SOCS1 in ulcerative colitis. Exp. Mol. Med. 2015, 47, e164. [Google Scholar] [CrossRef]
- Kim, E.R. Colorectal cancer in inflammatory bowel disease: The risk, pathogenesis, prevention and diagnosis. World J. Gastroenterol. 2014, 20, 9872. [Google Scholar] [CrossRef]
- Lucafò, M.; Curci, D.; Franzin, M.; Decorti, G.; Stocco, G. Inflammatory Bowel Disease and Risk of Colorectal Cancer: An Overview From Pathophysiology to Pharmacological Prevention. Front. Pharmacol. 2021, 12, 772101. [Google Scholar] [CrossRef]
- Jarmakiewicz-Czaja, S.; Zielińska, M.; Sokal, A.; Filip, R. Genetic and Epigenetic Etiology of Inflammatory Bowel Disease: An Update. Genes 2022, 13, 2388. [Google Scholar] [CrossRef]
- Vermeire, S. Review article: Genetic susceptibility and application of genetic testing in clinical management of inflammatory bowel disease. Aliment. Pharmacol. Ther. 2006, 24, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Vermeire, S.; Rutgeerts, P. Current status of genetics research in inflammatory bowel disease. Genes Immun. 2005, 6, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Hnatyszyn, A.; Hryhorowicz, S.; Kaczmarek-Ryś, M.; Lis, E.; Słomski, R.; Scott, R.J.; Pławski, A. Colorectal carcinoma in the course of inflammatory bowel diseases. Hered. Cancer Clin. Pract. 2019, 17, 18. [Google Scholar] [CrossRef] [PubMed]
- Toruner, M.; Unal, N.G. Epigenetics of Inflammatory Bowel Diseases. Turk. J. Gastroenterol. 2023, 34, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, C.N.; Blanchard, J.F.; Kliewer, E.; Wajda, A. Cancer risk in patients with inflammatory bowel disease: A population-based study. Cancer 2001, 91, 854–862. [Google Scholar] [CrossRef]
- Federico, A.; Morgillo, F.; Tuccillo, C.; Ciardiello, F.; Loguercio, C. Chronic inflammation and oxidative stress in human carcinogenesis. Int. J. Cancer 2007, 121, 2381–2386. [Google Scholar] [CrossRef]
- Kay, J.; Thadhani, E.; Samson, L.; Engelward, B. Inflammation-induced DNA damage, mutations and cancer. DNA Repair 2019, 83, 102673. [Google Scholar] [CrossRef]
- Mola, S.; Pandolfo, C.; Sica, A.; Porta, C. The Macrophages-Microbiota Interplay in Colorectal Cancer (CRC)-Related Inflammation: Prognostic and Therapeutic Significance. Int. J. Mol. Sci. 2020, 21, 6866. [Google Scholar] [CrossRef]
- Xue, X.; Li, R.; Chen, Z.; Li, G.; Liu, B.; Guo, S.; Yue, Q.; Yang, S.; Xie, L.; Zhang, Y.; et al. The role of the symbiotic microecosystem in cancer: Gut microbiota, metabolome, and host immunome. Front. Immunol. 2023, 14, 1235827. [Google Scholar] [CrossRef]
- Ahmad Kendong, S.M.; Raja Ali, R.A.; Nawawi, K.N.M.; Ahmad, H.F.; Mokhtar, N.M. Gut Dysbiosis and Intestinal Barrier Dysfunction: Potential Explanation for Early-Onset Colorectal Cancer. Front. Cell. Infect. Microbiol. 2021, 11, 744606. [Google Scholar] [CrossRef]
- Genua, F.; Raghunathan, V.; Jenab, M.; Gallagher, W.M.; Hughes, D.J. The Role of Gut Barrier Dysfunction and Microbiome Dysbiosis in Colorectal Cancer Development. Front. Oncol. 2021, 11, 626349. [Google Scholar] [CrossRef] [PubMed]
- Marabotto, E.; Kayali, S.; Buccilli, S.; Levo, F.; Bodini, G.; Giannini, E.G.; Savarino, V.; Savarino, E.V. Colorectal Cancer in Inflammatory Bowel Diseases: Epidemiology and Prevention: A Review. Cancers 2022, 14, 4254. [Google Scholar] [CrossRef] [PubMed]
- Ng, E.K.; Chong, W.W.S.; Jin, H.; Lam, E.K.Y.; Shin, V.Y.; Yu, J.; Poon, T.C.W.; Ng, S.S.M.; Sung, J.J.Y. Differential expression of microRNAs in plasma of patients with colorectal cancer: A potential marker for colorectal cancer screening. Gut 2009, 58, 1375–1381. [Google Scholar] [CrossRef]
- Scapin, G.; Salice, P.; Tescari, S.; Menna, E.; De Filippis, V.; Filippini, F. The Promising Role of miR-21 as a Cancer Biomarker and Its Importance in RNA-Based Therapeutics. Mol. Ther. Nucleic Acids 2020, 20, 409–420. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, X.; Xu, Y. Aberrant expression of miR-21 in patients with inflammatory bowel disease. Medicine 2020, 99, e19693. [Google Scholar] [CrossRef]
- Lai, C.-Y.; Yeh, K.-Y.; Liu, B.-F.; Chang, T.-M.; Chang, C.-H.; Liao, Y.-F.; Liu, Y.-W.; Her, G.M. MicroRNA-21 Plays Multiple Oncometabolic Roles in Colitis-Associated Carcinoma and Colorectal Cancer via the PI3K/AKT, STAT3, and PDCD4/TNF-α Signaling Pathways in Zebrafish. Cancers 2021, 13, 5565. [Google Scholar] [CrossRef]
- Chacon-Millan, P.; Lama, S.; Del Gaudio, N.; Gravina, A.G.; Federico, A.; Pellegrino, R.; Luce, A.; Altucci, L.; Facchiano, A.; Caraglia, M.; et al. A Combination of Microarray-Based Profiling and Biocomputational Analysis Identified miR331-3p and hsa-let-7d-5p as Potential Biomarkers of Ulcerative Colitis Progression to Colorectal Cancer. Int. J. Mol. Sci. 2024, 25, 5699. [Google Scholar] [CrossRef]
- Kempinska-Podhorodecka, A.; Blatkiewicz, M.; Wunsch, E.; Krupa, L.; Gutkowski, K.; Milkiewicz, P.; Milkiewicz, M. Oncomir MicroRNA-346 Is Upregulated in Colons of Patients With Primary Sclerosing Cholangitis. Clin. Transl. Gastroenterol. 2020, 11, e00112. [Google Scholar] [CrossRef]
- Seyhan, A.A. Trials and Tribulations of MicroRNA Therapeutics. Int. J. Mol. Sci. 2024, 25, 1469. [Google Scholar] [CrossRef]
IBDs | ||
---|---|---|
CD | UC | |
Location | Entire digestive tract—mouth to anus The most affected areas are the small intestine, the terminal ileum, and the colon | Colon and rectum; normally does not spread beyond to ileum |
Degree of inflammation | Transmural inflammation | Superficial mucosal inflammation |
Histology | Granulomas, increased globet cells | Crypt abscesses, depletion of goblet cells |
Smoking | Predisposing factor | Protective factor |
Extraintestinal Manifestation | Erythema nodosum, pyoderma gangrenosum, arthritis, ocular manifestations | |
Endoscopy | Skip lesions, deep ulcers, cobblestone appearance | Continuous lesions, pseudopolyps |
Complications | Strictures, fissures, fistula, venous thromboembolism, colorectal cancer | Toxic megacolon, venous thromboembolism, increasing risk of colorectal cancer compared to CD |
Associations | Gallstones | Primary sclerosing cholangitis (PSC) |
Incidence | Approximately 25% of patients with IBD are under the age of 20, especially in adolescence; however, approximately 20% of children with IBD will present before 10 years of age, and approximately 5% will present before 5 years of age | The disease can arise at any age, but it most frequently appears between the ages of 20 and 40, with no gender predisposition |
Category | Clinical Characteristics | Possible Etiopathogenesis |
---|---|---|
IBS |
|
|
SUBTYPE | ||
IBS-D |
|
|
IBS-C |
|
|
IBS-M |
|
|
IBS-U |
|
|
miRNA | Disease | Functional Role in the Diseases | References |
---|---|---|---|
MiR-146a | IBD | It modulates IL6, IL1b, and TNFa expression and acts as a pro-inflammatory inducer. The elevated expression promotes EMT modulating E-cadherin. | [100,101,104] |
CD | It contributes to cancer by targeting RIPK2 or modulating NOD2 and C-reactive protein, leading to increased inflammation. It should be recognized as a potential biomarker for disease. | [89,103,105] | |
UC | It modulates NF-κB, TNFα, and IL-6 while targeting TRAF6 and IL-17. It downregulates the IRAK1/TRAF pathway and negatively regulates the IL-1β-induced inflammatory response. | [79,99,102,106,107,108] | |
MiR-146b | UC | It alleviates colitis, enhancing antitumor immunity, and its effectiveness is increased, combining anti-PD-1 immunotherapy. | [109] |
MiR-155 | IBD | Elevated expression promotes EMT by downregulating E-cadherin. It acts as a miRNA with pro-inflammatory activity, regulating FOXP3 in T regulatory cells and influencing CTLA-4. | [104,110,111,112,113,114,115] |
UC | MiRNA overexpression protects the intestinal barrier by modulating the ROCK1 pathway. Matrine and Lactobacillus paracasei treatment can inhibit the miRNA, reducing pro-inflammatory activity linked to obesity. | [104,116,117,118,119,120] | |
IBS | MiRNA inhibition alleviates irritable bowel syndrome, increasing claudin-1 and ZO-1 expression. | [115,121,122] | |
MiR-223 | IBD | It regulates TMIGD1 expression and contributes to intestinal barrier dysfunction exacerbation. | [84,85,123] |
CD | It was found to be overexpressed in CD patients; should be used as biomarker. | [124,125] | |
UC | It is overexpressed in the disease, and some probiotic agents, like Lactobacillus paracasei, can downregulate miRNA expression. It regulates NLRP3 expressions. It is also involved in colorectal cancer. | [80,81,82,83,126] | |
MiR-31-5p | UC | miRNA regulates colitis by affecting CD4 T cells. GOS treatment also reduces colitis, impairing miRNA expression. The miRNA’s expression is influenced by IL-6 and TNF-a and is highly expressed in the disease, regulating cytokines like p65 and STAT3. | [94,95,118,127] |
UC/CD | This miRNA was found to be overexpressed in inflamed tissues of the patient. | [128] | |
MiR-124-3p | IBD | Modulates T synthetases. | [91,93,129] |
CD | It represents a biomarker for the disease. | [130] | |
UC | Suppresses apoptosis and induces ROS production; activates the STAT3 signaling pathway. | [90,92,131] | |
MiR-21 | CD | Overexpressed in the disease. | [132] |
IBD | Drives inflammation and should be considered a premetastatic biomarker. | [133,134,135] | |
MiR-181a/c | CD | Diagnostic biomarker. | [89] |
IBD | It modulates MAPK expression in dendritic cells. | [87,88] | |
UC | It inhibits M1 macrophage polarization and promotes the activation of M2, reducing inflammation. | [86,88,136] | |
IBS | It decreases inflammation. | [137] | |
MiR-16 | UC | Influences disease development. | [132,138,139] |
IBD | Its increased expression correlates with disease. | [132,138,139] | |
IBS | It was found to be overexpressed in the microbiota. | [140] | |
MiR-200a | UC | It mitigates oxidative stress and reduces inflammation by the modulation of NRF2. | [141] |
IBD | It was found to be downregulated in the disease. | [142] | |
CD | Upregulated in CD. | [128] | |
MiR-106a | UC | Influences UC development. | [127,143] |
IBD | This miRNA is overexpressed in patients with IBD and regulates IL-10/STAT3 signal transduction. It is an immune-suppressive miRNA, promoting T reg induction and suppressing anti-inflammatory cytokines. | [144,145] | |
MiR-29b/c | UC | It is downregulated when LIF is high. It promotes inflammation. | [146,147] |
CD | Highly expressed in patients with CD and modulates the tight junction by the decrease in PMP22 expression. | [148] | |
IBS/IBD | Targets TRAF3 to regulate NF-κB-MLCK. | [149] | |
MiR-182 5p | UC | It promotes ulceritis by the WNT/Bcatenin and claudin-2 ways. | [150,151,152] |
UC/CD | Its inhibition prevents ulceritis and inactivates WNT/Bcatenin. | ||
MiR- 375 | UC/CD | It regulates the SLC11A2 axis, promotes ferroptosis in colonic epithelial cells of patients with ulcerative colitis, induces upregulation of IRF7 and downregulation of JAK2 gene targets, and regulates SNHG5 to promote apoptosis. It is downregulated in the disease and regulates JAK2. | [79,125,153,154] |
MiR-192-5p | UC | Biomarker for UC; induces inflammation by IL6 and IL1b. | [79,155,156] |
IBD | Reduces apoptosis; overexpressed. | [155] | |
MiR-199 | CD/ UC | Overexpressed in patients. | [157] |
IBD | Overexpressed; useful as a biomarker. It represents a good restoring agent for UC interacting with map3k4, thereby suppressing pro-inflammatory MAPK and NF-κB signaling. | [112,158] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giammona, A.; Galuzzi, B.G.; Imperia, E.; Gervasoni, C.; Remedia, S.; Restaneo, L.; Nespoli, M.; De Gara, L.; Tani, F.; Cicala, M.; et al. Chronic Gastrointestinal Disorders and miRNA-Associated Disease: An Up-to-Date. Int. J. Mol. Sci. 2025, 26, 413. https://doi.org/10.3390/ijms26010413
Giammona A, Galuzzi BG, Imperia E, Gervasoni C, Remedia S, Restaneo L, Nespoli M, De Gara L, Tani F, Cicala M, et al. Chronic Gastrointestinal Disorders and miRNA-Associated Disease: An Up-to-Date. International Journal of Molecular Sciences. 2025; 26(1):413. https://doi.org/10.3390/ijms26010413
Chicago/Turabian StyleGiammona, Alessandro, Bruno Giovanni Galuzzi, Elena Imperia, Clarissa Gervasoni, Sofia Remedia, Laura Restaneo, Martina Nespoli, Laura De Gara, Flaminia Tani, Michele Cicala, and et al. 2025. "Chronic Gastrointestinal Disorders and miRNA-Associated Disease: An Up-to-Date" International Journal of Molecular Sciences 26, no. 1: 413. https://doi.org/10.3390/ijms26010413
APA StyleGiammona, A., Galuzzi, B. G., Imperia, E., Gervasoni, C., Remedia, S., Restaneo, L., Nespoli, M., De Gara, L., Tani, F., Cicala, M., Guarino, M. P. L., Porro, D., Cerasa, A., Lo Dico, A., Altomare, A., & Bertoli, G. (2025). Chronic Gastrointestinal Disorders and miRNA-Associated Disease: An Up-to-Date. International Journal of Molecular Sciences, 26(1), 413. https://doi.org/10.3390/ijms26010413