Total Antioxidant and Oxidative Status as Potential Biomarkers of Alcohol Overdose
<p>Redox status in the blood of the control group, patients with alcohol dependency, and patients with alcohol poisoning. Abbreviations: TAC—total antioxidant capacity; TOS—total oxidative status; OSI—oxidative stress index. Differences statistically significant at * <0.05, ** <0.01, *** <0.001, and **** <0.0001.</p> "> Figure 2
<p>Redox status in blood of subjects with varied blood alcohol concentrations: 0‰, 1.1–2‰, 2.1–3‰, 3.1–4‰, and more than 4‰. Abbreviations: TAC—total antioxidant capacity; TOS—total oxidative status; OSI—oxidative stress index. Differences statistically significant at * <0.05, ** <0.01, *** <0.001, and **** <0.0001.</p> "> Figure 3
<p>Redox status in the urine of the control group, patients with alcohol dependency, and patients with alcohol poisoning. Abbreviations: TAC—total antioxidant capacity; TOS—total oxidative status; OSI—oxidative stress index. Differences statistically significant at * <0.05, ** <0.01, *** <0.001, and **** <0.0001.</p> "> Figure 4
<p>Redox status in the urine of patients with varied blood alcohol concentrations: 0‰, 1.1–2‰, 2.1–3‰, 3.1–4‰, and more than 4‰. Abbreviations: TAC—total antioxidant capacity; TOS—total oxidative status; OSI—oxidative stress index. Differences are statistically significant at * <0.05, ** <0.01, *** <0.001, and **** <0.0001.</p> "> Figure 5
<p>Heat map of correlations between blood and urine redox status biomarkers and alcohol concentrations. Abbreviations: TAC—total antioxidant capacity; TOS—total oxidative status; OSI—oxidative stress index.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Blood Redox Status
2.2. Urine Redox Status
2.3. ROC Analysis
2.4. Correlations
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Sample Collection
4.3. Redox Status
4.4. Statistics
5. Study Limitations
6. Future Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organisation. Global Status Report on Alcohol and Health and Treatment of Substance Use Disorders; World Health Organisation: Geneva, Switzerland, 2024. [Google Scholar]
- Miller, N.S. Consequences of alcohol addiction. Kans. Med. 1989, 90, 339–343. [Google Scholar] [PubMed]
- Le Daré, B.; Lagente, V.; Gicquel, T. Ethanol and its metabolites: Update on toxicity, benefits, and focus on immunomodulatory effects. Drug Metab. Rev. 2019, 51, 545–561. [Google Scholar] [CrossRef] [PubMed]
- Lamb, R.J.; Griffiths, K.; Lip, G.Y.H.; Sorokin, V.; Frenneaux, M.P.; Feelisch, M.; Madhani, M. ALDH2 polymorphism and myocardial infarction: From alcohol metabolism to redox regulation. Pharmacol. Ther. 2024, 259, 108666. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.F.; Heilig, M.; Perez, A.; Probst, C.; Rehm, J. Alcohol use disorders. Lancet 2019, 394, 781–792. [Google Scholar] [CrossRef]
- Fihel, A.; Trias-Llimós, S.; Muszyńska-Spielauer, M.M.; Majerová, M. Alcohol-related mortality in four European countries: A multiple-cause-of-death study. Drug Alcohol Rev. 2023, 42, 938–945. [Google Scholar] [CrossRef]
- White, A.M.; Castle, I.-J.P.; Hingson, R.W.; Powell, P.A. Using Death Certificates to Explore Changes in Alcohol-Related Mortality in the United States, 1999 to 2017. Alcohol. Clin. Exp. Res. 2020, 44, 178–187. [Google Scholar] [CrossRef]
- Demirci-Çekiç, S.; Özkan, G.; Avan, A.N.; Uzunboy, S.; Çapanoğlu, E.; Apak, R. Biomarkers of Oxidative Stress and Antioxidant Defense. J. Pharm. Biomed. Anal. 2022, 209, 114477. [Google Scholar] [CrossRef]
- Waszkiewicz, N.; Pawłowicz, K.; Okuniewska, N.; Kwiatkowski, M.; Zalewski, D.; Wilczyńska, K.; Szulc, A.; Galińska-Skok, B.; Konarzewska, B.; Maciejczyk, M.; et al. Salivary Carbohydrate-Deficient Transferrin in Alcohol- and Nicotine-Dependent Males. J. Clin. Med. 2020, 9, 4054. [Google Scholar] [CrossRef]
- Mohideen, K.; Chandrasekaran, K.; Veeraraghavan, H.; Faizee, S.H.; Dhungel, S.; Ghosh, S. Meta-Analysis of Assessment of Total Oxidative Stress and Total Antioxidant Capacity in Patients with Periodontitis. Dis. Markers 2023, 2023, 9949047. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, M.A.; Mendoza-Núñez, V.M. Oxidative Stress Indexes for Diagnosis of Health or Disease in Humans. Oxid. Med. Cell. Longev. 2019, 2019, 4128152. [Google Scholar] [CrossRef]
- Wang, Y.; Andrukhov, O.; Rausch-Fan, X. Oxidative Stress and Antioxidant System in Periodontitis. Front. Physiol. 2017, 8, 910. [Google Scholar] [CrossRef] [PubMed]
- Bartosz, G. Total antioxidant capacity. Adv. Clin. Chem. 2003, 37, 219–292. [Google Scholar] [CrossRef] [PubMed]
- Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef]
- Joó, J.G.; Sulyok, E.; Bódis, J.; Kornya, L. Disrupted Balance of the Oxidant–Antioxidant System in the Pathophysiology of Female Reproduction: Oxidative Stress and Adverse Pregnancy Outcomes. Curr. Issues Mol. Biol. 2023, 45, 8091–8111. [Google Scholar] [CrossRef]
- Karadayian, A.G.; Malanga, G.; Czerniczyniec, A.; Lombardi, P.; Bustamante, J.; Lores-Arnaiz, S. Free radical production and antioxidant status in brain cortex non-synaptic mitochondria and synaptosomes at alcohol hangover onset. Free Radic. Biol. Med. 2017, 108, 692–703. [Google Scholar] [CrossRef]
- Maciejczyk, M.; Ptaszyńska-Sarosiek, I.; Niemcunowicz-Janica, A.; Szeremeta, M.; Waszkiewicz, N.; Kułak-Bejda, A.; Cwalina, U.; Nesterowicz, M.; Zalewska, A. Do Circulating Redox Biomarkers Have Diagnostic Significance in Alcohol-Intoxicated People? Int. J. Mol. Sci. 2022, 23, 11808. [Google Scholar] [CrossRef]
- Neethumol, P.; Chiramel, K.J.; Shivashankara, A.R. Effect of Alcohol Withdrawl on Glutathione S-transferase, Total Antioxidant Capacity and Amylase in Blood and Saliva of Alcohol-Dependent Males. J. Clin. Diagn. Res. 2013, 7, 797–800. [Google Scholar] [CrossRef]
- Saribal, D.; Hocaoglu-Emre, F.S.; Karaman, F.; Mırsal, H.; Akyolcu, M.C. Trace Element Levels and Oxidant/Antioxidant Status in Patients with Alcohol Abuse. Biol. Trace Elem. Res. 2020, 193, 7–13. [Google Scholar] [CrossRef]
- Tsermpini, E.E.; Plemenitaš Ilješ, A.; Dolžan, V. Alcohol-Induced Oxidative Stress and the Role of Antioxidants in Alcohol Use Disorder: A Systematic Review. Antioxidants 2022, 11, 1374. [Google Scholar] [CrossRef]
- Yang, M.; Zhou, X.; Tan, X.; Huang, X.; Yuan, L.; Zhang, Z.; Yang, Y.; Xu, M.; Wan, Y.; Li, Z. The Status of Oxidative Stress in Patients with Alcohol Dependence: A Meta-Analysis. Antioxidants 2022, 11, 1919. [Google Scholar] [CrossRef] [PubMed]
- Zięba, S.; Maciejczyk, M.; Zalewska, A. Ethanol- and Cigarette Smoke-Related Alternations in Oral Redox Homeostasis. Front. Physiol. 2022, 12, 793028. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, A. Alcohol a double-edged sword. In Alcohol, Drugs, Genes and the Clinical Laboratory; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–21. [Google Scholar]
- Haghparast, P.; Tchalikian, T.N. Alcoholic beverages and health effects. In Encyclopedia of Toxicology; Elsevier: Amsterdam, The Netherlands, 2024; pp. 253–263. [Google Scholar]
- Wang, X.; Liu, B.; Liu, Y.; Wang, Y.; Wang, Z.; Song, Y.; Xu, J.; Xue, C. Antioxidants ameliorate oxidative stress in alcoholic liver injury by modulating lipid metabolism and phospholipid homeostasis. Lipids 2023, 58, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Nordmann, R. Alcohol and antioxidant systems. Alcohol Alcohol. 1994, 29, 513–522. [Google Scholar]
- Albano, E. Oxidative Stress in Alcoholic Liver Disease. In Studies on Hepatic Disorders; Springer International Publishing: Cham, Switzerland, 2015; pp. 215–239. [Google Scholar]
- Wu, D.; Cederbaum, A.I. Alcohol, oxidative stress, and free radical damage. Alcohol Res. Health 2003, 27, 277–284. [Google Scholar]
- Ponnappa, B.C.; Rubin, E. Modeling alcohol’s effects on organs in animal models. Alcohol Res. Health 2000, 24, 93–104. [Google Scholar]
- Jena, A.B.; Samal, R.R.; Bhol, N.K.; Duttaroy, A.K. Cellular Red-Ox system in health and disease: The latest update. Biomed. Pharmacother. 2023, 162, 114606. [Google Scholar] [CrossRef]
- Bushmina, O.N.; Dolgareva, S.A.; Konoplya, A.I.; Loktionov, A.L. Pharmacological correction of metabolic disorders in experimental acute pancreatitis on the background of chronic alcohol intoxication. Res. Results Pharmacol. 2018, 4, 9–19. [Google Scholar] [CrossRef]
- Zhang, P.; Welsh, D.A.; Siggins, R.W.; Bagby, G.J.; Raasch, C.E.; Happel, K.I.; Nelson, S. Acute alcohol intoxication inhibits the lineage- c-kit+ Sca-1+ cell response to Escherichia coli bacteremia. J. Immunol. 2009, 182, 1568–1576. [Google Scholar] [CrossRef]
- Marotta, F.; Safran, P.; Tajiri, H.; Princess, G.; Anzulovic, H.; Idéo, G.M.; Rouge, A.; Seal, M.G.; Idéo, G. Improvement of hemorheological abnormalities in alcoholics by an oral antioxidant. Hepatogastroenterology 2001, 48, 511–517. [Google Scholar]
- Guemouri, L.; Lecomte, E.; Herbeth, B.; Pirollet, P.; Paille, F.; Siest, G.; Artur, Y. Blood activities of antioxidant enzymes in alcoholics before and after withdrawal. J. Stud. Alcohol 1993, 54, 626–629. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.-C.; Chen, C.-H.; Peng, F.-C.; Tang, S.-H.; Chen, C.-C. Alterations in Oxidative Stress Status During Early Alcohol Withdrawal in Alcoholic Patients. J. Formos. Med. Assoc. 2009, 108, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Balkan, J.; Vural, P.; Öztezcan, S.; Mirsal, H.; Beyazyürek, M.; Aykaç-Toker, G.; Uysal, M. Increased LDL+VLDL Oxidizability and Plasma Homocysteine Levels in Chronic Alcoholic Patients. J. Nutr. Sci. Vitaminol. 2005, 51, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Bleich, S.; Bandelow, B.; Javaheripour, K.; Müller, A.; Degner, D.; Wilhelm, J.; Havemann-Reinecke, U.; Sperling, W.; Rüther, E.; Kornhuber, J. Hyperhomocysteinemia as a new risk factor for brain shrinkage in patients with alcoholism. Neurosci. Lett. 2003, 335, 179–182. [Google Scholar] [CrossRef] [PubMed]
- Cravo, M.; Glória, L.; Selhub, J.; Nadeau, M.; Camilo, M.; Resende, M.; Cardoso, J.; Leitão, C.; Mira, F. Hyperhomocysteinemia in chronic alcoholism: Correlation with folate, vitamin B(-1)2, and vitamin B-6 status. Am. J. Clin. Nutr. 1996, 63, 220–224. [Google Scholar] [CrossRef]
- Thome, J.; Foley, P.; Gsell, W.; Davids, E.; Wodarz, N.; Wiesbeck, G.A.; Böning, J.; Riederer, P. Increased concentrations of manganese superoxide dismutase in serum of alcohol-dependent patients. Alcohol Alcohol. 1997, 32, 65–69. [Google Scholar] [CrossRef]
- Prokopieva, V.D.; Vetlugina, T.P. Features of oxidative stress in alcoholism. Biomed. Khim. 2023, 69, 83–96. [Google Scholar] [CrossRef]
- Deshpande, N.; Kandi, S.; Venkata Bharath Kumar, P.; Ramana, K.V.; Muddeshwar, M. Effect of Alcohol Consumption on Oxidative Stress Markers and its Role in the Pathogenesis and Progression of Liver Cirrhosis. Am. J. Med. Biol. Res. 2013, 1, 99–102. [Google Scholar] [CrossRef]
- Grasselli, E.; Compalati, A.D.; Voci, A.; Vecchione, G.; Ragazzoni, M.; Gallo, G.; Borro, P.; Sumberaz, A.; Testino, G.; Vergani, L. Altered oxidative stress/antioxidant status in blood of alcoholic subjects is associated with alcoholic liver disease. Drug Alcohol Depend. 2014, 143, 112–119. [Google Scholar] [CrossRef]
- Moraes, L.; Dries, S.S.; Seibert, B.S.; Linden, R.; Perassolo, M.S. Evaluation of oxidative stress markers in ethanol users. Braz. J. Med. Biol. Res. 2023, 56, e12465. [Google Scholar] [CrossRef]
- Shah, V.; Waltenbaugh, C.; Yeldandi, A. Peroxisome proliferators increase ethanol catabolism through utilization of the catalase pathway. Int. J. Oncol. 1997, 11, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Thurman, R.G. Induction of hepatic microsomal reduced nicotinamide adenine dinucleotide phosphate-dependent production of hydrogen peroxide by chronic prior treatment with ethanol. Mol. Pharmacol. 1973, 9, 670–675. [Google Scholar] [PubMed]
- Gasbarrini, A.; Addolorato, G.; Simoncini, M.; Gasbarrini, G.; Fantozzi, P.; Mancini, F.; Montanari, L.; Nardini, M.; Ghiselli, A.; Scaccini, C. Beer affects oxidative stress due to ethanol in rats. Dig. Dis. Sci. 1998, 43, 1332–1338. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Chen, L.; Tang, W.; Chen, T.; Xu, J.; Yang, X.; Ding, R.; Tang, X. Interaction of Harmful Alcohol Use and Tea Consumption on Hyperuricemia Among Han Residents Aged 30–79 in Chongqing, China. Int. J. Gen. Med. 2023, 16, 973–981. [Google Scholar] [CrossRef]
- Chen, S.; Ding, R.; Tang, X.; Chen, L.; Luo, Q.; Xiao, M.; Ding, X.; Peng, B. Association between alcohol consumption and risk of hyperuricaemia among adults: A large cross-sectional study in Chongqing, China. BMJ Open 2023, 13, e074697. [Google Scholar] [CrossRef]
- Jee, Y.H.; Jung, K.J.; Park, Y.; Spiller, W.; Jee, S.H. Causal effect of alcohol consumption on hyperuricemia using a Mendelian randomization design. Int. J. Rheum. Dis. 2019, 22, 1912–1919. [Google Scholar] [CrossRef]
- Li, Z.; Guo, X.; Liu, Y.; Chang, Y.; Sun, Y.; Zhu, G.; Abraham, M. The Relation of Moderate Alcohol Consumption to Hyperuricemia in a Rural General Population. Int. J. Environ. Res. Public Health 2016, 13, 732. [Google Scholar] [CrossRef]
- Nakamura, K.; Sakurai, M.; Miura, K.; Morikawa, Y.; Yoshita, K.; Ishizaki, M.; Kido, T.; Naruse, Y.; Suwazono, Y.; Nakagawa, H. Alcohol intake and the risk of hyperuricaemia: A 6-year prospective study in Japanese men. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 989–996. [Google Scholar] [CrossRef]
- Durgapal, S.; Jantwal, A.; Upadhyay, J.; Joshi, T.; Kumar, A. Uric acid. In Antioxidants Effects in Health; Elsevier: Amsterdam, The Netherlands, 2022; pp. 505–516. [Google Scholar]
- Singh, J.; Kaur, S.; Kaur, M.; Verma, M.K. The Role of Uric Acid as an Antioxidant in Selected Neurodegenerative Disease Pathogenesis. Int. J. Sci. Res. Sci. Technol. 2022, 239–247. [Google Scholar] [CrossRef]
- Kurajoh, M.; Fukumoto, S.; Yoshida, S.; Akari, S.; Murase, T.; Nakamura, T.; Ishii, H.; Yoshida, H.; Nagata, Y.; Morioka, T.; et al. Uric acid shown to contribute to increased oxidative stress level independent of xanthine oxidoreductase activity in MedCity21 health examination registry. Sci. Rep. 2021, 11, 7378. [Google Scholar] [CrossRef]
- Santos, C.X.; Anjos, E.I.; Augusto, O. Uric acid oxidation by peroxynitrite: Multiple reactions, free radical formation, and amplification of lipid oxidation. Arch. Biochem. Biophys. 1999, 372, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Bagnati, M.; Perugini, C.; Cau, C.; Bordone, R.; Albano, E.; Bellomo, G. When and why a water-soluble antioxidant becomes pro-oxidant during copper-induced low-density lipoprotein oxidation: A study using uric acid. Biochem. J. 1999, 340 Pt 1, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Patrício, E.S.; Prado, F.M.; da Silva, R.P.; Carvalho, L.A.C.; Prates, M.V.C.; Dadamos, T.; Bertotti, M.; Di Mascio, P.; Kettle, A.J.; Meotti, F.C. Chemical Characterization of Urate Hydroperoxide, A Pro-oxidant Intermediate Generated by Urate Oxidation in Inflammatory and Photoinduced Processes. Chem. Res. Toxicol. 2015, 28, 1556–1566. [Google Scholar] [CrossRef] [PubMed]
- Cortese, F.; Scicchitano, P.; Cortese, A.M.; Meliota, G.; Andriani, A.; Truncellito, L.; Calculli, G.; Giordano, P.; Ciccone, M.M. Uric Acid in Metabolic and Cerebrovascular Disorders: A Review. Curr. Vasc. Pharmacol. 2020, 18, 610–618. [Google Scholar] [CrossRef]
- Kumar, A.N.; Aruna, P.; Naidu, J.N.; Kumar, R.; Srivastava, A.K. Review of Concepts and Controversies of Uric Acid as Antioxidant and Pro-Oxidant. Arşiv Kaynak Tarama Derg. 2015, 24, 19. [Google Scholar] [CrossRef]
- Čypienė, A.; Gimžauskaitė, S.; Rinkūnienė, E.; Jasiūnas, E.; Laucevičius, A.; Ryliškytė, L.; Badarienė, J. Effect of Alcohol Consumption Habits on Early Arterial Aging in Subjects with Metabolic Syndrome and Elevated Serum Uric Acid. Nutrients 2023, 15, 3346. [Google Scholar] [CrossRef]
- Yamamoto, T.; Moriwaki, Y.; Takahashi, S. Effect of ethanol on metabolism of purine bases (hypoxanthine, xanthine, and uric acid). Clin. Chim. Acta 2005, 356, 35–57. [Google Scholar] [CrossRef]
- Eliseev, M.S.; Zheliabina, O.V.; Nasonov, E.L. Uric acid, cognitive disorders, neurodegeneration. Ter. Arkh. 2024, 96, 447–452. [Google Scholar] [CrossRef]
- Vendemiale, G.; Lieber, C.S. Acute and chronic effects of ethanol on biliary secretion of bilirubin and bile acids. Subst. Alcohol Actions Misuse 1984, 5, 307–317. [Google Scholar]
- Taiwo Ebuehi, O.A.; Asonye, C.L. Gender and alcohol consumption affect human serum enzymes, protein and bilirubin. Eur. J. Sci. Res. 2006, 15, 446–452. [Google Scholar] [CrossRef]
- di Padova, C.; Tritapepe, R.; Rovagnati, P.; Bessone, E.; di Padova, F. Effect of ethanol on biliary unconjugated bilirubin and its implication in pigment gallstone pathogenesis in humans. Digestion 1982, 24, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Schwesinger, W.H.; Kurtin, W.E. Effects of ethanol infusion on serum hemoglobin and bile pigments. J. Surg. Res. 1984, 37, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Castañeda, S.M.; Cordova-Gallardo, J.; Rivera-Espinosa, L.; Chavez-Pacheco, J.L.; Ramírez-Mejía, M.M.; Méndez-Sánchez, N. Bilirubin Molecular Species Play an Important Role in the Pathophysiology of Acute-on-Chronic Liver Failure. Int. J. Mol. Sci. 2024, 25, 8181. [Google Scholar] [CrossRef] [PubMed]
- di Padova, C.; Tritapepe, R.; di Padova, F.; Rovagnati, P.; Dioguardi, N. Acute ethanol administration increases biliary concentrations of total and unconjugated bilirubin in rabbits. Dig. Dis. Sci. 1981, 26, 1095–1099. [Google Scholar] [CrossRef]
- Marik, P.E.; Liggett, A. Adding an orange to the banana bag: Vitamin C deficiency is common in alcohol use disorders. Crit. Care 2019, 23, 165. [Google Scholar] [CrossRef]
- Majumdar, S.K.; Patel, S.; Shaw, G.K.; O’Gorman, P.; Thomson, A.D. Vitamin C utilization status in chronic alcoholic patients after short-term intravenous therapy. Int. J. Vitam. Nutr. Res. 1981, 51, 274–278. [Google Scholar]
- Faizallah, R.; Morris, A.I.; Krasner, N.; Walker, R.J. Alcohol enhances vitamin C excretion in the urine. Alcohol Alcohol. 1986, 21, 81–84. [Google Scholar] [PubMed]
- Bjørneboe, G.E.; Johnsen, J.; Bjørneboe, A.; Bache-Wiig, J.E.; Mørland, J.; Drevon, C.A. Diminished serum concentration of vitamin E in alcoholics. Ann. Nutr. Metab. 1988, 32, 56–61. [Google Scholar] [CrossRef]
- Jordao, A.A.; Monteiro, T.H.; dos Santos, R.A.; Portari, G.V. Oxidative Damage in Rats Receiving Ethanol and Supplemented with Vitamin E. Am. J. Biomed. Life Sci. 2017, 5, 88–91. [Google Scholar] [CrossRef]
- Potter, B.J. Does Vitamin E Protect Against Hepatic Oxidative Stress During Alcohol Metabolism in Rodent Liver Cell Lines?—An EPR Study. Alcohol. Drug Abus. Subst. Depend. 2015, 1, 1–6. [Google Scholar] [CrossRef]
- Sadowska-Bartosz, I.; Bartosz, G. Evaluation of The Antioxidant Capacity of Food Products: Methods, Applications and Limitations. Processes 2022, 10, 2031. [Google Scholar] [CrossRef]
- Silvestrini, A.; Meucci, E.; Ricerca, B.M.; Mancini, A. Total Antioxidant Capacity: Biochemical Aspects and Clinical Significance. Int. J. Mol. Sci. 2023, 24, 10978. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Liu, D.; Hadiatullah, H.; Guo, T.; Yao, Y.; Li, C.; Wang, X. Evaluating the total antioxidant capacity of processed milk: Utilising applicable antioxidant assays and key antioxidant components. Int. J. Food Sci. Technol. 2024, 59, 1351–1362. [Google Scholar] [CrossRef]
- Capanoglu, E.; Kamiloglu, S.; Cekic, S.D.; Baskan, K.S.; Avan, A.N.; Uzunboy, S.; Apak, R. Antioxidant Activity and Capacity Measurement. In Plant Antioxidants and Health; Springer: Cham, Switzerland, 2022; pp. 709–773. [Google Scholar] [CrossRef]
- Pellegrini, N.; Vitaglione, P.; Granato, D.; Fogliano, V. Twenty-five years of total antioxidant capacity measurement of foods and biological fluids: Merits and limitations. J. Sci. Food Agric. 2020, 100, 5064–5078. [Google Scholar] [CrossRef]
- Toczewska, J.; Maciejczyk, M.; Konopka, T.; Zalewska, A. Total Oxidant and Antioxidant Capacity of Gingival Crevicular Fluid and Saliva in Patients with Periodontitis: Review and Clinical Study. Antioxidants 2020, 9, 450. [Google Scholar] [CrossRef]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef]
- Zhu, Y.; Boye, A.; Body-Malapel, M.; Herkovits, J. The Toxic Effects of Xenobiotics on the Health of Humans and Animals. BioMed Res. Int. 2017, 2017, 4627872. [Google Scholar] [CrossRef]
- Gil, F.; Pla, A. Biomarkers as biological indicators of xenobiotic exposure. J. Appl. Toxicol. 2001, 21, 245–255. [Google Scholar] [CrossRef]
- Georgakouli, K.; Manthou, E.; Fatouros, I.G.; Deli, C.K.; Spandidos, D.A.; Tsatsakis, A.M.; Kouretas, D.; Koutedakis, Y.; Theodorakis, Y.; Jamurtas, A.Z. Effects of acute exercise on liver function and blood redox status in heavy drinkers. Exp. Ther. Med. 2015, 10, 2015–2022. [Google Scholar] [CrossRef]
- Ptaszyńska-Sarosiek, I.; Kułak-Bejda, A.; Niemcunowicz-Janica, A.; Waszkiewicz, N.; Cwalina, U.; Nesterowicz, M.; Stasiūnienė, J.; Szajda, S.D.; Chojnowska, S.; Szeremeta, M. Activity of exoglycosidases in blood, urine, cerebrospinal fluid, and vitreous humor in individuals who died from ethyl alcohol poisoning. Sci. Rep. 2024, 14, 22739. [Google Scholar] [CrossRef]
- Choromańska, B.; Myśliwiec, P.; Kozłowski, T.; Łukaszewicz, J.; Vasilyevich, H.P.; Dadan, J.; Zalewska, A.; Maciejczyk, M. Antioxidant and antiradical activities depend on adrenal tumor type. Front. Endocrinol. 2022, 13, 1011043. [Google Scholar] [CrossRef] [PubMed]
- Wolszczak-Biedrzycka, B.; Dorf, J.; Matowicka-Karna, J.; Dymicka-Piekarska, V.; Wojewódzka-Żeleźniakowicz, M.; Żukowski, P.; Zalewska, A.; Dąbrowski, Ł.; Maciejczyk, M. Redox Biomarkers—An Effective Tool for Diagnosing COVID-19 Patients and Convalescents. J. Inflamm. Res. 2024, 17, 2589–2607. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef]
- Alzaid, F.; Patel, V.B.; Preedy, V.R. Biomarkers of Oxidative Stress in Blood. In General Methods in Biomarker Research and Their Applications; Springer: Dordrecht, The Netherlands, 2015; Volume 1–2, pp. 567–594. [Google Scholar] [CrossRef]
- Bartosz, G. Non-enzymatic antioxidant capacity assays: Limitations of use in biomedicine. Free Radic. Res. 2010, 44, 711–720. [Google Scholar] [CrossRef]
- Bloomer, R.J.; Fisher-Wellman, K.H. Blood oxidative stress biomarkers: Influence of sex, exercise training status, and dietary intake. Gend. Med. 2008, 5, 218–228. [Google Scholar] [CrossRef]
- Gyurászová, M.; Kovalčíková, A.; Janšáková, K.; Šebeková, K.; Celec, P.; Tóthová, Ľ. Markers of oxidative stress and antioxidant status in the plasma, urine and saliva of healthy mice. Physiol. Res. 2018, 67, 921–934. [Google Scholar] [CrossRef]
- Il’yasova, D.; Scarbrough, P.; Spasojevic, I. Urinary biomarkers of oxidative status. Clin. Chim. Acta 2012, 413, 1446–1453. [Google Scholar] [CrossRef]
- Wu, R.; Feng, J.; Yang, Y.; Dai, C.; Lu, A.; Li, J.; Liao, Y.; Xiang, M.; Huang, Q.; Wang, D.; et al. Significance of Serum Total Oxidant/Antioxidant Status in Patients with Colorectal Cancer. PLoS ONE 2017, 12, e0170003. [Google Scholar] [CrossRef]
- Johnson, L.G.; Patterson, B.M.; Huff-Lonergan, E.J.; Lonergan, S.M. Review of Postmortem Protein Oxidation in Skeletal Muscle and the Role of the Peroxiredoxin Family of Endogenous Antioxidants. Meat Muscle Biol. 2023, 6, 14492. [Google Scholar] [CrossRef]
TAC Blood | TOS Blood | OSI Blood | |||||||
---|---|---|---|---|---|---|---|---|---|
C vs. AD | C vs. AP | AD vs. AP | C vs. AD | C vs. AP | AD vs. AP | C vs. AD | C vs. AP | AD vs. AP | |
AUC | 0.64 | 0.92 | 0.86 | 0.81 | 0.75 | 0.7 | 0.61 | 0.84 | 0.89 |
95% CI | 0.57 to 0.72 | 0.87 to 0.97 | 0.79 to 0.92 | 0.75 to 0.88 | 0.65 to 0.84 | 0.62 to 0.79 | 0.52 to 0.69 | 0.77 to 0.91 | 0.83 to 0.95 |
Cut-off | >47.26 | >86.2 | >88.11 | >5.34 | >4.7 | <6.18 | >10.37 | <6.32 | <6.48 |
Sensitivity% | 63.64 | 85.11 | 82.98 | 75.25 | 72.34 | 68.09 | 61.54 | 82.61 | 84.78 |
95% CI | 53.82% to 72.44% | 72.31% to 92.59% | 69.86% to 91.11% | 66.01% to 82.64% | 58.24% to 83.06% | 53.83% to 79.6% | 51.27% to 70.87% | 69.28% to 90.91% | 71.78% to 92.43% |
Specificity% | 61.9 | 91.43 | 83.84 | 83.33 | 70.59 | 66.34 | 60.22 | 80.22 | 86.02 |
95% CI | 52.35% to 70.62% | 84.51% to 95.43% | 75.35% to 89.8% | 74.92% to 89.33% | 61.13% to 78.55% | 56.67% to 74.8% | 50.05% to 69.57% | 70.89% to 87.11% | 77.54% to 91.65% |
TAC Blood | TOS Blood | OSI Blood | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0‰ vs. 1.1–2‰ | 1.1–2‰ vs. 2.1–3‰ | 2.1–3‰ vs. 3.1–4‰ | 3.1–4‰ vs. >4‰ | 0‰ vs. 1.1–2‰ | 1.1–2‰ vs. 2.1–3‰ | 2.1–3‰ vs. 3.1–4‰ | 3.1–4‰ vs. >4‰ | 0‰ vs. 1.1–2‰ | 1.1–2‰ vs. 2.1–3‰ | 2.1–3‰ vs. 3.1–4‰ | 3.1–4‰ vs. >4‰ | |
AUC | 0.69 | 0.58 | 0.52 | 0.89 | 0.83 | 0.54 | 0.59 | 0.62 | 0.62 | 0.56 | 0.57 | 0.85 |
95% CI | 0.59 to 0.81 | 0.44 to 0.72 | 0.38 to 0.67 | 0.8 to 0.97 | 0.72 to 0.94 | 0.4 to 0.67 | 0.46 to 0.72 | 0.48 to 0.77 | 0.49 to 0.74 | 0.42 to 0.7 | 0.42 to 0.71 | 0.73 to 0.96 |
Cut-off | >50.14 | <58.68 | <50.44 | >85.16 | >5.1 | >8.14 | <7.21 | <6.01 | >10.76 | >11.94 | <11.93 | <6.31 |
Sensitivity % | 67.74 | 60.98 | 53.57 | 86.96 | 80 | 50 | 60 | 63.04 | 62.07 | 54.05 | 53.85 | 82.22 |
95% CI | 50.14% to 81.43% | 45.73% to 74.34% | 35.81% to 70.47% | 74.33% to 93.88% | 62.69% to 90.49% | 35.53% to 64.47% | 42.32% to 75.41% | 48.6% to 75.48% | 44% to 77.31% | 38.38% to 68.96% | 35.46% to 71.24% | 68.67% to 90.71% |
Specificity % | 68.57 | 58.06 | 53.66 | 85.71 | 80.39 | 53.33 | 57.14 | 63.33 | 62.37 | 55.17 | 54.05 | 80.77 |
95% CI | 59.17% to 76.66% | 40.77% to 73.58% | 38.75% to 67.94% | 68.51% to 94.3% | 71.65% to 86.93% | 36.14% to 69.77% | 42.21% to 70.88% | 45.51% to 78.13% | 52.21% to 71.54% | 37.55% to 71.59% | 38.38% to 68.96% | 62.12% to 91.49% |
TAC Urine | TOS Urine | OSI Urine | |||||||
---|---|---|---|---|---|---|---|---|---|
C vs. AD | C vs. AP | AD vs. AP | C vs. AD | C vs. AP | AD vs. AP | C vs. AD | C vs. AP | AD vs. AP | |
AUC | 0.6 | 0.68 | 0.55 | 0.64 | 0.59 | 0.72 | 0.58 | 0.76 | 0.84 |
95% CI | 0.52 to 0.69 | 0.56 to 0.79 | 0.44 to 0.66 | 0.56 to 0.72 | 0.48 to 0.7 | 0.62 to 0.81 | 0.49 to 0.66 | 0.67 to 0.84 | 0.77 to 0.91 |
Cut-off | >1.4 | >1.49 | >1.56 | >11.09 | <8.02 | <10.26 | >7.14 | <4.76 | <5.22 |
Sensitivity % | 56.84 | 62.16 | 59.46 | 58.06 | 56.41 | 64.1 | 54.12 | 72.22 | 77.78 |
95% CI | 46.81% to 66.34% | 46.1% to 75.94% | 43.49% to 73.65% | 47.91% to 67.58% | 40.98% to 70.7% | 48.42% to 77.26% | 43.58% to 64.3% | 56.01% to 84.15% | 61.92% to 88.28% |
Specificity % | 56.38 | 63.83 | 52.63 | 61.05 | 57.89 | 61.29 | 53.85 | 69.23 | 76.47 |
95% CI | 46.3% to 65.96% | 53.75% to 72.82% | 42.69% to 62.37% | 51% to 70.25% | 47.85% to 67.33% | 51.13% to 70.55% | 43.66% to 63.72% | 59.13% to 77.77% | 66.43% to 84.22% |
TAC Urine | TOS Urine | OSI Urine | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0‰ vs. 1.1–2‰ | 1.1–2‰ vs. 2.1–3‰ | 2.1–3‰ vs. 3.1–4‰ | 3.1–4‰ vs. >4‰ | 0‰ vs. 1.1–2‰ | 1.1–2‰ vs. 2.1–3‰ | 2.1–3‰ vs. 3.1–4‰ | 3.1–4‰ vs. >4‰ | 0‰ vs. 1.1–2‰ | 1.1–2‰ vs. 2.1–3‰ | 2.1–3‰ vs. 3.1–4‰ | 3.1–4‰ vs. >4‰ | |
AUC | 0.58 | 0.51 | 0.58 | 0.5 | 0.58 | 0.56 | 0.5 | 0.74 | 0.55 | 0.56 | 0.56 | 0.8 |
95% CI | 0.45 to 0.72 | 0.37 to 0.65 | 0.44 to 0.72 | 0.36 to 0.65 | 0.46 to 0.7 | 0.42 to 0.7 | 0.36 to 0.64 | 0.62 to 0.86 | 0.44 to 0.67 | 0.41 to 0.71 | 0.42 to 0.71 | 0.69 to 0.92 |
Cut-off | >1.41 | <1.51 | >1.6 | >1.67 | >9.8 | >11.85 | <13.91 | <11.1 | >7.14 | >7.22 | <7.21 | <4.75 |
Sensitivity % | 57.14 | 53.85 | 55.17 | 50 | 55.56 | 57.89 | 44.83 | 65.79 | 53.85 | 54.55 | 51.85 | 71.43 |
95% CI | 39.07% to 73.49% | 38.57% to 68.43% | 37.55% to 71.59% | 34.47% to 65.53% | 37.31% to 72.41% | 42.19% to 72.15% | 28.41% to 62.45% | 49.89% to 78.79% | 35.46% to 71.24% | 37.99% to 70.16% | 33.99% to 69.26% | 54.95% to 83.67% |
Specificity % | 56.38 | 50 | 56.41 | 48.28 | 51.58 | 59.26 | 42.11 | 62.07 | 53.85 | 53.85 | 54.55 | 74.07 |
95% CI | 46.3% to 65.96% | 32.63% to 67.37% | 40.98% to 70.7% | 31.39% to 65.57% | 41.67% to 61.37% | 40.73% to 75.49% | 27.85% to 57.81% | 44% to 77.31% | 43.66% to 63.72% | 35.46% to 71.24% | 37.99% to 70.16% | 55.32% to 86.83% |
Control | Alcohol Dependence | Alcohol Poisoning | ||||
---|---|---|---|---|---|---|
Blood | Urine | Blood | Urine | Blood | Urine | |
Median | 0‰ | 0‰ | 2.6‰ | 1.7‰ | 4.4‰ | 4.1‰ |
Minimum | 0‰ | 0‰ | 1‰ | 0.5‰ | 4‰ | 4‰ |
Maximum | 0‰ | 0‰ | 3.8‰ | 3.8‰ | 6.2‰ | 5.5‰ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ptaszyńska-Sarosiek, I.; Gołaś, E.; Nesterowicz, M.; Niemcunowicz-Janica, A.; Zalewska, A.; Żendzian-Piotrowska, M.; Maciejczyk, M. Total Antioxidant and Oxidative Status as Potential Biomarkers of Alcohol Overdose. Int. J. Mol. Sci. 2025, 26, 82. https://doi.org/10.3390/ijms26010082
Ptaszyńska-Sarosiek I, Gołaś E, Nesterowicz M, Niemcunowicz-Janica A, Zalewska A, Żendzian-Piotrowska M, Maciejczyk M. Total Antioxidant and Oxidative Status as Potential Biomarkers of Alcohol Overdose. International Journal of Molecular Sciences. 2025; 26(1):82. https://doi.org/10.3390/ijms26010082
Chicago/Turabian StylePtaszyńska-Sarosiek, Iwona, Edyta Gołaś, Miłosz Nesterowicz, Anna Niemcunowicz-Janica, Anna Zalewska, Małgorzata Żendzian-Piotrowska, and Mateusz Maciejczyk. 2025. "Total Antioxidant and Oxidative Status as Potential Biomarkers of Alcohol Overdose" International Journal of Molecular Sciences 26, no. 1: 82. https://doi.org/10.3390/ijms26010082
APA StylePtaszyńska-Sarosiek, I., Gołaś, E., Nesterowicz, M., Niemcunowicz-Janica, A., Zalewska, A., Żendzian-Piotrowska, M., & Maciejczyk, M. (2025). Total Antioxidant and Oxidative Status as Potential Biomarkers of Alcohol Overdose. International Journal of Molecular Sciences, 26(1), 82. https://doi.org/10.3390/ijms26010082