Integrating Bacteriocins and Biofilm-Degrading Enzymes to Eliminate L. monocytogenes Persistence
<p>Images of <span class="html-italic">L. monocytogenes</span> biofilms following treatment. The images depict mature biofilms following overnight treatment as follows: Control—PBS, CAase—0.1 mg/mL CAase, thermophilin 110–1000 AU/mL thermophilin 110, Mixture—a mixture of 0.1 mg/mL CAase and 1000 AU/mL thermophilin 110.</p> "> Figure 2
<p>Crystal violet assay results. Biofilm formation on microtiter plates as quantified by absorbance at 590 nm after crystal violet staining as described in <a href="#sec4dot7-ijms-26-00399" class="html-sec">Section 4.7</a>. Adsorption at 590 nm is plotted on the <span class="html-italic">y</span>-axis and the treatments are presented on the <span class="html-italic">x</span>-axis. The bars represent mean absorbance and error bars were constructed using 1 standard deviation from the mean of 3 biological replicates, each with 3 technical replicates. Groups not connected by the same letter were determined to be significantly different (<span class="html-italic">p</span> < 0.05) by Student’s <span class="html-italic">t</span>-test.</p> "> Figure 3
<p>Microscopy image analysis of CAase and thermophilin 110 effects on planktonic Listeria monocytogenes growth. (<b>A</b>) The normalized Background Corrected Absorption (BCAN) is plotted on the <span class="html-italic">y</span>-axis against time in hours on the <span class="html-italic">x</span>-axis. Analyzed images were recorded every 30 min. over the course of 25 h. The points represent an average of 3 experimental replicates, each containing 3 technical replicates (n = 9), and the error bars represent the standard deviation. (<b>B</b>) The area under each of the growth curves was calculated using Simpson’s method. The bars represent the average area (n = 9), while the error bars represent the standard deviation. The data were grouped by the composition of the growth media and level of inoculation. Within group comparisons were conducted using Student’s <span class="html-italic">t</span>-test and treatments not connected by the same letter were determined to be significantly different (<span class="html-italic">p</span> < 0.05).</p> "> Figure 4
<p>oCelloScope images from media. Images from the oCelloScope that are grouped in rows by treatment and in columns by the time of measurement. The images were collected for the highest level of inoculation.</p> "> Figure 5
<p>oCelloScope images from PBS. The image displays images from the oCelloScope that are grouped in rows by treatment and in columns by the time of measurement. The images were collected for the highest level of inoculation.</p> "> Figure 6
<p>SEM images. <span class="html-italic">Listeria monocytogenes</span> cells at 50,000× magnification following 24 h treatment under the following conditions: Control (untreated), Thermophilin 110 (1000 AU/mL), CAase (0.1 mg/mL), and CAase + Thermophilin 110 (0.1 mg/mL CAase and 1000 AU/mL thermophilin 110). The scale bar represents 1.0 µm.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Biofilm Treatment
2.2. Quantifying Inhibitory Effects on Microbial Growth
2.3. Morphology Assessment
3. Discussion
4. Materials and Methods
4.1. Reagents and General Procedures
4.2. Bacterial Culture
4.3. Biofilm Preparation
4.4. CAase Preparation
4.5. Bacteriocin Preparation
4.6. Biofilm Treatment Methods
4.7. Crystal Violet
4.8. oCelloscope Microplate Assay
4.9. 6 × 6 Drop Plate
4.10. Electron Microscopy
4.11. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Datta, A.; Burall, L. Current Trends in Foodborne Human Listeriosis. Food Saf. 2018, 6, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Luciani, M.; Krasteva, I.; Schirone, M.; D’Onofrio, F.; Iannetti, L.; Torresi, M.; Di Pancrazio, C.; Perletta, F.; Valentinuzzi, S.; Tittarelli, M.; et al. Adaptive strategies of Listeria monocytogenes: An in-depth analysis of the virulent strain involved in an outbreak in Italy through quantitative proteomics. Int. J. Food Microbiol. 2024, 427, 110951. [Google Scholar] [CrossRef] [PubMed]
- Mughini-Gras, L.; Paganini, J.A.; Guo, R.; Coipan, C.E.; Friesema, I.H.; van Hoek, A.H.; van den Beld, M.; Kuiling, S.; Bergval, I.; Wullings, B.; et al. Source attribution of Listeria monocytogenes in the Netherlands. Int. J. Food Microbiol. 2024, 427, 110953. [Google Scholar] [CrossRef]
- Halbedel, S.; Wamp, S.; Lachmann, R.; Holzer, A.; Pietzka, A.; Ruppitsch, W.; Wilking, H.; Flieger, A. High density genomic surveillance and risk profiling of clinical Listeria monocytogenes subtypes in Germany. Genome Med. 2024, 16, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.C.; de Almeida, F.A.; Medeiros, M.M.; Miranda, B.R.; Pinto, U.M.; Alves, V.F. Listeria monocytogenes: An Inconvenient Hurdle for the Dairy Industry. Dairy 2023, 4, 316–344. [Google Scholar] [CrossRef]
- Rodriguez, C.; Taminiau, B.; García-Fuentes, E.; Daube, G.; Korsak, N. Listeria monocytogenes dissemination in farming and primary production: Sources, shedding and control measures. Food Control 2020, 120, 107540. [Google Scholar] [CrossRef]
- Townsend, A.; Strawn, L.K.; Chapman, B.J.; Dunn, L.L. A Systematic Review of Listeria Species and Listeria monocytogenes Prevalence, Persistence, and Diversity throughout the Fresh Produce Supply Chain. Foods 2021, 10, 1427. [Google Scholar] [CrossRef]
- Rothrock, M.J.; Micciche, A.C.; Bodie, A.R.; Ricke, S.C. Listeria Occurrence and Potential Control Strategies in Alternative and Conventional Poultry Processing and Retail. Front. Sustain. Food Syst. 2019, 3, 33. [Google Scholar] [CrossRef]
- Latorre, A.; Van Kessel, J.; Karns, J.; Zurakowski, M.; Pradhan, A.; Boor, K.; Jayarao, B.; Houser, B.; Daugherty, C.; Schukken, Y. Biofilm in milking equipment on a dairy farm as a potential source of bulk tank milk contamination with Listeria monocytogenes. J. Dairy Sci. 2010, 93, 2792–2802. [Google Scholar] [CrossRef]
- Berrang, M.E.; Hofacre, C.L.; Frank, J.F. Controlling Attachment and Growth of Listeria monocytogenes in Polyvinyl Chloride Model Floor Drains Using a Peroxide Chemical, Chitosan-Arginine, or Heat. J. Food Prot. 2014, 77, 2129–2132. [Google Scholar] [CrossRef] [PubMed]
- Chaitiemwong, N.; Hazeleger, W.; Beumer, R. Survival of Listeria monocytogenes on a conveyor belt material with or without antimicrobial additives. Int. J. Food Microbiol. 2010, 142, 260–263. [Google Scholar] [CrossRef]
- Mazaheri, T.; Cervantes-Huamán, B.R.H.; Bermúdez-Capdevila, M.; Ripolles-Avila, C.; Rodríguez-Jerez, J.J. Listeria monocytogenes Biofilms in the Food Industry: Is the Current Hygiene Program Sufficient to Combat the Persistence of the Pathogen? Microorganisms 2021, 9, 181. [Google Scholar] [CrossRef]
- Trémoulet, F.; Duché, O.; Namane, A.; Martinie, B.; The European Listeria Genome Consortium; Labadie, J.C. Comparison of protein patterns of Listeria monocytogenes grown in biofilm or in planktonic mode by proteomic analysis. FEMS Microbiol. Lett. 2002, 210, 25–31. [Google Scholar] [CrossRef]
- Guilbaud, M.; Piveteau, P.; Desvaux, M.; Brisse, S.; Briandet, R. Exploring the Diversity of Listeria monocytogenes Biofilm Architecture by High-Throughput Confocal Laser Scanning Microscopy and the Predominance of the Honeycomb-Like Morphotype. Appl. Environ. Microbiol. 2015, 81, 1813–1819. [Google Scholar] [CrossRef]
- Rieu, A.; Briandet, R.; Habimana, O.; Garmyn, D.; Guzzo, J.; Piveteau, P. Listeria monocytogenes EGD-e Biofilms: No Mushrooms but a Network of Knitted Chains. Appl. Environ. Microbiol. 2008, 74, 4491–4497. [Google Scholar] [CrossRef] [PubMed]
- Borucki, M.K.; Peppin, J.D.; White, D.; Loge, F.; Call, D.R. Variation in Biofilm Formation among Strains of Listeria monocytogenes. Appl. Environ. Microbiol. 2003, 69, 7336–7342. [Google Scholar] [CrossRef] [PubMed]
- Brauge, T.; Sadovskaya, I.; Faille, C.; Benezech, T.; Maes, E.; Guerardel, Y.; Midelet-Bourdin, G. Teichoic acid is the major polysaccharide present in the Listeria monocytogenes biofilm matrix. FEMS Microbiol. Lett. 2016, 363, fnv229. [Google Scholar] [CrossRef]
- Alonso, A.N.; Perry, K.J.; Regeimbal, J.M.; Regan, P.M.; Higgins, D.E. Identification of Listeria monocytogenes Determinants Required for Biofilm Formation. PLoS ONE 2014, 9, e113696. [Google Scholar] [CrossRef]
- Köseoğlu, V.K.; Heiss, C.; Azadi, P.; Topchiy, E.; Güvener, Z.T.; Lehmann, T.E.; Miller, K.W.; Gomelsky, M. Listeria monocytogenes exopolysaccharide: Origin, structure, biosynthetic machinery and c-di-GMP-dependent regulation. Mol. Microbiol. 2015, 96, 728–743. [Google Scholar] [CrossRef] [PubMed]
- Kawacka, I.; Olejnik-Schmidt, A. Gene emrC Associated with Resistance to Quaternary Ammonium Compounds Is Common among Listeria monocytogenes from Meat Products and Meat Processing Plants in Poland. Antibiotics 2024, 13, 749. [Google Scholar] [CrossRef] [PubMed]
- Grigore-Gurgu, L.; Bucur, F.I.; Mihalache, O.A.; Nicolau, A.I. Comprehensive Review on the Biocontrol of Listeria monocytogenes in Food Products. Foods 2024, 13, 734. [Google Scholar] [CrossRef]
- Muchaamba, F.; Eshwar, A.K.; Stevens, M.J.A.; Stephan, R.; Tasara, T. Different Shades of Listeria monocytogenes: Strain, Serotype, and Lineage-Based Variability in Virulence and Stress Tolerance Profiles. Front. Microbiol. 2022, 12, 792162. [Google Scholar] [CrossRef]
- Heir, E.; Møretrø, T.; Simensen, A.; Langsrud, S. Listeria monocytogenes strains show large variations in competitive growth in mixed culture biofilms and suspensions with bacteria from food processing environments. Int. J. Food Microbiol. 2018, 275, 46–55. [Google Scholar] [CrossRef] [PubMed]
- El-Sawy, Y.N.A.; Abdel-Salam, A.B.; Abd-Elhady, H.M.; Abou-Taleb, K.A.A.; Ahmed, R.F. Elimination of detached Listeria monocytogenes from the biofilm on stainless steel surfaces during milk and cheese processing using natural plant extracts. Sci. Rep. 2024, 14, 2288. [Google Scholar] [CrossRef]
- Fagerlund, A.; Heir, E.; Møretrø, T.; Langsrud, S. Listeria Monocytogenes Biofilm Removal Using Different Commercial Cleaning Agents. Molecules 2020, 25, 792. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Singh, R.; Bhunia, A.; Singh, N. Efficacy of plant essential oils as antimicrobial agents against Listeria monocytogenes in hotdogs. LWT 2003, 36, 787–794. [Google Scholar] [CrossRef]
- Rolon, M.L.; Chandross-Cohen, T.; Kaylegian, K.E.; Roberts, R.F.; Kovac, J. Context matters: Environmental microbiota from ice cream processing facilities affected the inhibitory performance of two lactic acid bacteria strains against Listeria monocytogenes. Microbiol. Spectr. 2023, 12, e0116723. [Google Scholar] [CrossRef]
- Mayton, H.M.; Walker, S.L.; Berger, B.W. Disrupting Irreversible Bacterial Adhesion and Biofilm Formation with an Engineered Enzyme. Appl. Environ. Microbiol. 2021, 87, e0026521. [Google Scholar] [CrossRef]
- Felton, S.; Armstrong, C.; Chen, C.-Y.; He, Y.; Lee, J.; Reed, S.; Akula, N.; Walker, S.; Berger, B.W.; Capobianco, J. Enhancing detection of Listeria monocytogenes in food products using an enzyme. Food Control 2022, 145, 109445. [Google Scholar] [CrossRef]
- Yang, S.-C.; Lin, C.-H.; Sung, C.T.; Fang, J.-Y. Antibacterial activities of bacteriocins: Application in foods and pharmaceuticals. Front. Microbiol. 2014, 5, 241. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.N.; Sandine, W.E. Nisin as a model food preservative. Crit. Rev. Food Sci. Nutr. 1994, 34, 69–93. [Google Scholar] [CrossRef] [PubMed]
- Khorshidian, N.; Khanniri, E.; Mohammadi, M.; Mortazavian, A.M.; Yousefi, M. Antibacterial Activity of Pediocin and Pediocin-Producing Bacteria Against Listeria monocytogenes in Meat Products. Front. Microbiol. 2021, 12, 709959. [Google Scholar] [CrossRef]
- Heir, E.; Jensen, M.R.; Aasli, A.W.; Berget, I.; Holck, A.L. Reduction and Growth Inhibition of Listeria monocytogenes by Use of Anti-Listerial Nisin, P100 Phages and Buffered Dry Vinegar Fermentates in Standard and Sodium-Reduced Cold-Smoked Salmon. Foods 2023, 12, 4391. [Google Scholar] [CrossRef] [PubMed]
- Santativongchai, P.; Tulayakul, P.; Jeon, B. Enhancement of the Antibiofilm Activity of Nisin against Listeria monocytogenes Using Food Plant Extracts. Pathogens 2023, 12, 444. [Google Scholar] [CrossRef] [PubMed]
- Renye, J.A.; Mendez-Encinas, M.A.; White, A.K.; Miller, A.L.; McAnulty, M.J.; Yadav, M.P.; Hotchkiss, A.T.; Guron, G.K.P.; Oest, A.M.; Martinez-Robinson, K.G.; et al. Antimicrobial activity of thermophilin 110 against the opportunistic pathogen Cutibacterium acnes. Biotechnol. Lett. 2023, 45, 1365–1379. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Xu, T.; Qu, X.; Hu, T.; Jiang, X.; Zhao, C. New Insights into Various Production Characteristics of Streptococcus thermophilus Strains. Int. J. Mol. Sci. 2016, 17, 1701. [Google Scholar] [CrossRef]
- Fontaine, L.; Boutry, C.; Guédon, E.; Guillot, A.; Ibrahim, M.; Grossiord, B.; Hols, P. Quorum-Sensing Regulation of the Production of Blp Bacteriocins in Streptococcus thermophilus. J. Bacteriol. 2007, 189, 7195–7205. [Google Scholar] [CrossRef] [PubMed]
- Gilbreth, S.E.; Somkuti, G.A. Thermophilin 110: A Bacteriocin of Streptococcus thermophilus ST110. Curr. Microbiol. 2005, 51, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Ceruso, M.; Liu, Y.; Gunther, N.W.; Pepe, T.; Anastasio, A.; Qi, P.X.; Tomasula, P.M.; Renye, J.A. Anti-listerial activity of thermophilin 110 and pediocin in fermented milk and whey. Food Control 2021, 125, 107941. [Google Scholar] [CrossRef]
- Renye, J.A.; Steinberg, D.H. Thermophilin 110 inhibits growth and biofilm formation of Streptococcus mutans. Biotechnol. Rep. 2021, 31, e00647. [Google Scholar] [CrossRef] [PubMed]
- Prudêncio, C.V.; dos Santos, M.T.; Vanetti, M.C.D. Strategies for the use of bacteriocins in Gram-negative bacteria: Relevance in food microbiology. J. Food Sci. Technol. 2015, 52, 5408–5417. [Google Scholar] [CrossRef]
- Leverentz, B.; Conway, W.S.; Camp, M.J.; Janisiewicz, W.J.; Abuladze, T.; Yang, M.; Saftner, R.; Sulakvelidze, A. Biocontrol of Listeria monocytogenes on Fresh-Cut Produce by Treatment with Lytic Bacteriophages and a Bacteriocin. Appl. Environ. Microbiol. 2003, 69, 4519–4526. [Google Scholar] [CrossRef]
- Silva, C.C.G.; Silva, S.P.M.; Ribeiro, S.C. Application of Bacteriocins and Protective Cultures in Dairy Food Preservation. Front. Microbiol. 2018, 9, 594. [Google Scholar] [CrossRef] [PubMed]
- Field, D.; Daly, K.; O’Connor, P.M.; Cotter, P.D.; Hill, C.; Ross, R.P. Efficacies of Nisin A and Nisin V Semipurified Preparations Alone and in Combination with Plant Essential Oils for Controlling Listeria monocytogenes. Appl. Environ. Microbiol. 2015, 81, 2762–2769. [Google Scholar] [CrossRef] [PubMed]
- Ingham, A.; Ford, M.; Moore, R.J.; Tizard, M. The bacteriocin piscicolin 126 retains antilisterial activity in vivo. J. Antimicrob. Chemother. 2003, 51, 1365–1371. [Google Scholar] [CrossRef]
- Dabour, N.; Zihler, A.; Kheadr, E.; Lacroix, C.; Fliss, I. In vivo study on the effectiveness of pediocin PA-1 and Pediococcus acidilactici UL5 at inhibiting Listeria monocytogenes. Int. J. Food Microbiol. 2009, 133, 225–233. [Google Scholar] [CrossRef]
- Qiao, Z.; Sun, H.; Zhou, Q.; Yi, L.; Wang, X.; Shan, Y.; Yi, Y.; Liu, B.; Zhou, Y.; Lü, X. Characterization and antibacterial action mode of bacteriocin BMP32r and its application as antimicrobial agent for the therapy of multidrug-resistant bacterial infection. Int. J. Biol. Macromol. 2020, 164, 845–854. [Google Scholar] [CrossRef]
- Lundén, J.M.; Miettinen, M.K.; Autio, T.J.; Korkeala, H.J. Persistent Listeria monocytogenes Strains Show Enhanced Adherence to Food Contact Surface after Short Contact Times. J. Food Prot. 2000, 63, 1204–1207. [Google Scholar] [CrossRef]
- Luque-Sastre, L.; Fox, E.M.; Jordan, K.; Fanning, S. A Comparative Study of the Susceptibility of Listeria Species to Sanitizer Treatments When Grown under Planktonic and Biofilm Conditions. J. Food Prot. 2018, 81, 1481–1490. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Breidt, F., Jr.; Kathariou, S. Resistance of Listeria monocytogenes Biofilms to Sanitizing Agents in a Simulated Food Processing Environment. Appl. Environ. Microbiol. 2006, 72, 7711–7717. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards (BIOHAZ). Evaluation of the safety and efficacy of ListexTM P100 for reduction of pathogens on different ready-to-eat (RTE) food products. EFSA J. 2016, 14, e04565. [Google Scholar] [CrossRef]
- Ohman, E.; Kilgore, S.; Waite-Cusic, J.; Kovacevic, J. Efficacy of cleaning and sanitizing procedures to reduce Listeria monocytogenes on food contact surfaces commonly found in fresh produce operations. Food Microbiol. 2023, 118, 104421. [Google Scholar] [CrossRef] [PubMed]
- Colagiorgi, A.; Di Ciccio, P.; Zanardi, E.; Ghidini, S.; Ianieri, A. A Look inside the Listeria monocytogenes Biofilms Extracellular Matrix. Microorganisms 2016, 4, 22. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Van Nostrand, J.D.; Zhou, J.; Zhong, W.; Chen, K.; Guo, J. Anti-listeria Activities of Linalool and Its Mechanism Revealed by Comparative Transcriptome Analysis. Front. Microbiol. 2019, 10, 2947. [Google Scholar] [CrossRef] [PubMed]
- Somkuti, G.A.; Steinberg, D.H. Genetic transformation of Streptococcus thermophilus by electroporation. Biochimie 1988, 70, 579–585. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Nace, G.W.; Irwin, P.L. A 6×6 drop plate method for simultaneous colony counting and MPN enumeration of Campylobacter jejuni, Listeria monocytogenes, and Escherichia coli. J. Microbiol. Methods 2003, 55, 475–479. [Google Scholar] [CrossRef]
- Alvarez-Ordóñez, A.; Coughlan, L.M.; Briandet, R.; Cotter, P.D. Biofilms in Food Processing Environments: Challenges and Opportunities. Annu. Rev. Food Sci. Technol. 2019, 10, 173–195. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renye, J.A., Jr.; Chen, C.-Y.; Miller, A.; Lee, J.; Oest, A.; Lynn, K.J.; Felton, S.M.; Guragain, M.; Tomasula, P.M.; Berger, B.W.; et al. Integrating Bacteriocins and Biofilm-Degrading Enzymes to Eliminate L. monocytogenes Persistence. Int. J. Mol. Sci. 2025, 26, 399. https://doi.org/10.3390/ijms26010399
Renye JA Jr., Chen C-Y, Miller A, Lee J, Oest A, Lynn KJ, Felton SM, Guragain M, Tomasula PM, Berger BW, et al. Integrating Bacteriocins and Biofilm-Degrading Enzymes to Eliminate L. monocytogenes Persistence. International Journal of Molecular Sciences. 2025; 26(1):399. https://doi.org/10.3390/ijms26010399
Chicago/Turabian StyleRenye, John A., Jr., Chin-Yi Chen, Amanda Miller, Joe Lee, Adam Oest, Kevin J. Lynn, Samantha M. Felton, Manita Guragain, Peggy M. Tomasula, Bryan W. Berger, and et al. 2025. "Integrating Bacteriocins and Biofilm-Degrading Enzymes to Eliminate L. monocytogenes Persistence" International Journal of Molecular Sciences 26, no. 1: 399. https://doi.org/10.3390/ijms26010399
APA StyleRenye, J. A., Jr., Chen, C.-Y., Miller, A., Lee, J., Oest, A., Lynn, K. J., Felton, S. M., Guragain, M., Tomasula, P. M., Berger, B. W., & Capobianco, J. (2025). Integrating Bacteriocins and Biofilm-Degrading Enzymes to Eliminate L. monocytogenes Persistence. International Journal of Molecular Sciences, 26(1), 399. https://doi.org/10.3390/ijms26010399