Isolation of a Novel Low-Temperature-Active and Organic-Solvent-Stable Mannanase from the Intestinal Metagenome of Hermetia illucens
<p>Multiple alignment and phylogenetic tree of ManEM6. (<b>a</b>) Multiple sequence alignment with glycoside hydrolase family 26 (GH26): β-endo-mannanase showed three putative catalytic residues (Glu189, Asp254, and Glu296), which are shown in dark-shaded letters. Asterisks (*) indicate consensus amino acids. Each protein sequence used for alignment was collected from GenBank, including <span class="html-italic">Bacillus</span> sp. JAMB750 [<a href="#B29-ijms-26-00216" class="html-bibr">29</a>], <span class="html-italic">Bacillus subtilis</span> [<a href="#B31-ijms-26-00216" class="html-bibr">31</a>], <span class="html-italic">Cellvibrio japonicas</span> [<a href="#B32-ijms-26-00216" class="html-bibr">32</a>], <span class="html-italic">Bacteroides ovatus</span> [<a href="#B33-ijms-26-00216" class="html-bibr">33</a>], <span class="html-italic">Bacteroides</span> sp. 2_1_33B [<a href="#B34-ijms-26-00216" class="html-bibr">34</a>]. (<b>b</b>) The phylogenetic tree of ManEM6 and other closely related enzymes was reconstructed using the neighbor-joining method (MEGA5.1 software). The protein sequences of related enzymes were retrieved from NCBI GenBank. Bootstrap values (>50%) at the nodes were based on 1000 replicates of the dataset. Solid circles indicate that the corresponding branches were also recovered in both the maximum parsimony and maximum likelihood trees. Bar, 0.2 substitutions per amino acid position.</p> "> Figure 1 Cont.
<p>Multiple alignment and phylogenetic tree of ManEM6. (<b>a</b>) Multiple sequence alignment with glycoside hydrolase family 26 (GH26): β-endo-mannanase showed three putative catalytic residues (Glu189, Asp254, and Glu296), which are shown in dark-shaded letters. Asterisks (*) indicate consensus amino acids. Each protein sequence used for alignment was collected from GenBank, including <span class="html-italic">Bacillus</span> sp. JAMB750 [<a href="#B29-ijms-26-00216" class="html-bibr">29</a>], <span class="html-italic">Bacillus subtilis</span> [<a href="#B31-ijms-26-00216" class="html-bibr">31</a>], <span class="html-italic">Cellvibrio japonicas</span> [<a href="#B32-ijms-26-00216" class="html-bibr">32</a>], <span class="html-italic">Bacteroides ovatus</span> [<a href="#B33-ijms-26-00216" class="html-bibr">33</a>], <span class="html-italic">Bacteroides</span> sp. 2_1_33B [<a href="#B34-ijms-26-00216" class="html-bibr">34</a>]. (<b>b</b>) The phylogenetic tree of ManEM6 and other closely related enzymes was reconstructed using the neighbor-joining method (MEGA5.1 software). The protein sequences of related enzymes were retrieved from NCBI GenBank. Bootstrap values (>50%) at the nodes were based on 1000 replicates of the dataset. Solid circles indicate that the corresponding branches were also recovered in both the maximum parsimony and maximum likelihood trees. Bar, 0.2 substitutions per amino acid position.</p> "> Figure 2
<p>Overexpression and purification of rManEM6. ManEM6 without putative <span class="html-italic">N</span>-terminal signal peptide sequence was cloned into plasmid pET21a (+) expression vector and expressed in <span class="html-italic">E. coli</span> BL21(DE3). SDS–PAGE analysis shows a homogeneous 43 kDa protein. Lanes: M, molecular weight marker; Lane 1, total cellular protein from uninduced cells; Lane 2, induced total cellular protein; Lane 3, induced soluble fraction; Lane 4, purified rManEM6 protein; Lane 5, zymogram of rManEM6 on polyacrylamide gel with 0.2% LBG (locust bean gum) and stained with Congo-red.</p> "> Figure 3
<p>Biochemical characterization of rManEM6. (<b>a</b>) The enzyme activity of rManEM6 (0.2 μg) was measured at various temperatures in 50 mM sodium phosphate (pH 7.0) for 10 min, exhibiting >50% hydrolytic activity in the range of 25–50 °C with an optimum at 40 °C. (<b>b</b>) The thermostability of rManEM6 was examined at 40 °C for 10 min after 4 h pre-incubation at the given temperature. (<b>c</b>) pH inhibition was monitored in the following 50 mM buffers: sodium acetate buffer (NaOAc, pH 5.0–6.0), sodium phosphate buffer (Na-Pi, pH 6.0–7.5), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer (HEPES, pH 7.5–8.5), and 2-(cyclohexylamino) ethanesulfonic acid buffer (CHES, pH 8.5–10.0). (<b>d</b>) To verify pH stability, the enzyme was pre-incubated in 50 mM buffer with different pH values at 4 °C for 15 h, and residual activity was examined. Each β-mannanase assay was carried out by measuring the amount of mannose released from locust bean gum (0.5% [<span class="html-italic">w</span>/<span class="html-italic">v</span>]) under standard assay conditions, as described in the Materials and Methods section. Error bars represent SEM from triplicate results (<span class="html-italic">p</span> ≤ 0.01).</p> "> Figure 3 Cont.
<p>Biochemical characterization of rManEM6. (<b>a</b>) The enzyme activity of rManEM6 (0.2 μg) was measured at various temperatures in 50 mM sodium phosphate (pH 7.0) for 10 min, exhibiting >50% hydrolytic activity in the range of 25–50 °C with an optimum at 40 °C. (<b>b</b>) The thermostability of rManEM6 was examined at 40 °C for 10 min after 4 h pre-incubation at the given temperature. (<b>c</b>) pH inhibition was monitored in the following 50 mM buffers: sodium acetate buffer (NaOAc, pH 5.0–6.0), sodium phosphate buffer (Na-Pi, pH 6.0–7.5), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer (HEPES, pH 7.5–8.5), and 2-(cyclohexylamino) ethanesulfonic acid buffer (CHES, pH 8.5–10.0). (<b>d</b>) To verify pH stability, the enzyme was pre-incubated in 50 mM buffer with different pH values at 4 °C for 15 h, and residual activity was examined. Each β-mannanase assay was carried out by measuring the amount of mannose released from locust bean gum (0.5% [<span class="html-italic">w</span>/<span class="html-italic">v</span>]) under standard assay conditions, as described in the Materials and Methods section. Error bars represent SEM from triplicate results (<span class="html-italic">p</span> ≤ 0.01).</p> "> Figure 4
<p>Enzymatic stability of rManEM6 against enzyme inhibitors. (<b>a</b>) The same amount of rManEM6 protein (0.2 μg) was pre-incubated at 30 °C for 30 min with different organic solvents (10% [<span class="html-italic">v</span>/<span class="html-italic">v</span>]) in 50 mM sodium phosphate buffer (pH 7.0, 200 μL), and residual β-mannanase activity was measured at 40 °C for 10 min with locust bean gum (0.5%, [<span class="html-italic">w</span>/<span class="html-italic">v</span>]) as a substrate. The bar represents the log-polarity of each organic solvent. DMSO, dimethyl sulfoxide; DMF, dimethylformamide. (<b>b</b>) To determine stability under chemical reagents, rManEM6 (0.2 μg protein) was pre-incubated with various denaturants or reducing agents at 30 °C for 30 min, and residual activity was measured. Gu-HCl, guanidine hydrochloride; gu-thiocyanate, guanidine thiocyanate. (<b>c</b>) An enzyme assay was performed after pre-incubation of rManEM6 with 1 mM of each of the indicated metal ions at 30 °C for 30 min. The relative amount of mannose produced was compared with that in the standard reaction. (<b>d</b>) To examine the effects of detergents on rManEM6 stability, the residual activity from pre-incubated enzyme (in 10% ([<span class="html-italic">v</span>/<span class="html-italic">v</span>] or [<span class="html-italic">v</span>/<span class="html-italic">w</span>]) detergent at 30 °C for 30 min) was measured. SDS, sodium dodecyl sulfate; CTAB, cetyltrimethylammonium bromide. The activity measured in the absence of any of the chemical compounds is shown as 100% (<span class="html-italic">p</span> ≤ 0.01). ND, not detectable.</p> "> Figure 5
<p>Thin layer chromatography analysis of hydrolysis products of mannose oligo- and polysaccharides by rManEM6. Enzymatic hydrolysis of each substrate (0.5%, <span class="html-italic">w</span>/<span class="html-italic">v</span>) was performed either with (+lanes) or without (–lanes) ManEM6 in 50 mM sodium phosphate buffer (pH 7.0) at 40 °C for 12 h. Lane Std, mannooligosaccharide standards: mannose (M1), mannobiose (M2), mannotriose (M3), mannotetraose (M4), and mannopentaose (M5).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Construction and Screening of a Metagenomic Library
2.2. Sequence Analysis of a β-Mannanase Gene, ManEM6
2.3. Heterologous Expression and Biochemical Characteristics of the Recombinant β-Mannanase
3. Discussion
4. Materials and Methods
4.1. Cloning of β-Mannanase from Larvae Gut Metagenome
4.2. Heterologous Expression and Purification of the Recombinant Protein
4.3. Biochemical Characterization of the Purified Recombinant Protein
4.4. Thin-Layer Chromatography (TLC) Analysis of Hydrolyzed Products
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeon, H.; Park, S.; Choi, J.; Jeong, G.; Lee, S.B.; Choi, Y.; Lee, S.J. The intestinal bacterial community in the food waste-reducing larvae of Hermetia illucens. Curr. Microbiol. 2011, 62, 1390–1399. [Google Scholar] [CrossRef] [PubMed]
- Cickova, H.; Newton, G.L.; Lacy, R.C.; Kozanek, M. The use of fly larvae for organic waste treatment. Waste Manag. 2015, 35, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, Y.; Lv, Z.; Zhou, L.; Guo, Y. Analysis of the effects of beta-mannanase on immune function and intestinal flora in broilers fed the low energy diet based on 16S rRNA sequencing and metagenomic sequencing. Poult. Sci. 2024, 103, 103581. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Sun, H.; Guo, H.; Nie, C.; Nan, S.; Lu, Q.; Chen, C.; Zhang, W. Effect of the supplementation of exogenous complex non-starch polysaccharidases on the growth performance, rumen fermentation and microflora of fattening sheep. Front. Vet. Sci. 2024, 11, 1396993. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.M.; Lee, Y.S.; Seo, S.H.; Yoon, S.H.; Kim, S.J.; Hahn, B.S.; Sim, J.S.; Koo, B.S. Screening and characterization of a novel cellulase gene from the gut microflora of Hermetia illucens using metagenomic library. J. Microbiol. Biotechnol. 2014, 24, 1196–1206. [Google Scholar] [CrossRef]
- Lee, Y.S.; Seo, S.H.; Yoon, S.H.; Kim, S.Y.; Hahn, B.S.; Sim, J.S.; Koo, B.S.; Lee, C.M. Identification of a novel alkaline amylopullulanase from a gut metagenome of Hermetia illucens. Int. J. Biol. Macromol. 2016, 82, 514–521. [Google Scholar] [CrossRef]
- Ufarte, L.; Laville, E.; Duquesne, S.; Potocki-Veronese, G. Metagenomics for the discovery of pollutant degrading enzymes. Biotechnol. Adv. 2015, 33, 1845–1854. [Google Scholar] [CrossRef]
- Peng, J.; Liu, W.X.; Tang, S.Z.; Zou, S.N.; Zhu, Y.L.; Cheng, H.A.; Wang, Y.G.; Streit, W.R.; Chen, Z.; Zhou, H.B. Identification and biochemical characterization of a novel GH113 mannanase from acid mine drainage metagenome. Biochem. Eng. J. 2023, 192, 108837. [Google Scholar] [CrossRef]
- Gibson, L.J. The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface 2012, 9, 2749–2766. [Google Scholar] [CrossRef]
- Moreira, L.R.S.; Filho, E.X.F. An overview of mannan structure and mannan-degrading enzyme systems. Appl. Microbiol. Biot. 2008, 79, 165–178. [Google Scholar] [CrossRef]
- Yamabhai, M.; Sak-Ubol, S.; Srila, W.; Haltrich, D. Mannan biotechnology: From biofuels to health. Crit. Rev. Biotechnol. 2016, 36, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Tester, R.; Al-Ghazzewi, F.; Shen, N.; Chen, Z.; Chen, F.; Yang, J.; Zhang, D.; Tang, M. The use of konjac glucomannan hydrolysates to recover healthy microbiota in infected vaginas treated with an antifungal agent. Benef. Microbes 2012, 3, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.B.; Seo, Y.M.; Kim, C.H.; Paik, I.K. Effect of dietary prebiotic supplementation on the performance, intestinal microflora, and immune response of broilers. Poultry Sci. 2011, 90, 75–82. [Google Scholar] [CrossRef]
- van Zyl, W.H.; Rose, S.H.; Trollope, K.; Görgens, J.F. Fungal β-mannanases: Mannan hydrolysis, heterologous production and biotechnological applications. Process Biochem. 2010, 45, 1203–1213. [Google Scholar] [CrossRef]
- Chauhan, P.S.; Puri, N.; Sharma, P.; Gupta, N. Mannanases: Microbial sources, production, properties and potential biotechnological applications. Appl. Microbiol. Biot. 2012, 93, 1817–1830. [Google Scholar] [CrossRef]
- Inoue, H.; Yano, S.; Sawayama, S. Effect of β-Mannanase and β-Mannosidase Supplementation on the Total Hydrolysis of Softwood Polysaccharides by the Cellulase System. Appl. Biochem. Biotech. 2015, 176, 1673–1686. [Google Scholar] [CrossRef]
- Drula, E.; Garron, M.L.; Dogan, S.; Lombard, V.; Henrissat, B.; Terrapon, N. The carbohydrate-active enzyme database: Functions and literature. Nucleic. Acids. Res. 2022, 50, D571–D577. [Google Scholar] [CrossRef]
- Henrissat, B. A Classification of Glycosyl Hydrolases Based on Amino-Acid-Sequence Similarities. Biochem. J. 1991, 280, 309–316. [Google Scholar] [CrossRef]
- Romero-Romero, S.; Kordes, S.; Michel, F.; Hoecker, B. Evolution, folding, and design of TIM barrels and related proteins. Curr. Opin. Struc. Biol. 2021, 68, 94–104. [Google Scholar] [CrossRef]
- Birgersson, S.; Morrill, J.; Stenström, O.; Wiemann, M.; Weininger, U.; Söderhjelm, P.; Akke, M.; Stålbrand, H. Flexibility and Function of Distal Substrate-Binding Tryptophans in the Blue Mussel β-Mannanase Man5A and Their Role in Hydrolysis and Transglycosylation. Catalysts 2023, 13, 1281. [Google Scholar] [CrossRef]
- Mafa, M.S.; Malgas, S. Towards an understanding of the enzymatic degradation of complex plant mannan structures. World J. Microb. Biot. 2023, 39, 302. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, Y.; Yamashita, K.; Tagami, T.; Uraji, M.; Wan, K.; Okuyama, M.; Yao, M.; Kimura, A.; Hatanaka, T. The loop structure of glycoside hydrolase family 5 mannanases governs substrate recognition. FEBS J. 2015, 282, 4001–4014. [Google Scholar] [CrossRef] [PubMed]
- da Silva, V.M.; Cabral, A.D.; Sperança, M.A.; Squina, F.M.; Muniz, J.R.C.; Martin, L.; Nicolet, Y.; Garcia, W. High-resolution structure of a modular hyperthermostable endo-β-1,4-mannanase from: The ancillary immunoglobulin-like module is a thermostabilizing domain. BBA-Proteins Proteom. 2020, 1868, 140437. [Google Scholar] [CrossRef] [PubMed]
- von Freiesleben, P.; Moroz, O.V.; Blagova, E.; Wiemann, M.; Spodsberg, N.; Agger, J.W.; Davies, G.J.; Wilson, K.S.; Stålbrand, H.; Meyer, A.S.; et al. Crystal structure and substrate interactions of an unusual fungal non-CBM carrying GH26 endo-β-mannanase from Yunnania penicillata. Sci. Rep. 2019, 9, 2266. [Google Scholar] [CrossRef]
- Bågenholm, V.; Wiemann, M.; Reddy, S.K.; Bhattacharya, A.; Rosengren, A.; Logan, D.T.; Stålbrand, H. A surface-exposed GH26 β-mannanase from: Structure, role, and phylogenetic analysis of Man26B. J. Biol. Chem. 2019, 294, 9100–9117. [Google Scholar] [CrossRef]
- Cartmell, A.; Topakas, E.; Ducros, V.M.A.; Suits, M.D.L.; Davies, G.J.; Gilbert, H.J. The Mannanase C Man26C Displays a Unique Mode of Action That Is Conferred by Subtle Changes to the Distal Region of the Active Site. J. Biol. Chem. 2008, 283, 34403–34413. [Google Scholar] [CrossRef]
- Cantarel, B.L.; Coutinho, P.M.; Rancurel, C.; Bernard, T.; Lombard, V.; Henrissat, B. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for Glycogenomics. Nucleic Acids Res. 2009, 37, D233–D238. [Google Scholar] [CrossRef]
- Katsimpouras, C.; Dimarogona, M.; Petropoulos, P.; Christakopoulos, P.; Topakas, E. A thermostable GH26 endo-β-mannanase from capable of enhancing lignocellulose degradation. Appl. Microbiol. Biot. 2016, 100, 8385–8397. [Google Scholar] [CrossRef]
- Hatada, Y.; Takeda, N.; Hirasawa, K.; Ohta, Y.; Usami, R.; Yoshida, Y.; Grant, W.D.; Ito, S.; Horikoshi, K. Sequence of the gene for a high-alkaline mannanase from an alkaliphilic sp strain JAMB-750, its expression in and characterization of the recombinant enzyme. Extremophiles 2005, 9, 497–500. [Google Scholar] [CrossRef]
- Politz, O.; Krah, M.; Thomsen, K.K.; Borriss, R. A highly thermostable endo-(1,4)-β-mannanase from the marine bacterium Rhodothermus marinus. Appl. Microbiol. Biot. 2000, 53, 715–721. [Google Scholar] [CrossRef]
- Tailford, L.E.; Ducros, V.M.A.; Flint, J.E.; Roberts, S.M.; Morland, C.; Zechel, D.L.; Smith, N.; Bjornvad, M.E.; Borchert, T.V.; Wilson, K.S.; et al. Understanding How Diverse β-Mannanases Recognize Heterogeneous Substrates. Biochemistry 2009, 48, 7009–7018. [Google Scholar] [CrossRef] [PubMed]
- Deboy, R.T.; Mongodin, E.F.; Fouts, D.E.; Tailford, L.E.; Khouri, H.; Emerson, J.B.; Mohamoud, Y.; Watkins, K.; Henrissat, B.; Gilbert, H.J.; et al. Insights into plant cell wall degradation from the genome sequence of the soil bacterium. J. Bacteriol. 2008, 190, 5455–5463. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.K.; Bagenholm, V.; Pudlo, N.A.; Bouraoui, H.; Koropatkin, N.M.; Martens, E.C.; Stalbrand, H. A beta-mannan utilization locus in Bacteroides ovatus involves a GH36 alpha-galactosidase active on galactomannans. FEBS Lett. 2016, 590, 2106–2118. [Google Scholar] [CrossRef] [PubMed]
- Schoch, C.L.; Ciufo, S.; Domrachev, M.; Hotton, C.L.; Kannan, S.; Khovanskaya, R.; Leipe, D.; Mcveigh, R.; O’Neill, K.; Robbertse, B.; et al. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database 2020, 2020, baaa062. [Google Scholar] [CrossRef]
- Liu, H.X.; Gong, J.S.; Li, H.; Lu, Z.M.; Li, H.; Qian, J.Y.; Xu, Z.H.; Shi, J.S. Biochemical characterization and cloning of an endo-1,4-β-mannanase from YH12 with unusually broad substrate profile. Process Biochem. 2015, 50, 712–721. [Google Scholar] [CrossRef]
- Wang, Y.; Azhar, S.; Gandini, R.; Divne, C.; Ezcurra, I.; Aspeborg, H. Biochemical characterization of the novel β-mannanase Man5-2 from Arabidopsis thaliana. Plant Sci. 2015, 241, 151–163. [Google Scholar] [CrossRef]
- Zhang, H.; Sang, Q. Production and extraction optimization of xylanase and β-mannanase by QML-2 and primary application in saccharification of corn cob. Biochem. Eng. J. 2015, 97, 101–110. [Google Scholar] [CrossRef]
- Mizutani, K.; Tsuchiya, S.; Toyoda, M.; Nanbu, Y.; Tominaga, K.; Yuasa, K.; Takahashi, N.; Tsuji, A.; Mikami, B. Structure of β-1,4-mannanase from the common sea hare at 1.05 Å resolution. Acta Crystallogr. F 2012, 68, 1164–1168. [Google Scholar] [CrossRef]
- Ootsuka, S.; Saga, N.; Suzuki, K.; Inoue, A.; Ojima, T. Isolation and cloning of an endo-beta-1,4-mannanase from Pacific abalone Haliotis discus hannai. J. Biotechnol. 2006, 125, 269–280. [Google Scholar] [CrossRef]
- Larsson, A.M.; Anderson, L.; Xu, B.; Munoz, I.G.; Uson, I.; Janson, J.C.; Stalbrand, H.; Stahlberg, J. Three-dimensional crystal structure and enzymic characterization of beta-mannanase Man5A from blue mussel Mytilus edulis. J. Mol. Biol. 2006, 357, 1500–1510. [Google Scholar] [CrossRef]
- Cho, K.M.; Hong, S.Y.; Lee, S.M.; Kim, Y.H.; Kahng, G.G.; Kim, H.; Yun, H.D. A cel44C-man26A gene of endophytic GS01 has multi-glycosyl hydrolases in two catalytic domains. Appl. Microbiol. Biot. 2006, 73, 618–630. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.H.; Chung, S.; Lim, B.L. Characterization of the WL-3 mannanase from a recombinant. J. Microbiol. 2008, 46, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Hogg, D.; Woo, E.J.; Bolam, D.N.; McKie, V.A.; Gilbert, H.J.; Pickersgill, R.W. Crystal structure of mannanase 26A from and analysis of residues involved in substrate binding. J. Biol. Chem. 2001, 276, 31186–31192. [Google Scholar] [CrossRef] [PubMed]
- Maruthamuthu, M.; Jiménez, D.J.; Stevens, P.; van Elsas, J.D. A multi-substrate approach for functional metagenomics-based screening for (hemi)cellulases in two wheat straw-degrading microbial consortia unveils novel thermoalkaliphilic enzymes. Bmc Genom. 2016, 17, 86. [Google Scholar] [CrossRef]
- Garza, D.R.; Dutilh, B.E. From cultured to uncultured genome sequences: Metagenomics and modeling microbial ecosystems. Cell Mol. Life Sci. 2015, 72, 4287–4308. [Google Scholar] [CrossRef]
- Jeon, J.H.; Kim, S.J.; Lee, H.S.; Cha, S.S.; Lee, J.H.; Yoon, S.H.; Koo, B.S.; Lee, C.M.; Choi, S.H.; Lee, S.H.; et al. Novel Metagenome-Derived Carboxylesterase That Hydrolyzes β-Lactam Antibiotics. Appl. Environ. Microb. 2011, 77, 7830–7836. [Google Scholar] [CrossRef]
- Sathya, T.A.; Khan, M. Diversity of Glycosyl Hydrolase Enzymes from Metagenome and Their Application in Food Industry. J. Food Sci. 2014, 79, R2149–R2156. [Google Scholar] [CrossRef]
- Ferrer, M.; Martínez-Martínez, M.; Bargiela, R.; Streit, W.R.; Golyshina, O.V.; Golyshin, P.N. Estimating the success of enzyme bioprospecting through metagenomics: Current status and future trends. Microb. Biotechnol. 2016, 9, 22–34. [Google Scholar] [CrossRef]
- Patel, A.B.; Patel, A.K.; Shah, M.P.; Parikh, I.K.; Joshi, C.G. Isolation and characterization of novel multifunctional recombinant family 26 glycoside hydrolase from Mehsani buffalo rumen metagenome. Biotechnol. Appl. Biochem. 2016, 63, 257–265. [Google Scholar] [CrossRef]
- Tsukagoshi, H.; Nakamura, A.; Ishida, T.; Touhara, K.K.; Otagiri, M.; Moriya, S.; Samejima, M.; Igarashi, K.; Fushinobu, S.; Kitamoto, K.; et al. Structural and Biochemical Analyses of Glycoside Hydrolase Family 26 β-Mannanase from a Symbiotic Protist of the Termite Reticulitermes speratus. J. Biol. Chem. 2014, 289, 10843–10852. [Google Scholar] [CrossRef]
- Hervé, C.; Rogowski, A.; Blake, A.W.; Marcus, S.E.; Gilbert, H.J.; Knox, J.P. Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proc. Natl. Acad. Sci. USA 2010, 107, 15293–15298. [Google Scholar] [CrossRef] [PubMed]
- Ergün, B.G.; Çalik, P. Lignocellulose degrading extremozymes produced by Pichia pastoris: Current status and future prospects. Bioproc Biosyst. Eng. 2016, 39, 1–36. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Rogowski, A.; Zhao, L.; Hahn, M.G.; Avci, U.; Knox, J.P.; Gilbert, H.J. Understanding How the Complex Molecular Architecture of Mannan-degrading Hydrolases Contributes to Plant Cell Wall Degradation. J. Biol. Chem. 2014, 289, 2002–2012. [Google Scholar] [CrossRef] [PubMed]
- Sime, A.M.; Kifle, B.A.; Woldesemayat, A.A.; Gemeda, M.T. Microbial carbohydrate active enzyme (CAZyme) genes and diversity from Menagesha Suba natural forest soils of Ethiopia as revealed by shotgun metagenomic sequencing. BMC Microbiol. 2024, 24, 285. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Kapoor, M. Production, properties, and applications of endo-β-mannanases. Biotechnol. Adv. 2017, 35, 1–19. [Google Scholar] [CrossRef]
- Sunna, A. Modular organisation and functional analysis of dissected modular β-mannanase CsMan26 from Caldicellulosiruptor Rt8B.4. Appl. Microbiol. Biot. 2010, 86, 189–200. [Google Scholar] [CrossRef]
- Li, Y.F.; Hu, F.J.; Wang, X.M.; Cao, H.; Liu, D.L.; Yao, D.S. A rational design for trypsin-resistant improvement of β-mannanase MAN47 based on molecular structure evaluation. J. Biotechnol. 2013, 163, 401–407. [Google Scholar] [CrossRef]
- Klibanov, A.M. Improving enzymes by using them in organic solvents. Nature 2001, 409, 241–246. [Google Scholar] [CrossRef]
- Kaira, G.S.; Panwar, D.; Kapoor, M. Recombinant endo-mannanase (ManB-1601) production using agro-industrial residues: Development of economical medium and application in oil extraction from copra. Bioresour. Technol. 2016, 209, 220–227. [Google Scholar] [CrossRef]
Substrate | Specific Activity a (U/mg) |
---|---|
Locust bean gum galactomannan | 508.77 ± 4.57 |
Konjac glucomannan | 374.15 ± 12.69 |
β-1,4-mannan | 279.92 ± 20.67 |
Guar gum galactomannan | 39.02 ± 3.71 |
Gum arabic | ND b |
Pectin from Citrus fruits | ND |
Birchwood xylan | ND |
Oat spelt xylan | ND |
Pullulan | ND |
Soluble starch | ND |
Carboxymethylcellulose | ND |
p-Nitrophenyl-β-mannopyranoside | ND |
p-Nitrophenyl-β-glucopyranoside | ND |
p-Nitrophenyl-β-cellobioside | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-G.; Lee, C.-M.; Lee, Y.-S.; Yoon, S.-H.; Kim, S.-Y. Isolation of a Novel Low-Temperature-Active and Organic-Solvent-Stable Mannanase from the Intestinal Metagenome of Hermetia illucens. Int. J. Mol. Sci. 2025, 26, 216. https://doi.org/10.3390/ijms26010216
Kim D-G, Lee C-M, Lee Y-S, Yoon S-H, Kim S-Y. Isolation of a Novel Low-Temperature-Active and Organic-Solvent-Stable Mannanase from the Intestinal Metagenome of Hermetia illucens. International Journal of Molecular Sciences. 2025; 26(1):216. https://doi.org/10.3390/ijms26010216
Chicago/Turabian StyleKim, Dong-Gwan, Chang-Muk Lee, Young-Seok Lee, Sang-Hong Yoon, and Su-Yeon Kim. 2025. "Isolation of a Novel Low-Temperature-Active and Organic-Solvent-Stable Mannanase from the Intestinal Metagenome of Hermetia illucens" International Journal of Molecular Sciences 26, no. 1: 216. https://doi.org/10.3390/ijms26010216
APA StyleKim, D.-G., Lee, C.-M., Lee, Y.-S., Yoon, S.-H., & Kim, S.-Y. (2025). Isolation of a Novel Low-Temperature-Active and Organic-Solvent-Stable Mannanase from the Intestinal Metagenome of Hermetia illucens. International Journal of Molecular Sciences, 26(1), 216. https://doi.org/10.3390/ijms26010216