Polystyrene Microplastics Induce Photosynthetic Impairment in Navicula sp. at Physiological and Transcriptomic Levels
"> Figure 1
<p>Effects of varying PS-NH<sub>2</sub> concentrations on <span class="html-italic">Navicula</span> sp. growth inhibition rate: (<b>A</b>) growth inhibition rate; (<b>B</b>–<b>D</b>) dose–response curves at 24 h, 48 h, and 96 h, respectively. “*” denotes statistical significance (<span class="html-italic">p</span> < 0.05) between the experimental and control groups, and data are expressed as mean ± standard error (<span class="html-italic">n</span> = 3).</p> "> Figure 2
<p>Impact of different PS-NH<sub>2</sub> concentrations on <span class="html-italic">Navicula</span> sp. photosynthetic parameters: (<b>A</b>) chlorophyll content; (<b>B</b>) Fv/Fm; (<b>C</b>) NPQ; (<b>D</b>) Qp. “*” indicates a significant difference (<span class="html-italic">p</span> < 0.05) between the experimental and control groups, and data are expressed as mean ± standard error (<span class="html-italic">n</span> = 3).</p> "> Figure 3
<p>Influence of varying PS-NH<sub>2</sub> concentrations on antioxidative enzymes in <span class="html-italic">Navicula</span> sp. (<b>A</b>) TP; (<b>B</b>) MDA; (<b>C</b>) CAT; (<b>D</b>) SOD; (<b>E</b>) GPX. “*” denotes significant differences (<span class="html-italic">p</span> < 0.05) between the experimental and control groups, and data are expressed as mean ± standard error (<span class="html-italic">n</span> = 3).</p> "> Figure 4
<p>(<b>A</b>,<b>B</b>) Volcano plot illustrating DEGs between control and exposure groups. The <span class="html-italic">x</span>-axis displays log<sub>2</sub>FC (fold-change), and the <span class="html-italic">y</span>-axis displays −log<sub>10</sub> (<span class="html-italic">q</span>-value). Red represents significantly upregulated genes, blue represents significantly downregulated genes, gray represents insignificantly expressed genes, with each circle representing one gene. (<b>C</b>) Number of DEGs; (<b>D</b>) Venn diagram depicting common and unique DEGs in response to the two stressors. C: Control group; L: low concentration; H: high concentration.</p> "> Figure 5
<p>Histogram displaying enriched subcategories from GO analysis of DEGs in <span class="html-italic">Navicula</span> sp. after exposure to (<b>A</b>) Low concentration and (<b>B</b>) High concentration of PS-NH<sub>2</sub>. The <span class="html-italic">x</span>-axis presents GO terms related to the main ontologies (biological process, cellular component, and molecular function), while the <span class="html-italic">y</span>-axis indicates the number of genes. C: Control group; L: low concentration; H: high concentration.</p> "> Figure 6
<p>Analysis of protein–protein interactions among differentially abundant genes in <span class="html-italic">Navicula</span> sp. under PS-NH<sub>2</sub> exposure stress. Each node corresponds to the protein encoded by the respective gene, and line thickness indicates data support strength.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Acute Toxic Effects of PS-NH2 on Navicula sp.
2.2. Analysis of Photosynthetic Characteristics
2.3. Activity of Antioxidant Enzymes in Navicula sp.
2.4. Transcriptome Sequencing, Assembly and Analysis of DEGs
2.5. GO and KEGG Pathway Enrichment Analysis
2.6. Protein–Protein Interaction Analysis
3. Discussion
4. Materials and Methods
4.1. Polystyrene Microplastics Pretreatment and Characterization
4.2. Navicula sp. Culture and Exposure to PS-NH2
4.3. Quantification of Photosynthetic Parameters
4.4. Activity Assessment of Antioxidative Enzymes
4.5. Total RNA Extraction and Sequencing
4.6. Transcriptome Assembly and Analysis of Differentially Expressed Genes
4.7. Bioinformatic Analysis
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, R.; Verma, A.; Shome, A.; Sinha, R.; Sinha, S.; Jha, P.K.; Kumar, R.; Kumar, P.; Shubham, D.S.; Sharma, P.; et al. Impacts of plastic pollution on ecosystem services, sustainable development goals, and need to focus on circular economy and policy interventions. Sustainability 2021, 13, 9963. [Google Scholar] [CrossRef]
- Vayghan, A.H.; Rasta, M.; Zakeri, M.; Kelly, F.J. Spatial distribution of microplastics pollution in sediments and surface waters of the Aras River and reservoir: An international river in Northwestern Iran. Sci. Total Environ. 2022, 843, 156894. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Fu, X.; Lu, W.; Wang, H. The effects of riverside cities on microplastics in river water: A case study on the Southern Jiangsu Canal, China. Sci. Total Environ. 2023, 858, 159783. [Google Scholar] [CrossRef]
- Cong, Y.; Jin, F.; Tian, M.; Wang, J.Y.; Shi, H.H.; Wang, Y.; Mu, J.L. Ingestion, egestion and post-exposure effects of polystyrene microspheres on marine medaka (Oryzias melastigma). Chemosphere 2019, 228, 93–100. [Google Scholar] [CrossRef]
- LeMoine, C.M.R.; Kelleher, B.M.; Lagarde, R.; Northam, C.; Elebute, O.O.; Cassone, B.J. Transcriptional effects of polyethylene microplastics ingestion in developing zebrafish (Danio rerio). Environ. Pollut. 2018, 243, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Song, J.; Guan, M.; Cheng, Z.; Tang, B.; Long, Y.; Mang, R.; Zhao, J.; Xu, W.; Zhang, Y. With spatial distribution, risk evaluation of heavy metals and microplastics to emphasize the composite mechanism in hyporheic sediments of Beiluo River. J. Hazard. Mater. 2024, 462, 132784. [Google Scholar] [CrossRef]
- Chae, Y.; Kim, D.; An, Y.J. Effects of micro-sized polyethylene spheres on the marine microalga Dunaliella salina: Focusing on the algal cell to plastic particle size ratio. Aquat. Toxicol. 2019, 216, 105296. [Google Scholar] [CrossRef]
- Hipfner, J.M.; Galbraith, M.; Tucker, S.; Studholme, K.R.; Domalik, A.D.; Pearson, S.F.; Good, T.P.; Ross, P.S.; Hodum, P. Two forage fishes as potential conduits for the vertical transfer of microfibres in Northeastern Pacific Ocean food webs. Environ. Pollut. 2018, 239, 215–222. [Google Scholar] [CrossRef]
- Teuten, E.L.; Saquing, J.M.; Knappe, D.R.; Barlaz, M.A.; Jonsson, S.; Björn, A.; Rowland, S.J.; Thompson, R.C.; Galloway, T.S.; Yamashita, R.; et al. Transport and release of chemicals from plastics to the environment and to wildlife. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 2027–2045. [Google Scholar] [CrossRef]
- Liu, G.; Jiang, R.; You, J.; Muir, D.C.G.; Zeng, E.Y. Microplastic impacts on microalgae growth: Effects of size and humic acid. Environ. Sci. Technol. 2020, 54, 1782–1789. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, X.H.; Wang, J.T.; Tan, L. Toxic effects of microplastic on marine microalgae Skeletonema costatum: Interactions between microplastic and algae. Environ. Pollut. 2017, 220, 1282–1288. [Google Scholar] [CrossRef]
- Sjollema, S.B.; Redondo-Hasselerharm, P.; Leslie, H.A.; Kraak, M.H.S.; Vethaak, A.D. Do plastic particles affect microalgal photosynthesis and growth? Aquat. Toxicol. 2016, 170, 259–261. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Guo, P.; Zhang, X.; Zhang, Y.; Xie, S.; Deng, J. Effect of microplastics exposure on the photosynthesis system of freshwater algae. J. Hazard. Mater. 2019, 374, 219–227. [Google Scholar] [CrossRef]
- Vert, M.; Doi, Y.; Hellwich, K.; Hess, M.; Hodge, P.; Kubisa, P.; Rinaudo, M.; Schué, F. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl. Chem. 2012, 84, 377–410. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Liang, Y.; Cao, W.; Sun, C.; Ju, P.; Zheng, L. The interactions between microplastic polyvinyl chloride and marine diatoms: Physiological, morphological, and growth effects. Sci. Total Environ. 2020, 633, 539–545. [Google Scholar] [CrossRef]
- El Maghraby, D.; Hassan, I.A. Photosynthetic and biochemical response of Ulva lactuca to marine pollution by polyaromatic hydrocarbons (PAHs). Egypt. J. Botany 2021, 61, 467–478. [Google Scholar]
- Xiao, Y.; Jiang, X.; Liao, Y.; Zhao, W.; Zhao, P.; Li, M. Adverse physiological and molecular level effects of polystyrene microplastics on freshwater microalgae. Chemosphere 2020, 255, 126914. [Google Scholar] [CrossRef] [PubMed]
- Marchant, D.J.; Rodríguez, A.M.; Francelle, P.; Jones, J.I.; Kratina, P. Contrasting the effects of microplastic types, concentrations and nutrient enrichment on freshwater communities and ecosystem functioning. Ecotoxicol. Environ. Saf. 2023, 255, 114834. [Google Scholar] [CrossRef]
- Leng, P.; Yu, H.; Wang, X.; Li, D.; Feng, J.; Liu, J.; Xu, C. Effects of different concentrations and particle sizes of microplastics on the full life history of freshwater Chlorella. Environ. Pollut. 2024, 344, 123349. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- Yang, W.; Gao, P.; Ma, G.; Huang, J.; Wu, Y.; Wan, L.; Ding, H.; Zhang, W. Transcriptome analysis of the toxic mechanism of nanoplastics on growth, photosynthesis and oxidative stress of microalga Chlorella pyrenoidosa during chronic exposure. Environ. Pollut. 2021, 284, 117413. [Google Scholar] [CrossRef] [PubMed]
- Lehner, R.; Weder, C.; Petri-Fink, A.; Rothen-Rutishauser, B. Emergence of Nanoplastic in the environment and possible impact on human health. Environ. Sci. Technol. 2019, 53, 1748–1765. [Google Scholar] [CrossRef] [PubMed]
- Strungaru, S.A.; Jijie, R.; Nicoara, M.; Plavan, G.; Faggio, C. Micro-(nano) plastics in freshwater ecosystems: Abundance, toxicological impact and quantification methodology. Trends Anal. Chem. 2019, 110, 116–128. [Google Scholar] [CrossRef]
- Sudhagar, A.; Kumar, G.; El-Matbouli, M. Transcriptome analysis based on RNA-Seq in understanding pathogenic mechanisms of diseases and the immune system of fish: A comprehensive review. Int. J. Mol. Sci. 2018, 19, 245. [Google Scholar] [CrossRef]
- Zhang, X.; Xia, P.; Wang, P.; Yang, J.; Baird, D.J. Omics advances in Ecotoxicology. Environ. Sci. Technol. 2018, 52, 3842–3851. [Google Scholar] [CrossRef]
- Wang, L.; Ma, Y.N.; Ji, R. Effects of PS and PVC microplastics on the growth of Chlorella sp. Acta Sci. Circumstantiae 2021, 41, 1538–1544. [Google Scholar]
- Besseling, E.; Wang, B.; Lürling, M.; Koelmans, A.A. Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environ. Sci. Technol. 2014, 48, 12336–12343. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, P.; Lin, S.; Turner, J.P.; Ke, P.C. Physical adsorption of charged plastic nanoparticles affects algal photosynthesis. J. Phys. Chem. C 2010, 114, 16556–16561. [Google Scholar] [CrossRef]
- Li, Z.X.; Li, R.J.; Li, Q.F.; Zhou, J.G.; Wang, G.Y. Physiological response of cucumber (Cucumis sativus L.) leaves to polystyrene nanoplastics pollution. Chemosphere 2020, 255, 127041. [Google Scholar] [CrossRef]
- Goiris, K.; Colen, W.V.; Wilches, I.; León-Tamariz, F.; Cooman, L.D.; Muylaert, K. Impact of nutrient stress on antioxidant production in three species of microalgae. Algal Res. 2015, 7, 51–57. [Google Scholar] [CrossRef]
- Tunali, M.; Uzoefuna, E.N.; Tunali, M.M.; Yenigun, O. Effect of microplastics and microplastic-metal combinations on growth and chlorophyll a concentration of Chlorella vulgaris. Sci. Total Environ. 2020, 743, 140479. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.F.; Guo, P.Y.; Chang, C.C.; Gao, L.L.; Li, S.X.; Wan, J.J. Effects of allelochemicals from ficus microcarpaon Chlorella pyrenoidosa. Braz. Arch. Biol. Technol. 2014, 57, 595–605. [Google Scholar] [CrossRef]
- González-Fernández, C.; Toullec, J.; Lambert, C.; Goïc, N.L.; Seoane, M.; Moriceau, B.; Huvet, A.; Berchel, M.; Vincent, D.; Courcot, L.; et al. Do transparent exopolymeric particles (TEP) affect the toxicity of nanoplastics on Chaetoceros neogracile? Environ. Pollut. 2019, 250, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Bergami, E.; Pugnalini, S.; Vannuccini, M.L.; Manfra, L.; Faleri, C.; Savorelli, F.; Dawson, K.A.; Corsi, I. Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana. Aquat. Toxicol. 2017, 189, 159–169. [Google Scholar] [CrossRef]
- Rowenczyk, L.; Leflaive, J.; Clergeaud, F.; Minet, A.; Ferriol, J.; Gauthier, L.; Gigault, J.; Mouchet, F.; Ory, D.; Pinelli, E.; et al. Heteroaggregates of polystyrene nanospheres and organic matter: Preparation, characterization and evaluation of their Toxicity to algae in environmentally relevant conditions. Nanomaterials 2021, 11, 482. [Google Scholar] [CrossRef]
- Sanka, I.; Suyono, E.A.; Alam, P. The effects of diatom pore-size on the structures and extensibilities of single mucilage molecules. Carbohydr. Res. 2017, 448, 35–42. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Luo, Z.X.; Lai, J.L.; Li, C.; Luo, X.G. Effects of polystyrene nanoplastics (PSNPs) on the physiology and molecular metabolism of corn (Zea mays L.) seedlings. Sci. Total Environ. 2022, 806, 150895. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.J.; Li, J.W.; Xu, E.G.; Sun, X.D.; Zhu, F.P.; Ding, Z.J.; Tian, H.Y.; Dong, S.S.; Xia, P.F.; Yuan, X.Z. Short-term exposure to positively charged polystyrene nanoparticles causes oxidative stress and membrane destruction in cyanobacteria. Environ. Sci. Nano 2019, 6, 3072–3079. [Google Scholar] [CrossRef]
- Bailly, C.; Benamar, A.; Corbineau, F.; Come, D. Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated aging. Physiol. Plant. 1996, 97, 104–110. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.; Zhang, Y.; Cui, J.; Chen, G.; Xie, B.; Wu, C.; Liu, H. Synergistic and antagonistic effects of salinity and pH on germination in Switchgrass (Panicum virgatum L.). PLoS ONE 2017, 9, e85282. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.Q.; Kurade, M.B.; Kim, J.R.; Roh, H.S.; Jeon, B.H. Ciprofloxacin toxicity and its cometabolic removal by a freshwater microalga Chlamydomonas mexicana. J. Hazard. Mater. 2017, 323, 212–219. [Google Scholar] [CrossRef]
- Yu, H.; Peng, J.; Cao, X.; Wang, Y.; Zhang, Z.; Xu, Y.; Qi, W. Effects ofmicroplastics and glyphosate on growth rate, morphological plasticity, photosynthesis, and oxidative stress in the aquatic species Salvinia cucullata. Environ. Pollut. 2021, 279, 116900. [Google Scholar] [CrossRef] [PubMed]
- Lian, J.; Wu, J.; Zeb, A.; Zheng, S.; Ma, T.; Peng, F.; Tang, J.; Liu, W. Do polystyrene nanoplastics affect the toxicity ofcadmium to wheat (Triticumaestivum L.)? Environ. Pollut. 2020, 263, 114498. [Google Scholar] [CrossRef]
- Wan, J.J.; Guo, P.Y.; Peng, X.F.; Wen, K. Effect of erythromycin exposure on the growth, antioxidant system and photosynthesis of Microcystis flos-aquae. J. Hazard. Mater. 2015, 283, 778–786. [Google Scholar] [CrossRef] [PubMed]
- Zepka, L.Q.; Jacob-Lopes, E.; Roca, M. Catabolism and bioactive properties of chlorophylls. Curr. Opin. Food Sci. 2019, 26, 94–100. [Google Scholar] [CrossRef]
- Yuan, P.; Zhou, Q.; Hu, X. The Phases of WS2 Nanosheets Influence Uptake, Oxidative Stress, Lipid Peroxidation, Membrane Damage and Metabolism in Algae. Environ. Sci. Technol. 2018, 52, 13543–13552. [Google Scholar] [CrossRef]
- Ye, M.; Fang, S.; Yu, Q.; Chen, J.; Li, P.; Zhang, C.; Ge, Y. Copper and zinc interact significantly in their joint toxicity to Chlamydomonas reinhardtii: Insights from physiological and transcriptomic investigations. Sci. Total Environ. 2023, 905, 167122. [Google Scholar] [CrossRef] [PubMed]
- Kierans, S.J.; Taylor, C.T. Glycolysis: A multifaceted metabolic pathway and signaling hub. J. Biol. Chem. 2024, 300, 107906. [Google Scholar] [CrossRef]
- Beauvais-Flück, R.; Slaveykova, V.I.; Cosio, C. Transcriptomic and physiological responses of the green microalga Chlamydomonas reinhardtii during short-term exposure to subnanomolar methylmercury concentrations. Environ. Sci. Technol. 2016, 50, 7126–7134. [Google Scholar] [CrossRef] [PubMed]
- Simon, D.F.; Domingos, R.F.; Hauser, C.; Hutchins, C.M.; Zerges, W.; Wilkinson, K.J. Transcriptome Sequencing (RNA-seq) analysis of the effects of metal nanoparticle exposure on the transcriptome of Chlamydomonas reinhardtii. Appl. Environ. Microbiol. 2013, 79, 4774–4785. [Google Scholar] [CrossRef]
- Lin, J.; Alexander-Katz, A. Cell membranes open “doors” for cationic nanoparticles/biomolecules: Insights into uptake kinetics. ACS Nano 2013, 7, 10799–10808. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Rao, M.; Xiao, W.; Zhou, J.; Li, M. The relative size of microalgal cells and microplastics determines the toxicity of microplastics to microalgae. Process Saf. Environ. Prot. 2023, 169, 860–868. [Google Scholar] [CrossRef]
- Takei, K.; Haucke, V. Clathrin-mediated endocytosis: Membrane factors pull the trigger. Trends Cell Biol. 2001, 9, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Baschieri, F.; Dayot, S.; Elkhatib, N.; Ly, N.; Capmany, A.; Schauer, K.; Betz, T.; Vignjevic, D.M.; Poincloux, R.; Montagnac, G. Frustrated endocytosis controls contractility-independent mechanotransduction at clathrin-coated structures. Nat. Commun. 2018, 9, 3825. [Google Scholar] [CrossRef] [PubMed]
- Nolte, T.M.; Hartmann, N.B.; Kleijn, M.J.; Garnæs, J.; Meent, D.V.D.; Hendriks, A.J.; Baun, A. The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption. Aquat. Toxicol. 2017, 183, 11–20. [Google Scholar] [CrossRef]
- Chen, N.; He, J.X.; Sun, X.L.; Liu, Y.; Fan, Y.W. Effects of nitrate nitrogen and inorganic phosphorus concentrations and their ratio on growth, physiology and cell morphology of Navicula gregaria donkin. Acta Bot. Boreali-Occident. Sin. 2021, 41, 615–626. [Google Scholar]
- Dai, X.; Wu, D.F.; Bai, Y.; Fu, C.Y. Method of chlorophyll-a content determination in phytoplankton. Water Resour. Hydropower Northeast China 2013, 31, 13–14. [Google Scholar]
- Gorbunov, M.Y.; Falkowski, P.G. Using chlorophyll fluorescence to determine the fate of photons absorbed by phytoplankton in the world’s oceans. Ann. Rev. Mar. Sci. 2022, 14, 213–238. [Google Scholar] [CrossRef] [PubMed]
- Dokulil, M.T. Phytoplankton Productivity. Encyclopedia of Inland Waters, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 2, pp. 139–153. [Google Scholar]
- Rezayian, M.; Niknam, V.; Ebrahimzadeh, H. Oxidative damage and antioxidative system in algae. Toxicol. Rep. 2019, 6, 1309–1313. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Li, X.; Li, S.G.; Cheng, J.W.; Fu, R.Y.; Zhan, A.B. Proteomic response to environmental stresses in the stolon of a highly invasive fouling ascidian. Front. Mar. Sci. 2021, 8, 761628. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wang, Z.; Chen, Y.; Li, Q. Polystyrene Microplastics Induce Photosynthetic Impairment in Navicula sp. at Physiological and Transcriptomic Levels. Int. J. Mol. Sci. 2025, 26, 148. https://doi.org/10.3390/ijms26010148
Li X, Wang Z, Chen Y, Li Q. Polystyrene Microplastics Induce Photosynthetic Impairment in Navicula sp. at Physiological and Transcriptomic Levels. International Journal of Molecular Sciences. 2025; 26(1):148. https://doi.org/10.3390/ijms26010148
Chicago/Turabian StyleLi, Xi, Zunyan Wang, Yiyong Chen, and Qi Li. 2025. "Polystyrene Microplastics Induce Photosynthetic Impairment in Navicula sp. at Physiological and Transcriptomic Levels" International Journal of Molecular Sciences 26, no. 1: 148. https://doi.org/10.3390/ijms26010148
APA StyleLi, X., Wang, Z., Chen, Y., & Li, Q. (2025). Polystyrene Microplastics Induce Photosynthetic Impairment in Navicula sp. at Physiological and Transcriptomic Levels. International Journal of Molecular Sciences, 26(1), 148. https://doi.org/10.3390/ijms26010148