Unlocking the Heterogeneity in Acute Leukaemia: Dissection of Clonal Architecture and Metabolic Properties for Clinical Interventions
<p>Amino acid pathways dysregulated in acute leukaemia and potentially addressable with targeted molecules. 5,10-Methylenetetrahydrofolate (5,10-mTHF); Alpha-Ketoglutarate (α-KG); Arginine (Arg); Asparagine (Asn); Asparagine-Synthase (ASNS); Aspartic Acid (Asp); Branched-Chain Amino Acids (BCAAS), Mitochondrial BCAA-Transaminases (BCATs); Cysteine (Cys); Glutamine (Gln); Glutaminase (GLS); Glutamate (Glu); Glutamate Dehydrogenase (GLUD); Glycine (Gly); Glutathione Synthase (GS); Indoleamine 2,3 Dioxygenase (IDO); Leucine (Leu); Isoleucine (IsoLeu); Kynurenine (KYN); Methionine-Adenosyl-Transferase (MAT); Methionine (Met); Methionine Synthase (MS); Ornithine-Decarboxylase (ODC); Phosphoglycerate Dehydrogenase (PHGDH); Phosphoserine Aminotransferase (PSAT); S-Adenosyl-Homocysteine (SAH); S-Adenosyl-Methionine (SAM); Serine Hydroxymethyltransferase (SHMT); Tricarboxylic Acid (TCA); Tryptophan-2,3-Dioxygenase (TDO); Tetrahydrofolate (THF); Tryptophan (Trp); Valine (Val). Created in BioRender. Tettamanti, S. (2025) <a href="https://BioRender.com/d64v911" target="_blank">https://BioRender.com/d64v911</a> (accessed on 18 December 2024).</p> "> Figure 2
<p>Action sites of clinically targeted molecules. Panel (<b>A</b>) shows targets in acute myeloid leukaemia (AML) and panel (<b>B</b>) in acute lymphoblastic leukaemia (ALL). 2-Deoxy glucose (2-DG); electron transport chain (ETC); glucose transporter 1 (GLUT1); isocitrate dehydrogenase (IDH); outer mitochondrial membrane (OMM); tricarboxylic acid cycle (TCA); Tet methyl cytosine dioxygenase 2 (TET2). Created in BioRender. Tettamanti, S. (2025) <a href="https://BioRender.com/l59b367" target="_blank">https://BioRender.com/l59b367</a> (accessed on 18 December 2024).</p> "> Figure 3
<p>Impact of nutritional, behavioural and physical approaches on gut microbiota diversity, mediating immune responses and improving the metabolic response to anti-leukaemic treatment. Created in BioRender. Tettamanti, S. (2025) <a href="https://BioRender.com/p91b288" target="_blank">https://BioRender.com/p91b288</a> (accessed on 18 December 2024).</p> ">
Abstract
:1. Introduction
2. Experimental Approaches to Unravel the Genetic and Dynamic Heterogeneity of Leukaemic Cells
2.1. Genetics—scDNA-Seq
2.2. Transcriptomics—scRNASeq
2.3. Proteomics—CyTOF and Mass Spectrometry
2.3.1. Cytometry by Time-of-Flight (CyTOF)
2.3.2. Single-Cell Proteomics by Mass Spectrometry (MS)
2.4. Metabolomics
2.4.1. Seahorse—Bulk Analysis
2.4.2. Single Cell Energetic Metabolism by Profiling Translation Inhibition (SCENITH)
2.4.3. Single-Cell Metabolomics
2.4.4. Single-Cell Metabolic State
3. From Advanced Technologies to the Exploration and Identification of Shared Metabolic Pathways
3.1. Glycolysis
3.2. Mitochondrial Metabolism
3.2.1. Regulation of Mitochondrial Dynamics in Acute Leukaemias
3.2.2. “ROS Low” vs. “ROS High”: A Delicate Balance
3.3. Amino Acid Metabolism
3.3.1. Essential Amino Acid Metabolism
Methionine
BCAAs (Leucine/Isoleucine/Valine)
Tryptophan
3.3.2. Conditionally Essential Amino Acid Metabolism
Glutamine
Cysteine
Serine and Glycine
Arginine/Ornithine and Polyamine Biosynthesis
3.3.3. Non-Essential Amino Acid Metabolism
Asparagine
3.4. Lipid Metabolism
3.4.1. Fatty Acid (FA) Metabolism
3.4.2. Sphingolipid Metabolism
3.4.3. Mevalonate Pathway
3.4.4. Metabolic Rewiring in Haematological Malignancies vs. Solid Tumours
4. Clinical Interventions (Clinical Trials): Drugs Acting on Metabolism in ALL and AML—How Far Are We?
4.1. Targeting Glycolysis
4.2. Mitochondria
4.2.1. Targeting ETC
4.2.2. Targeting TCA
4.2.3. Apoptotic Agents
4.2.4. Biguanides
4.3. Amino Acid Metabolism
4.4. Fatty Acid Metabolism
4.5. Nucleotide Metabolism
4.6. Antioxidants
4.7. Targeting Mutated Metabolic Pathways
5. Impact of Customised Nutritional, Behavioural and Physical Interventions on Leukaemic Metabolism
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
2-DG | 2-Deoxyglucose |
5,10-mTHF | 5,10-Methylenetetrahydrofolate |
α-KT | Alpha-ketoglutarate |
AA | Amino acids |
AC | Acid ceramidase |
ACLY | ATP-citrate-lyase |
ALL | Acute lymphoblastic leukaemia |
AML | Acute myeloid leukaemia |
AMPK | 5′ AMP-activated protein kinase |
ASNase | Asparaginase |
ASNS | Asparagine synthase |
BCAA | Branched-chain amino acids |
BCATs | Mitochondrial BCAA-transaminases |
Bcl-2 | BCL2 apoptosis regulator |
BM | Bone marrow |
CRES6 | Ceramide synthase 6 |
CITE-seq | Cellular Indexing of Transcriptomes and Epitopes by Sequencing |
CyTOF | Cytometry by time-of-flight |
CML | Chronic myeloid leukaemia |
CNV | Copy number variation |
CPT1a | Carnitine palmitoyl transferase 1a |
CT2 | Carnitine transporter 2 |
D2HG | D-2-hydroxyglutarate |
DHFHR | Dihydrofolate reductase |
ECAR | Extracellular acidification rate |
EFS | Event-free survival |
ETC | Electron transport chain |
FA | Fatty acids |
FAO | Fatty acid oxidation |
FASN | Fatty acid synthase gene |
FIS1 | Mitochondrial fission protein 1 |
GATase | Q-amido-transferase |
GCS | Glycine cleavage complex |
Gln | Glutamine |
GLS | Glutaminase |
GLUD1 | Glutamate dehydrogenase |
GSH | Glutathione |
GVHD | Graft vs. host disease |
HK2 | Hexokinase 2 |
HMG-CoA | 3-Hydroxy-3-methylglutaryl-coenzyme A |
HSCs | Haematopoietic stem cells |
HSCT | Haematopoietic stem cell transplant |
HSPC | Haematopoietic stem and progenitor cells |
IMC | Imaging mass cytometry |
IDH 1/2- | Isocitrate dehydrogenase 1/2 |
IDO | Indoleamine 2,3 dioxygenase |
KAT7 | Lysine acetyltransferase 7 |
KYN | Kynurenine |
LAESI-MS | Laser ablation electrospray ionisation mass spectrometry |
LDHB | Lactate dehydrogenase b |
LIS | Leukaemia-initiating cells |
LPS | Lipopolysaccharide |
LSCs | Leukaemic stem cells |
LSC-MS | Live single-cell mass spectrometry |
MALDI-MS | Matrix-assisted laser desorption/ionisation mass spectrometry |
MAT | Methionine-adenosyl-transferase |
MCL1 | Induced myeloid leukaemia cell differentiation protein |
MCU | Mitochondrial calcium uniporter |
Met | Methionine |
mGDP | Mitochondrial glycerophosphate dehydrogenase |
mitoROS | Mitochondrial ROS |
MRD | Minimal residual disease |
MS | Mass spectrometry |
MTA | 5′-Methylthioadenosine |
MTCH2 | Pyruvate mitochondrial carrier |
mtDNA | Mitochondrial DNA |
mTOR | Mammalian target of rapamycin |
MVA | Mevalonic acid |
NEEA | Non-essential amino acids |
NMR | Nuclear magnetic resonance |
OCR | Oxygen consumption |
ODC | Ornithine-decarboxylase |
OXPHOS | Oxidative phosphorylation |
PAPi | Pathway activity profiling |
PDH | Pyruvate dehydrogenase |
PER | Proton efflux rate |
PHGDH | Phosphoglycerate dehydrogenase |
PPP | Pentose phosphate pathway |
PSAT1 | Phosphoserine aminotransferase 1 |
PSPH | Phosphoserine phosphatase |
PS | Protein synthesis |
R/R | Relapsed/refractory |
ROS | Reactive oxygen species |
RP2D | Recommended phase 2 dose |
SAH | S-adenosyl-homocysteine |
SAM | S-adenosyl-methionine |
SCENITH | Single-Cell Energetic Metabolism by Profiling Translation Inhibition |
SCD1 | Stearoyl CoA desaturase 1 |
scDNA-Seq | Single-cell DNA sequencing |
scMEP | Metabolic regulome of single cells |
scMS | Single-cell mass spectrometry |
SCP | Single-cell proteomics |
scRNA-Seq | Single-cell RNA sequencing |
SHMT | Serine hydroxy methyltransferase |
SNV | Single-nucleotide variation |
SP1 | Sphingosine 1 phosphate |
SSP | Serine synthesis pathway |
SRC | Spare respiratory capacity |
TCA | Tricarboxylic acid |
TDO | Tryptophan-2,3-dioxygenase |
TET | Tet methyl cytosine dioxygenase |
Trp | Trypthophan |
TS | Thymidylate synthase |
VDAC1 | Voltage-dependent anion channel 1 |
VPLD | Vincristine, dexamethasone, doxorubicin and PEG-asparaginase |
WES | Whole-exome sequencing |
References
- Brady, S.W.; Roberts, K.G.; Gu, Z.; Shi, L.; Pounds, S.; Pei, D.; Cheng, C.; Dai, Y.; Devidas, M.; Qu, C.; et al. The genomic landscape of pediatric acute lymphoblastic leukemia. Nat. Genet. 2022, 54, 1376–1389. [Google Scholar] [CrossRef]
- Umeda, M.; Ma, J.; Westover, T.; Ni, Y.; Song, G.; Maciaszek, J.L.; Rusch, M.; Rahbarinia, D.; Foy, S.; Huang, B.J.; et al. A new genomic framework to categorize pediatric acute myeloid leukemia. Nat. Genet. 2024, 56, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Soltani, M.; Zhao, Y.; Xia, Z.; Ganjalikhani Hakemi, M.; Bazhin, A.V. The Importance of Cellular Metabolic Pathways in Pathogenesis and Selective Treatments of Hematological Malignancies. Front. Oncol. 2021, 11, 767026. [Google Scholar] [CrossRef] [PubMed]
- Castro, I.; Sampaio-Marques, B.; Ludovico, P. Targeting Metabolic Reprogramming in Acute Myeloid Leukemia. Cells 2019, 8, 967. [Google Scholar] [CrossRef]
- Stuani, L.; Sabatier, M.; Sarry, J.E. Exploiting metabolic vulnerabilities for personalized therapy in acute myeloid leukemia. BMC Biol. 2019, 17, 57. [Google Scholar] [CrossRef]
- Sharma, P.; Borthakur, G. Targeting metabolic vulnerabilities to overcome resistance to therapy in acute myeloid leukemia. Cancer Drug Resist. 2024, 6, 567–589. [Google Scholar] [CrossRef]
- Rubakhin, S.S.; Romanova, E.V.; Nemes, P.; Sweedler, J.V. Profiling metabolites and peptides in single cells. Nat. Methods 2011, 8 (Suppl. S4), S20–S29. [Google Scholar] [CrossRef]
- Ibáñez, A.J.; Fagerer, S.R.; Schmidt, A.M.; Urban, P.L.; Jefimovs, K.; Geiger, P.; Dechant, R.; Heinemann, M.; Zenobi, R. Mass spectrometry-based metabolomics of single yeast cells. Proc. Natl. Acad. Sci. USA 2013, 110, 8790–8794. [Google Scholar] [CrossRef]
- Duncan, K.D.; Fyrestam, J.; Lanekoff, I. Advances in mass spectrometry based single-cell metabolomics. Analyst 2019, 144, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.; Philip, M.C.; Yang, N.; Sweedler, J.V. Single Cell Neurometabolomics. ACS Chem. Neurosci. 2018, 9, 40–50. [Google Scholar] [CrossRef]
- Lombard-Banek, C.; Li, J.; Portero, E.P.; Onjiko, R.M.; Singer, C.D.; Plotnick, D.O.; Al Shabeeb, R.Q.; Nemes, P. In Vivo Subcellular Mass Spectrometry Enables Proteo-Metabolomic Single-Cell Systems Biology in a Chordate Embryo Developing to a Normally Behaving Tadpole (X. laevis). Angew. Chem. Int. Ed. 2021, 60, 12852–12858. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Abouleila, Y.; Shimizu, Y.; Hiyama, E.; Emara, S.; Mashaghi, A.; Hankemeier, T. Single-cell metabolomics by mass spectrometry: Advances, challenges, and future applications. TrAC Trends Anal. Chem. 2019, 120, 115436. [Google Scholar] [CrossRef]
- Gilmore, I.S.; Heiles, S.; Pieterse, C.L. Metabolic Imaging at the Single-Cell Scale: Recent Advances in Mass Spectrometry Imaging. Annu. Rev. Anal. Chem. 2019, 12, 201–224. [Google Scholar] [CrossRef] [PubMed]
- Schepers, K.; Campbell, T.B.; Passegué, E. Normal and Leukemic Stem Cell Niches: Insights and Therapeutic Opportunities. Cell Stem Cell 2015, 16, 254–267. [Google Scholar] [CrossRef]
- Meads, M.B.; Hazlehurst, L.A.; Dalton, W.S. The Bone Marrow Microenvironment as a Tumor Sanctuary and Contributor to Drug Resistance. Clin. Cancer Res. 2008, 14, 2519–2526. [Google Scholar] [CrossRef]
- Wen, L.; Tang, F. Recent advances in single-cell sequencing technologies. Precis. Clin. Med. 2022, 5, pbac002. [Google Scholar] [CrossRef] [PubMed]
- Albertí-Servera, L.; Demeyer, S.; Govaerts, I.; Swings, T.; De Bie, J.; Gielen, O.; Brociner, M.; Michaux, L.; Maertens, J.; Uyttebroeck, A.; et al. Single-cell DNA amplicon sequencing reveals clonal heterogeneity and evolution in T-cell acute lymphoblastic leukemia. Blood 2021, 137, 801–811. [Google Scholar] [CrossRef]
- Demaree, B.; Delley, C.L.; Vasudevan, H.N.; Peretz, C.A.C.; Ruff, D.; Smith, C.C.; Abate, A.R. Joint profiling of DNA and proteins in single cells to dissect genotype-phenotype associations in leukemia. Nat. Commun. 2021, 12, 1583. [Google Scholar] [CrossRef]
- Heimlich, J.B.; Bhat, P.; Parker, A.C.; Jenkins, M.T.; Vlasschaert, C.; Ulloa, J.; Van Amburg, J.C.; Potts, C.R.; Olson, S.; Silver, A.J.; et al. Multiomic profiling of human clonal hematopoiesis reveals genotype and cell-specific inflammatory pathway activation. Blood Adv. 2024, 8, 3665–3678. [Google Scholar] [CrossRef]
- Dobson, S.M.; García-Prat, L.; Vanner, R.J.; Wintersinger, J.; Waanders, E.; Gu, Z.; McLeod, J.; Gan, O.I.; Grandal, I.; Payne-Turner, D.; et al. Relapse-Fated Latent Diagnosis Subclones in Acute B Lineage Leukemia Are Drug Tolerant and Possess Distinct Metabolic Programs. Cancer Discov. 2020, 10, 568–587. [Google Scholar] [CrossRef] [PubMed]
- Boutzen, H.; Murison, A.; Oriecuia, A.; Bansal, S.; Arlidge, C.; Wang, J.C.Y.; Lupien, M.; Kaufmann, K.B.; Dick, J.E. Identification of leukemia stem cell subsets with distinct transcriptional, epigenetic and functional properties. Leukemia 2024, 38, 2090–2101. [Google Scholar] [CrossRef] [PubMed]
- Waanders, E.; Gu, Z.; Dobson, S.M.; Antić, Ž.; Crawford, J.C.; Ma, X.; Edmonson, M.N.; Payne-Turner, D.; van de Vorst, M.; Jongmans, M.C.; et al. Mutational Landscape and Patterns of Clonal Evolution in Relapsed Pediatric Acute Lymphoblastic Leukemia. Blood Cancer Discov. 2020, 1, 96–111. [Google Scholar] [CrossRef] [PubMed]
- Stoeckius, M.; Hafemeister, C.; Stephenson, W.; Houck-Loomis, B.; Chattopadhyay, P.K.; Swerdlow, H.; Satija, R.; Smibert, P. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 2017, 14, 865–868. [Google Scholar] [CrossRef]
- Picelli, S.; Faridani, O.R.; Björklund, Å.K.; Winberg, G.; Sagasser, S.; Sandberg, R. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 2014, 9, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Jaitin, D.A.; Kenigsberg, E.; Keren-Shaul, H.; Elefant, N.; Paul, F.; Zaretsky, I.; Mildner, A.; Cohen, N.; Jung, S.; Tanay, A.; et al. Massively Parallel Single-Cell RNA-Seq for Marker-Free Decomposition of Tissues into Cell Types. Science (1979) 2014, 343, 776–779. [Google Scholar] [CrossRef]
- Shum, E.Y.; Walczak, E.M.; Chang, C.; Christina Fan, H. Quantitation of mRNA Transcripts and Proteins Using the BD RhapsodyTM Single-Cell Analysis System. In Single Molecule and Single Cell Sequencing; Springer: Berlin/Heidelberg, Germany, 2019; pp. 63–79. [Google Scholar]
- Klein, A.M.; Mazutis, L.; Akartuna, I.; Tallapragada, N.; Veres, A.; Li, V.; Peshkin, L.; Weitz, D.A.; Kirschner, M.W. Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells. Cell 2015, 161, 1187–1201. [Google Scholar] [CrossRef]
- Hao, Y.; Stuart, T.; Kowalski, M.H.; Choudhary, S.; Hoffman, P.; Hartman, A.; Srivastava, A.; Molla, G.; Madad, S.; Fernandez-Granda, C.; et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 2024, 42, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Wolf, F.A.; Angerer, P.; Theis, F.J. SCANPY: Large-scale single-cell gene expression data analysis. Genome Biol. 2018, 19, 15. [Google Scholar] [CrossRef]
- van Galen, P.; Hovestadt, V.; Wadsworth, I.I.M.H.; Hughes, T.K.; Griffin, G.K.; Battaglia, S.; Verga, J.A.; Stephansky, J.; Pastika, T.J.; Story, J.L.; et al. Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity. Cell 2019, 176, 1265–1281.e24. [Google Scholar] [CrossRef]
- Beneyto-Calabuig, S.; Merbach, A.K.; Kniffka, J.-A.; Antes, M.; Szu-Tu, C.; Rohde, C.; Waclawiczek, A.; Stelmach, P.; Gräßle, S.; Pervan, P.; et al. Clonally resolved single-cell multi-omics identifies routes of cellular differentiation in acute myeloid leukemia. Cell Stem Cell 2023, 30, 706–721.e8. [Google Scholar] [CrossRef]
- Iacobucci, I.; Zeng, A.G.; Gao, Q.; Garcia-Prat, L.; Baviskar, P.; Shah, S.; Murison, A.; Voisin, V.; Chan-Seng-Yue, M.; Cheng, C.; et al. Single Cell Dissection of developmental origins and transcriptional heterogeneity In B-Cell acute lymphoblastic leukemia. bioRxiv 2023. [Google Scholar] [CrossRef]
- Haase, C.; Gustafsson, K.; Mei, S.; Yeh, S.-C.; Richter, D.; Milosevic, J.; Turcotte, R.; Kharchenko, P.V.; Sykes, D.B.; Scadden, D.T.; et al. Image-seq: Spatially resolved single-cell sequencing guided by in situ and in vivo imaging. Nat. Methods 2022, 19, 1622–1633. [Google Scholar] [CrossRef]
- Vadakekolathu, J.; Altmann, H.; Wobus, M.; von Bonin, M.; Schmitz, M.; Baretton, G.B.; Zeiser, R.; Bornhäuser, M.; Rutella, S. Spatially Resolved Transcriptomics Unveils Unique T-Cell Dysfunctional States and Prognostic Gene Expression Signatures in TP53 -Mutated Acute Myeloid Leukemia. Blood 2023, 142 (Suppl. S1), 291. [Google Scholar] [CrossRef]
- Bandura, D.R.; Baranov, V.I.; Ornatsky, O.I.; Antonov, A.; Kinach, R.; Lou, X.; Pavlov, S.; Vorobiev, S.; Dick, J.E.; Tanner, S.D. Mass Cytometry: Technique for Real Time Single Cell Multitarget Immunoassay Based on Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Anal. Chem. 2009, 81, 6813–6822. [Google Scholar] [CrossRef] [PubMed]
- Bendall, S.C.; Simonds, E.F.; Qiu, P.; Amir, E.-A.D.; Krutzik, P.O.; Finck, R.; Bruggner, R.V.; Melamed, R.; Trejo, A.; Ornatsky, O.I.; et al. Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum. Science (1979) 2011, 332, 687–696. [Google Scholar] [CrossRef]
- Leelatian, N.; Diggins, K.E.; Irish, J.M. Characterizing Phenotypes and Signaling Networks of Single Human Cells by Mass Cytometry. In Single Cell Protein Analysis: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2015; pp. 99–113. [Google Scholar]
- Stern, L.; McGuire, H.; Avdic, S.; Rizzetto, S.; Groth, B.F.d.S.; Luciani, F.; Slobedman, B.; Blyth, E. Mass Cytometry for the Assessment of Immune Reconstitution After Hematopoietic Stem Cell Transplantation. Front. Immunol. 2018, 9, 1672. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, F.J.; Babdor, J.; Gherardini, P.F.; Amir, E.-A.D.; Jones, K.; Sahaf, B.; Marquez, D.M.; Krutzik, P.; O’donnell, E.; Sigal, N.; et al. Comprehensive Immune Monitoring of Clinical Trials to Advance Human Immunotherapy. Cell Rep. 2019, 28, 819–831.e4. [Google Scholar] [CrossRef] [PubMed]
- Tislevoll, B.S.; Hellesøy, M.; Fagerholt, O.H.; Gullaksen, S.E.; Srivastava, A.; Birkeland, E.; Kleftogiannis, D.; Ayuda-Durán, P.; Piechaczyk, L.; Tadele, D.S.; et al. Early response evaluation by single cell signaling profiling in acute myeloid leukemia. Nat. Commun. 2023, 14, 115. [Google Scholar] [CrossRef]
- Sarno, J.; Domizi, P.; Liu, Y.; Merchant, M.; Pedersen, C.B.; Jedoui, D.; Jager, A.; Nolan, G.P.; Gaipa, G.; Bendall, S.C.; et al. Dasatinib overcomes glucocorticoid resistance in B-cell acute lymphoblastic leukemia. Nat. Commun. 2023, 14, 2935. [Google Scholar] [CrossRef] [PubMed]
- Levine, J.H.; Simonds, E.F.; Bendall, S.C.; Davis, K.L.; Amir, E.-A.D.; Tadmor, M.D.; Litvin, O.; Fienberg, H.G.; Jager, A.; Zunder, E.R.; et al. Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis. Cell 2015, 162, 184–197. [Google Scholar] [CrossRef]
- Good, Z.; Sarno, J.; Jager, A.; Samusik, N.; Aghaeepour, N.; Simonds, E.F.; White, L.; Lacayo, N.J.; Fantl, W.J.; Fazio, G.; et al. Single-cell developmental classification of B cell precursor acute lymphoblastic leukemia at diagnosis reveals predictors of relapse. Nat. Med. 2018, 24, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, F.J.; Mrdjen, D.; McCaffrey, E.; Glass, D.R.; Greenwald, N.F.; Bharadwaj, A.; Khair, Z.; Verberk, S.G.S.; Baranski, A.; Baskar, R.; et al. Single-cell metabolic profiling of human cytotoxic T cells. Nat. Biotechnol. 2021, 39, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Stuani, L.; Jager, A.; Sahal, A.; Koladiya, A.; Sarno, J.; Domizi, P.; Liu, Y.; De Mas, V.; Recher, C.; Vergez, F.; et al. Single-Cell Proteomic Analysis Defines Metabolic Heterogeneity in Response to Venetoclax in AML. Blood 2022, 140 (Suppl. S1), 1028–1029. [Google Scholar] [CrossRef]
- Levine, L.S.; Hiam-Galvez, K.J.; Marquez, D.M.; Tenvooren, I.; Madden, M.Z.; Contreras, D.C.; Dahunsi, D.O.; Irish, J.M.; Oluwole, O.O.; Rathmell, J.C.; et al. Single-cell analysis by mass cytometry reveals metabolic states of early-activated CD8+ T cells during the primary immune response. Immunity 2021, 54, 829–844.e5. [Google Scholar] [CrossRef]
- Guerrero, J.A.; Klysz, D.D.; Chen, Y.; Malipatlolla, M.; Lone, J.; Fowler, C.; Stuani, L.; May, A.; Bashti, M.; Xu, P.; et al. GLUT1 overexpression in CAR-T cells induces metabolic reprogramming and enhances potency. Nat. Commun. 2024, 15, 8658. [Google Scholar] [CrossRef]
- Kuett, L.; Catena, R.; Özcan, A.; Plüss, A.; Schraml, P.; Moch, H.; de Souza, N.; Bodenmiller, B. Three-dimensional imaging mass cytometry for highly multiplexed molecular and cellular mapping of tissues and the tumor microenvironment. Nat. Cancer 2021, 3, 122–133. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Yang, Y.; Wu, F.; Song, B.; Wang, X.; Wang, T. Comparative analysis of dimension reduction methods for cytometry by time-of-flight data. Nat. Commun. 2023, 14, 1836. [Google Scholar] [CrossRef]
- Amir, E.-A.D.; Davis, K.L.; Tadmor, M.D.; Simonds, E.F.; Levine, J.H.; Bendall, S.C.; Shenfeld, D.K.; Krishnaswamy, S.; Nolan, G.P.; Pe’Er, D. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 2013, 31, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Belkina, A.C.; Ciccolella, C.O.; Anno, R.; Halpert, R.; Spidlen, J.; Snyder-Cappione, J.E. Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets. Nat. Commun. 2019, 10, 5415. [Google Scholar] [CrossRef] [PubMed]
- Van Gassen, S.; Callebaut, B.; Van Helden, M.J.; Lambrecht, B.N.; Demeester, P.; Dhaene, T.; Saeys, Y. FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data. Cytom. Part A 2015, 87, 636–645. [Google Scholar] [CrossRef] [PubMed]
- Samusik, N.; Good, Z.; Spitzer, M.H.; Davis, K.L.; Nolan, G.P. Automated mapping of phenotype space with single-cell data. Nat. Methods 2016, 13, 493–496. [Google Scholar] [CrossRef]
- Holmberg-Thyden, S.; Grønbæk, K.; Gang, A.O.; El Fassi, D.; Hadrup, S.R. A user’s guide to multicolor flow cytometry panels for comprehensive immune profiling. Anal. Biochem. 2021, 627, 114210. [Google Scholar] [CrossRef]
- Leipold, M.D.; Newell, E.W.; Maecker, H.T. Multiparameter Phenotyping of Human PBMCs Using Mass Cytometry. In Immunosenescence; Humana Press: New York, NY, USA, 2015; pp. 81–95. [Google Scholar]
- Chevrier, S.; Crowell, H.L.; Zanotelli, V.R.T.; Engler, S.; Robinson, M.D.; Bodenmiller, B. Compensation of Signal Spillover in Suspension and Imaging Mass Cytometry. Cell Syst. 2018, 6, 612–620.e5. [Google Scholar] [CrossRef] [PubMed]
- Wühr, M.; Freeman, R.M.; Presler, M.; Horb, M.E.; Peshkin, L.; Gygi, S.P.; Kirschner, M.W. Deep proteomics of the xenopus laevis egg using an mRNA-derived reference database. Curr. Biol. 2014, 24, 1467–1475. [Google Scholar] [CrossRef] [PubMed]
- Slavov, N. Single-cell protein analysis by mass spectrometry. In Current Opinion in Chemical Biology; Elsevier Ltd.: Amsterdam, The Netherlands, 2021; Volume 60, pp. 1–9. [Google Scholar]
- Schoof, E.M.; Furtwängler, B.; Üresin, N.; Rapin, N.; Savickas, S.; Gentil, C.; Lechman, E.; Keller, U.A.D.; Dick, J.E.; Porse, B.T. Quantitative single-cell proteomics as a tool to characterize cellular hierarchies. Nat. Commun. 2021, 12, 3341. [Google Scholar] [CrossRef] [PubMed]
- Gebreyesus, S.T.; Siyal, A.A.; Kitata, R.B.; Chen, E.S.-W.; Enkhbayar, B.; Angata, T.; Lin, K.-I.; Chen, Y.-J.; Tu, H.-L. Streamlined single-cell proteomics by an integrated microfluidic chip and data-independent acquisition mass spectrometry. Nat. Commun. 2022, 13, 37. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guan, Z.Y.; Shi, S.W.; Jiang, Y.R.; Wu, Q.; Wu, J.; Chen, J.B.; Ying, W.X.; Xu, Q.Q.; Fan, Q.X.; et al. Pick-up Single-Cell Proteomic Analysis for Quantifying up to 3000 Proteins in a Tumor Cell. bioRxiv 2022. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Huang, M.; Wang, X.-K.; Zhu, Y.; Li, J.-S.; Wong, C.C.L.; Fang, Q. Nanoliter-Scale Oil-Air-Droplet Chip-Based Single Cell Proteomic Analysis. Anal. Chem. 2018, 90, 5430–5438. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.; Williams, S.M.; Markillie, L.M.; Feng, S.; Tsai, C.-F.; Aguilera-Vazquez, V.; Sontag, R.L.; Moore, R.J.; Hu, D.; Mehta, H.S.; et al. High-throughput and high-efficiency sample preparation for single-cell proteomics using a nested nanowell chip. Nat. Commun. 2021, 12, 6246. [Google Scholar] [CrossRef] [PubMed]
- Machado, L.; Relaix, F.; Mourikis, P. Stress relief: Emerging methods to mitigate dissociation-induced artefacts. In Trends in Cell Biology; Elsevier Ltd.: Amsterdam, The Netherlands, 2021; Volume 31, pp. 888–897. [Google Scholar]
- de Beauchamp, L.; Himonas, E.; Helgason, G.V. Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. In Leukemia; Springer Nature: Berlin/Heidelberg, Germany, 2022; Volume 36. [Google Scholar]
- Bajpai, R.; Sharma, A.; Achreja, A.; Edgar, C.L.; Wei, C.; Siddiqa, A.A.; Gupta, V.A.; Matulis, S.M.; McBrayer, S.K.; Mittal, A.; et al. Electron transport chain activity is a predictor and target for venetoclax sensitivity in multiple myeloma. Nat. Commun. 2020, 11, 1228. [Google Scholar] [CrossRef]
- Bosc, C.; Saland, E.; Bousard, A.; Gadaud, N.; Sabatier, M.; Cognet, G.; Farge, T.; Boet, E.; Gotanègre, M.; Aroua, N.; et al. Mitochondrial inhibitors circumvent adaptive resistance to venetoclax and cytarabine combination therapy in acute myeloid leukemia. Nat. Cancer 2021, 2, 1204–1223. [Google Scholar] [CrossRef]
- Duraj, T.; Carrión-Navarro, J.; Seyfried, T.N.; García-Romero, N.; Ayuso-Sacido, A. Metabolic therapy and bioenergetic analysis: The missing piece of the puzzle. In Molecular Metabolism; Elsevier GmbH: Amsterdam, The Netherlands, 2021; Volume 54. [Google Scholar]
- Hill, B.G.; Benavides, G.A.; Lancaster, J.R.; Ballinger, S.; Dell’Italia, L.; Zhang, J.; Darley-Usmar, V.M. Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biol. Chem. 2012, 393, 1485–1512. [Google Scholar] [CrossRef]
- Sriskanthadevan, S.; Jeyaraju, D.V.; Chung, T.E.; Prabha, S.; Xu, W.; Skrtic, M.; Jhas, B.; Hurren, R.; Gronda, M.; Wang, X.; et al. AML Cells Have Low Spare Reserve Capacity in Their Respiratory Chain That Renders Them Susceptible to Oxidative Metabolic Stress. 2015. Available online: http://ashpublications.org/blood/article-pdf/125/13/2120/1383877/2120.pdf (accessed on 30 July 2024).
- Kam, Y.; Rogers, G.W.; Jastromb, N.; Dranka, B.P. Importance of Data Normalization [Internet]. 2018. Available online: www.agilent.com/cs/library/applications/5991-7908EN.pdf (accessed on 30 July 2024).
- Argüello, R.J.; Combes, A.J.; Char, R.; Gigan, J.-P.; Baaziz, A.I.; Bousiquot, E.; Camosseto, V.; Samad, B.; Tsui, J.; Yan, P.; et al. SCENITH: A Flow Cytometry-Based Method to Functionally Profile Energy Metabolism with Single-Cell Resolution. Cell Metab. 2020, 32, 1063–1075.e7. [Google Scholar] [CrossRef]
- Andrews4, T.M.; Tata, J.R. Protein Synthesis by Membrane-Bound and Free Ribosomes of Secretory and Non-Secretory Tissues. Biochem. J. 1971, 121, 683–694. [Google Scholar] [CrossRef] [PubMed]
- Aviner, R. The science of puromycin: From studies of ribosome function to applications in biotechnology. Comput. Struct. Biotechnol. J. 2020, 18, 1074–1083. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Li, Y.; Yang, Y.; Liu, M. Mass spectrometry-based strategies for single-cell metabolomics. In Mass Spectrometry Reviews; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2023; Volume 42, pp. 67–94. [Google Scholar]
- Zhang, C.; Le Dévédec, S.E.; Ali, A.; Hankemeier, T. Single-cell metabolomics by mass spectrometry: Ready for primetime? In Current Opinion in Biotechnology; Elsevier Ltd.: Amsterdam, The Netherlands, 2023; Volume 82. [Google Scholar]
- Aggio, R.B.M.; Ruggiero, K.; Villas-Bôas, S.G. Pathway activity profiling (papi): From the metabolite profile to the metabolic pathway activity. Bioinformatics 2010, 26, 2969–2976. [Google Scholar] [CrossRef] [PubMed]
- Giraudeau, P. NMR-Based Metabolomics and Fluxomics: Developments and Future Prospects. Available online: https://hal.science/hal-02507869 (accessed on 30 July 2024).
- Rappez, L.; Stadler, M.; Triana, S.; Gathungu, R.M.; Ovchinnikova, K.; Phapale, P.; Heikenwalder, M.; Alexandrov, T. SpaceM reveals metabolic states of single cells. Nat. Methods 2021, 18, 799–805. [Google Scholar] [CrossRef]
- Zhu, J.; Thompson, C.B. Metabolic regulation of cell growth and proliferation. Nat. Rev. Mol. Cell Biol. 2019, 20, 436–450. [Google Scholar] [CrossRef] [PubMed]
- DeBerardinis, R.J.; Chandel, N.S. Fundamentals of cancer metabolism. Sci. Adv. 2016, 2, e1600200. [Google Scholar] [CrossRef] [PubMed]
- Pavlova, N.N.; Zhu, J.; Thompson, C.B. The hallmarks of cancer metabolism: Still emerging. Cell Metab. 2022, 34, 355–377. [Google Scholar] [CrossRef]
- Martínez-Reyes, I.; Chandel, N.S. Cancer metabolism: Looking forward. Nat. Rev. Cancer 2021, 21, 669–680. [Google Scholar] [CrossRef]
- Fendt, S.M.; Frezza, C.; Erez, A. Targeting Metabolic Plasticity and Flexibility Dynamics for Cancer Therapy. Cancer Discov. 2020, 10, 1797–1807. [Google Scholar] [CrossRef] [PubMed]
- Finley, L.W.S. What is cancer metabolism? Cell 2023, 186, 1670–1688. [Google Scholar] [CrossRef]
- Fedele, M.; Sgarra, R.; Battista, S.; Cerchia, L.; Manfioletti, G. The Epithelial–Mesenchymal Transition at the Crossroads between Metabolism and Tumor Progression. Int. J. Mol. Sci. 2022, 23, 800. [Google Scholar] [CrossRef]
- Cai, X.; Ng, C.P.; Jones, O.; Fung, T.S.; Ryu, K.W.; Li, D.; Thompson, C.B. Lactate activates the mitochondrial electron transport chain independently of its metabolism. Mol. Cell 2023, 83, 3904–3920.e7. [Google Scholar] [CrossRef]
- Yang, Y.; Pu, J.; Yang, Y. Glycolysis and chemoresistance in acute myeloid leukemia. Heliyon 2024, 10, e35721. [Google Scholar] [CrossRef] [PubMed]
- Ariës, I.M.; Hansen, B.R.; Koch, T.; Dungen, R.v.D.; Evans, W.E.; Pieters, R.; Boer, M.L.D. The synergism of MCL1 and glycolysis on pediatric acute lymphoblastic leukemia cell survival and prednisolone resistance. Haematologica 2013, 98, 1905–1911. [Google Scholar] [CrossRef] [PubMed]
- Zu, X.L.; Guppy, M. Cancer metabolism: Facts, fantasy, and fiction. Biochem. Biophys. Res. Commun. 2004, 313, 459–465. [Google Scholar] [CrossRef]
- Ryu, K.W.; Fung, T.S.; Baker, D.C.; Saoi, M.; Park, J.; Febres-Aldana, C.A.; Aly, R.G.; Cui, R.; Sharma, A.; Fu, Y.; et al. Cellular ATP demand creates metabolically distinct subpopulations of mitochondria. Nature 2024, 635, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Pei, S.; Minhajuddin, M.; Adane, B.; Khan, N.; Stevens, B.M.; Mack, S.C.; Lai, S.; Rich, J.N.; Inguva, A.; Shannon, K.M.; et al. AMPK/FIS1-Mediated Mitophagy Is Required for Self-Renewal of Human AML Stem Cells. Cell Stem Cell 2018, 23, 86–100.e6. [Google Scholar] [CrossRef] [PubMed]
- Khan, D.H.; Mullokandov, M.; Wu, Y.; Gronda, M.; Hurren, R.; Wang, X.; MacLean, N.; Laister, R.C.; Gross, A.; Schimmer, A.D. The Mitochondrial Carrier Homolog 2 (MTCH2) Regulates the Differentiation of AML Cells By Influencing the Localization of Pyruvate Dehydrogenase Complex and H3 and H4 Histone Acetylation. Blood 2016, 128, 1562. [Google Scholar] [CrossRef]
- Saito, Y.; Chapple, R.H.; Lin, A.; Kitano, A.; Nakada, D. AMPK Protects Leukemia-Initiating Cells in Myeloid Leukemias from Metabolic Stress in the Bone Marrow. Cell Stem Cell 2015, 17, 585–596. [Google Scholar] [CrossRef]
- Khaldoyanidi, S.K.; Hindoyan, A.; Stein, A.; Subklewe, M. Leukemic stem cells as a target for eliminating acute myeloid leukemia: Gaps in translational research. Crit. Rev. Oncol. Hematol. 2022, 175, 103710. [Google Scholar] [CrossRef] [PubMed]
- Olivas-Aguirre, M.; Pottosin, I.; Dobrovinskaya, O. Mitochondria as emerging targets for therapies against T cell acute lymphoblastic leukemia. J. Leukoc. Biol. 2019, 105, 935–946. [Google Scholar] [CrossRef] [PubMed]
- Norddahl, G.L.; Pronk, C.J.; Wahlestedt, M.; Sten, G.; Nygren, J.M.; Ugale, A.; Sigvardsson, M.; Bryder, D. Accumulating Mitochondrial DNA Mutations Drive Premature Hematopoietic Aging Phenotypes Distinct from Physiological Stem Cell Aging. Cell Stem Cell 2011, 8, 499–510. [Google Scholar] [CrossRef]
- de Almeida, M.J.; Luchsinger, L.L.; Corrigan, D.J.; Williams, L.J.; Snoeck, H.W. Dye-Independent Methods Reveal Elevated Mitochondrial Mass in Hematopoietic Stem Cells. Cell Stem Cell 2017, 21, 725–729.e4. [Google Scholar] [CrossRef] [PubMed]
- Takihara, Y.; Nakamura-Ishizu, A.; Tan, D.Q.; Fukuda, M.; Matsumura, T.; Endoh, M.; Arima, Y.; Chin, D.W.L.; Umemoto, T.; Hashimoto, M.; et al. High mitochondrial mass is associated with reconstitution capacity and quiescence of hematopoietic stem cells. Blood Adv. 2019, 3, 2323–2327. [Google Scholar] [CrossRef] [PubMed]
- Liang, R.; Arif, T.; Kalmykova, S.; Kasianov, A.; Lin, M.; Menon, V.; Qiu, J.; Bernitz, J.M.; Moore, K.; Lin, F.; et al. Restraining Lysosomal Activity Preserves Hematopoietic Stem Cell Quiescence and Potency. Cell Stem Cell 2020, 26, 359–376.e7. [Google Scholar] [CrossRef]
- Simsek, T.; Kocabas, F.; Zheng, J.; DeBerardinis, R.J.; Mahmoud, A.I.; Olson, E.N.; Schneider, J.W.; Zhang, C.C.; Sadek, H.A. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 2010, 7, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Giustacchini, A.; Thongjuea, S.; Barkas, N.; Woll, P.S.; Povinelli, B.J.; Booth, C.A.G.; Sopp, P.; Norfo, R.; Rodriguez-Meira, A.; Ashley, N.; et al. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia. Nat. Med. 2017, 23, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Flis, K.; Irvine, D.; Copland, M.; Bhatia, R.; Skorski, T. Chronic myeloid leukemia stem cells display alterations in expression of genes involved in oxidative phosphorylation. Leuk. Lymphoma 2012, 53, 2474–2478. [Google Scholar] [CrossRef]
- Jones, C.L.; Inguva, A.; Jordan, C.T. Targeting Energy Metabolism in Cancer Stem Cells: Progress and Challenges in Leukemia and Solid Tumors. Cell Stem Cell 2021, 28, 378–393. [Google Scholar] [CrossRef]
- Lagadinou, E.D.; Sach, A.; Callahan, K.; Rossi, R.M.; Neering, S.J.; Minhajuddin, M.; Ashton, J.M.; Pei, S.; Grose, V.; O’Dwyer, K.M.; et al. BCL-2 Inhibition Targets Oxidative Phosphorylation and Selectively Eradicates Quiescent Human Leukemia Stem Cells. Cell Stem Cell 2013, 12, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Bruno, S.; Mancini, M.; De Santis, S.; Monaldi, C.; Cavo, M.; Soverini, S. The Role of Hypoxic Bone Marrow Microenvironment in Acute Myeloid Leukemia and Future Therapeutic Opportunities. Int. J. Mol. Sci. 2021, 22, 6857. [Google Scholar] [CrossRef]
- Bruno, S.; Pazzaglia, M.; Cerchione, C.; Soverini, S.; Cavo, M.; Montanaro, L.; Simonetti, G.; Martinelli, G. Abstract 2651: Deep hypoxia and the genomic background cooperate to shape the metabolic profile of acute myeloid leukemia cells. Cancer Res. 2019, 79 (Suppl. S13), 2651. [Google Scholar] [CrossRef]
- Roberts, A.W.; Wei, A.H.; Huang, D.C.S. BCL2 and MCL1 inhibitors for hematologic malignancies. Blood 2021, 138, 1120–1136. [Google Scholar] [CrossRef] [PubMed]
- Sheth, A.I.; Althoff, M.J.; Tolison, H.; Engel, K.; Amaya, M.L.; Krug, A.E.; Young, T.N.; Minhajuddin, M.; Pei, S.; Patel, S.B.; et al. Targeting Acute Myeloid Leukemia Stem Cells Through Perturbation of Mitochondrial Calcium. Cancer Discov. 2023, 14, 1922–1939. [Google Scholar] [CrossRef]
- Endicott, M.; Jones, M.; Hull, J. Amino acid metabolism as a therapeutic target in cancer: A review. Amino Acids 2021, 53, 1169–1179. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.K.; Millman, S.E.; Zhang, L. Metabolism in acute myeloid leukemia: Mechanistic insights and therapeutic targets. Blood 2023, 141, 1119. [Google Scholar] [CrossRef] [PubMed]
- Fultang, L.; Gneo, L.; De Santo, C.; Mussai, F.J. Targeting Amino Acid Metabolic Vulnerabilities in Myeloid Malignancies. Front. Oncol. 2021, 11, 674720. [Google Scholar] [CrossRef]
- Hoffman, R.M.; Erbe, R.W. High in vivo rates of methionine biosynthesis in transformed human and malignant rat cells auxotrophic for methionine. Proc. Natl. Acad. Sci. USA 1976, 73, 1523–1527. [Google Scholar] [CrossRef] [PubMed]
- Tisdale, M.; Eridani, S. Methionine requirement of normal and leukaemic haemopoietic cells in short term cultures. Leuk. Res. 1981, 5, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Tisdale, M.J.; Jack, G.W.; Eridani, S. Differential sensitivity of normal and leukaemic haemopoietic cells to methionine deprivation by l-methioninase. Leuk. Res. 1983, 7, 269–277. [Google Scholar] [CrossRef]
- Taylor, A.V.; Adao, R.R.; Castro, C.; Domingues, A.F.; Griffin, J.L.; Curti, A.; Pina, C. S-Adenosyl Methionine Synthesis Impacts Maintenance of Acute Myeloid Leukemia Cells with Regulation of Transcriptional Elongation. Blood 2018, 132 (Suppl. S1), 2605. [Google Scholar] [CrossRef]
- Rondeau, V.; Berman, J.M.; Ling, T.; O’brien, C.; Culp-Hill, R.; Reisz, J.A.; Wunderlich, M.; Chueh, Y.; Jiménez-Camacho, K.E.; Sexton, C.; et al. Spermidine metabolism regulates leukemia stem and progenitor cell function through KAT7 expression in patient-derived mouse models. Sci. Transl. Med. 2024, 16, eadn1285. [Google Scholar] [CrossRef] [PubMed]
- Martelli, A.; Tazzari, P.; Evangelisti, C.; Chiarini, F.; Blalock, W.; Billi, A.; Manzoli, L.; McCubrey, J.; Cocco, L. Targeting the Phosphatidylinositol 3-Kinase/Akt/Mammalian Target of Rapamycin Module for Acute Myelogenous Leukemia Therapy: From Bench to Bedside. Curr. Med. Chem. 2007, 14, 2009–2023. [Google Scholar] [CrossRef]
- Han, L.; Dong, L.; Leung, K.; Zhao, Z.; Li, Y.; Gao, L.; Chen, Z.; Xue, J.; Qing, Y.; Li, W.; et al. METTL16 drives leukemogenesis and leukemia stem cell self-renewal by reprogramming BCAA metabolism. Cell Stem Cell 2023, 30, 52–68.e13. [Google Scholar] [CrossRef] [PubMed]
- Raffel, S.; Falcone, M.; Kneisel, N.; Hansson, J.; Wang, W.; Lutz, C.; Bullinger, L.; Poschet, G.; Nonnenmacher, Y.; Barnert, A.; et al. BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation. Nature 2017, 551, 384–388. [Google Scholar] [CrossRef]
- Corm, S.; Berthon, C.; Imbenotte, M.; Biggio, V.; Lhermitte, M.; Dupont, C.; Briche, I.; Quesnel, B. Indoleamine 2,3-dioxygenase activity of acute myeloid leukemia cells can be measured from patients’ sera by HPLC and is inducible by IFN-gamma. Leuk. Res. 2009, 33, 490–494. [Google Scholar] [CrossRef]
- Arandi, N.; Ramzi, M.; Safaei, F.; Monabati, A. Overexpression of indoleamine 2,3-dioxygenase correlates with regulatory T cell phenotype in acute myeloid leukemia patients with normal karyotype. Blood Res. 2018, 53, 294. [Google Scholar] [CrossRef]
- Curti, A.; Aluigi, M.; Pandolfi, S.; Ferri, E.; Isidori, A.; Salvestrini, V.; Durelli, I.; Horenstein, A.L.; Fiore, F.; Massaia, M.; et al. Acute myeloid leukemia cells constitutively express the immunoregulatory enzyme indoleamine 2,3-dioxygenase. Leukemia 2007, 21, 353–355. [Google Scholar] [CrossRef] [PubMed]
- Damm, F.; Thol, F.; Hollink, I.; Zimmermann, M.; Reinhardt, K.; Heuvel-Eibrink, M.M.v.D.; Zwaan, C.M.; de Haas, V.; Creutzig, U.; Klusmann, J.-H.; et al. Prevalence and prognostic value of IDH1 and IDH2 mutations in childhood AML: A study of the AML–BFM and DCOG study groups. Leukemia 2011, 25, 1704–1710. [Google Scholar] [CrossRef]
- Platten, M.; Nollen, E.A.A.; Röhrig, U.F.; Fallarino, F.; Opitz, C.A. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat. Rev. Drug Discov. 2019, 18, 379–401. [Google Scholar] [CrossRef]
- Munn, D.H.; Shafizadeh, E.; Attwood, J.T.; Bondarev, I.; Pashine, A.; Mellor, A.L. Inhibition of T Cell Proliferation by Macrophage Tryptophan Catabolism. J. Exp. Med. 1999, 189, 1363–1372. [Google Scholar] [CrossRef]
- Liu, X.-Q.; Lu, K.; Feng, L.-L.; Ding, M.; Gao, J.-M.; Ge, X.-L.; Wang, X. Up-regulated expression of indoleamine 2,3-dioxygenase 1 in non-Hodgkin lymphoma correlates with increased regulatory T-cell infiltration. Leuk. Lymphoma 2014, 55, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Curti, A.; Trabanelli, S.; Salvestrini, V.; Baccarani, M.; Lemoli, R.M. The role of indoleamine 2,3-dioxygenase in the induction of immune tolerance: Focus on hematology. Blood 2009, 113, 2394–2401. [Google Scholar] [CrossRef] [PubMed]
- Jacque, N.; Bouscary, D. Targeting glutamine uptake in AML. Oncoscience 2014, 1, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Matre, P.; Velez, J.; Jacamo, R.; Qi, Y.; Su, X.; Cai, T.; Chan, S.M.; Lodi, A.; Sweeney, S.R.; Ma, H.; et al. Inhibiting glutaminase in acute myeloid leukemia: Metabolic dependency of selected AML subtypes. Oncotarget 2016, 7, 79722–79735. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.C.; Yu, Y.C.; Sung, Y.; Han, J.M. Glutamine reliance in cell metabolism. Exp. Mol. Med. 2020, 52, 1496–1516. [Google Scholar] [CrossRef]
- Gregory, M.A.; Nemkov, T.; Park, H.J.; Zaberezhnyy, V.; Gehrke, S.; Adane, B.; Jordan, C.T.; Hansen, K.C.; D’alessandro, A.; DeGregori, J. Targeting Glutamine Metabolism and Redox State for Leukemia Therapy. Clin. Cancer Res. 2019, 25, 4079–4090. [Google Scholar] [CrossRef]
- Hu, J.; Wang, T.; Xu, J.; Wu, S.; Wang, L.; Su, H.; Jiang, J.; Yue, M.; Wang, J.; Wang, D.; et al. WEE1 Inhibition Induces Glutamine Addiction in T-Cell Acute Lymphoblastic Leukemia. Haematologica 2020, 106, 1816–1827. [Google Scholar] [CrossRef]
- Gallipoli, P.; Giotopoulos, G.; Tzelepis, K.; Costa, A.S.H.; Vohra, S.; Medina-Perez, P.; Basheer, F.; Marando, L.; Di Lisio, L.; Dias, J.M.L.; et al. Glutaminolysis is a metabolic dependency in FLT3ITD acute myeloid leukemia unmasked by FLT3 tyrosine kinase inhibition. Blood 2018, 131, 1639–1653. [Google Scholar] [CrossRef]
- van Gastel, N.; Spinelli, J.B.; Sharda, A.; Schajnovitz, A.; Baryawno, N.; Rhee, C.; Oki, T.; Grace, E.; Soled, H.J.; Milosevic, J.; et al. Induction of a Timed Metabolic Collapse to Overcome Cancer Chemoresistance. Cell Metab. 2020, 32, 391–403.e6. [Google Scholar] [CrossRef]
- Jones, C.L.; Stevens, B.M.; D’Alessandro, A.; Culp-Hill, R.; Reisz, J.A.; Pei, S.; Gustafson, A.; Khan, N.; DeGregori, J.; Pollyea, D.A.; et al. Cysteine depletion targets leukemia stem cells through inhibition of electron transport complex II. Blood 2019, 134, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, A.; Oudejans, L.L.; Geugien, M.; Pereira-Martins, D.A.; Wierenga, A.T.J.; Erdem, A.; Sternadt, D.; Huls, G.; Schuringa, J.J. The nonessential amino acid cysteine is required to prevent ferroptosis in acute myeloid leukemia. Blood Adv. 2024, 8, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Pardieu, B.; Pasanisi, J.; Ling, F.; Bello, R.D.; Penneroux, J.; Su, A.; Joudinaud, R.; Chat, L.; Wu, H.C.; Duchmann, M.; et al. Cystine uptake inhibition potentiates front-line therapies in acute myeloid leukemia. Leukemia 2022, 36, 1585–1595. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Wang, J.; Yang, X.; Zhang, X.; Huang, D.; Li, X.; Zou, Y.; Chen, C.; Yu, Z.; Xie, L.; et al. Bone marrow niche ATP levels determine leukemia-initiating cell activity via P2X7 in leukemic models. J. Clin. Investig. 2021, 131, e140242. [Google Scholar] [CrossRef]
- Jeong, S.; Savino, A.M.; Chirayil, R.; Barin, E.; Cheng, Y.; Park, S.-M.; Schurer, A.; Mullarky, E.; Cantley, L.C.; Kharas, M.G.; et al. High Fructose Drives the Serine Synthesis Pathway in Acute Myeloid Leukemic Cells. Cell Metab. 2021, 33, 145–159.e6. [Google Scholar] [CrossRef] [PubMed]
- Kampen, K.R.; Fancello, L.; Girardi, T.; Rinaldi, G.; Planque, M.; Sulima, S.O.; Loayza-Puch, F.; Verbelen, B.; Vereecke, S.; Verbeeck, J.; et al. Translatome analysis reveals altered serine and glycine metabolism in T-cell acute lymphoblastic leukemia cells. Nat. Commun. 2019, 10, 2542. [Google Scholar] [CrossRef] [PubMed]
- Mussai, F.; De Santo, C.; Abu-Dayyeh, I.; Booth, S.; Quek, L.; McEwen-Smith, R.M.; Qureshi, A.; Dazzi, F.; Vyas, P.; Cerundolo, V. Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment. Blood 2013, 122, 749–758. [Google Scholar] [CrossRef]
- Miraki-Moud, F.; Ghazaly, E.; Ariza-McNaughton, L.; Hodby, K.A.; Clear, A.; Anjos-Afonso, F.; Liapis, K.; Grantham, M.; Sohrabi, F.; Cavenagh, J.; et al. Arginine deprivation using pegylated arginine deiminase has activity against primary acute myeloid leukemia cells in vivo. Blood 2015, 125, 4060–4068. [Google Scholar] [CrossRef]
- Bertuccio, S.N.; Serravalle, S.; Astolfi, A.; Lonetti, A.; Indio, V.; Leszl, A.; Pession, A.; Melchionda, F. Identification of a cytogenetic and molecular subgroup of acute myeloid leukemias showing sensitivity to L-Asparaginase. Oncotarget 2017, 8, 109915–109923. [Google Scholar] [CrossRef] [PubMed]
- Samudio, I.; Konopleva, M. Asparaginase unveils glutamine-addicted AML. Blood 2013, 122, 3398–3400. [Google Scholar] [CrossRef]
- Cachumba, J.J.M.; Antunes, F.A.F.; Peres, G.F.D.; Brumano, L.P.; Santos, J.C.; Dos Da Silva, S.S. Current applications and different approaches for microbial l-asparaginase production. Braz. J. Microbiol. 2016, 47, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Su, N.; Pan, Y.; Zhou, M.; Harvey, R.C.; Hunger, S.P.; Kilberg, M.S. Correlation between asparaginase sensitivity and asparagine synthetase protein content, but not mRNA, in acute lymphoblastic leukemia cell lines. Pediatr. Blood Cancer 2008, 50, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Hermanova, I.; Zaliova, M.; Trka, J.; Starkova, J. Low expression of asparagine synthetase in lymphoid blasts precludes its role in sensitivity to L-asparaginase. Exp. Hematol. 2012, 40, 657–665. [Google Scholar] [CrossRef]
- Shafat, M.S.; Oellerich, T.; Mohr, S.; Robinson, S.D.; Edwards, D.R.; Marlein, C.R.; Piddock, R.E.; Fenech, M.; Zaitseva, L.; Abdul-Aziz, A.; et al. Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment. Blood 2017, 129, 1320–1332. [Google Scholar] [CrossRef]
- Corn, K.C.; Windham, M.A.; Rafat, M. Lipids in the tumor microenvironment: From cancer progression to treatment. Prog. Lipid Res. 2020, 80, 101055. [Google Scholar] [CrossRef] [PubMed]
- Bakhtiyari, M.; Liaghat, M.; Aziziyan, F.; Shapourian, H.; Yahyazadeh, S.; Alipour, M.; Shahveh, S.; Maleki-Sheikhabadi, F.; Halimi, H.; Forghaniesfidvajani, R.; et al. The role of bone marrow microenvironment (BMM) cells in acute myeloid leukemia (AML) progression: Immune checkpoints, metabolic checkpoints, and signaling pathways. Cell Commun. Signal. 2023, 21, 252. [Google Scholar] [CrossRef] [PubMed]
- Stuani, L.; Riols, F.; Millard, P.; Sabatier, M.; Batut, A.; Saland, E.; Viars, F.; Tonini, L.; Zaghdoudi, S.; Linares, L.K.; et al. Stable Isotope Labeling Highlights Enhanced Fatty Acid and Lipid Metabolism in Human Acute Myeloid Leukemia. Int. J. Mol. Sci. 2018, 19, 3325. [Google Scholar] [CrossRef]
- Thomas, D.; Wu, M.; Nakauchi, Y.; Zheng, M.; Thompson-Peach, C.A.; Lim, K.; Landberg, N.; Köhnke, T.; Robinson, N.; Kaur, S.; et al. Dysregulated Lipid Synthesis by Oncogenic IDH1 Mutation Is a Targetable Synthetic Lethal Vulnerability. Cancer Discov. 2023, 13, 496–515. [Google Scholar] [CrossRef]
- Ghaeidamini Harouni, M.; Rahgozar, S.; Rahimi Babasheikhali, S.; Safavi, A.; Ghodousi, E.S. Fatty acid synthase, a novel poor prognostic factor for acute lymphoblastic leukemia which can be targeted by ginger extract. Sci. Rep. 2020, 10, 14072. [Google Scholar] [CrossRef]
- Dany, M.; Gencer, S.; Nganga, R.; Thomas, R.J.; Oleinik, N.; Baron, K.D.; Szulc, Z.M.; Ruvolo, P.; Kornblau, S.; Andreeff, M.; et al. Targeting FLT3-ITD signaling mediates ceramide-dependent mitophagy and attenuates drug resistance in AML. Blood 2016, 128, 1944–1958. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.-F.; Liu, X.; Fox, T.E.; Barth, B.M.; Sharma, A.; Turner, S.D.; Awwad, A.; Dewey, A.; Doi, K.; Spitzer, B.; et al. Acid ceramidase is upregulated in AML and represents a novel therapeutic target. Oncotarget 2016, 7, 83208–83222. [Google Scholar] [CrossRef]
- Powell, J.A.; Lewis, A.C.; Zhu, W.; Toubia, J.; Pitman, M.R.; Wallington-Beddoe, C.T.; Moretti, P.A.B.; Iarossi, D.; Samaraweera, S.E.; Cummings, N.; et al. Targeting sphingosine kinase 1 induces MCL1-dependent cell death in acute myeloid leukemia. Blood 2017, 129, 771–782. [Google Scholar] [CrossRef] [PubMed]
- Verlekar, D.; Wei, S.J.; Cho, H.; Yang, S.; Kang, M.H. Ceramide synthase-6 confers resistance to chemotherapy by binding to CD95/Fas in T-cell acute lymphoblastic leukemia. Cell Death Dis. 2018, 9, 925. [Google Scholar] [CrossRef]
- Wong, W.W.L.; Dimitroulakos, J.; Minden, M.; Penn, L. HMG-CoA reductase inhibitors and the malignant cell: The statin family of drugs as triggers of tumor-specific apoptosis. Leukemia 2002, 16, 508–519. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.H.; Tan, T.K.; Yokomori, R.; Liao, M.; Huang, X.Z.; Yeoh, A.E.; Sanda, T. TAL1 hijacks MYCN enhancer that induces MYCN expression and dependence on mevalonate pathway in T-cell acute lymphoblastic leukemia. Leukemia 2023, 37, 1969–1981. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Zabala, M.; Ramakrishnan, R.; Reinbach, K.; Ghosh, S.; Oburoglu, L.; Falqués-Costa, A.; Bellamkonda, K.; Ehinger, M.; Peña-Martínez, P.; Puente-Moncada, N.; et al. Combined GLUT1 and OXPHOS inhibition eliminates acute myeloid leukemia cells by restraining their metabolic plasticity. Blood Adv. 2023, 7, 5382–5395. [Google Scholar] [CrossRef] [PubMed]
- Stein, E.M.; Fathi, A.T.; DiNardo, C.D.; Pollyea, D.A.; Roboz, G.J.; Collins, R.; Sekeres, M.A.; Stone, R.M.; Attar, E.C.; Frattini, M.G.; et al. Enasidenib in patients with mutant IDH2 myelodysplastic syndromes: A phase 1 subgroup analysis of the multicentre, AG221-C-001 trial. Lancet Haematol. 2020, 7, e309–e319. [Google Scholar] [CrossRef]
- Carosi, F.; Broseghini, E.; Fabbri, L.; Corradi, G.; Gili, R.; Forte, V.; Roncarati, R.; Filippini, D.M.; Ferracin, M. Targeting Isocitrate Dehydrogenase (IDH) in Solid Tumors: Current Evidence and Future Perspectives. Cancers 2024, 16, 2752. [Google Scholar] [CrossRef] [PubMed]
- Qannita, R.A.; Alalami, A.I.; Harb, A.A.; Aleidi, S.M.; Taneera, J.; Abu-Gharbieh, E.; El-Huneidi, W.; Saleh, M.A.; Alzoubi, K.H.; Semreen, M.H.; et al. Targeting Hypoxia-Inducible Factor-1 (HIF-1) in Cancer: Emerging Therapeutic Strategies and Pathway Regulation. Pharmaceuticals 2024, 17, 195. [Google Scholar] [CrossRef] [PubMed]
- Farber, S.; Diamond, L.K. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N. Engl. J. Med. 1948, 238, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Trucco, M.; Barredo, J.C.; Goldberg, J.; Leclerc, G.M.; Hale, G.A.; Gill, J.; Setty, B.; Smith, T.; Lush, R.; Lee, J.K.; et al. A phase I window, dose escalating and safety trial of metformin in combination with induction chemotherapy in relapsed refractory acute lymphoblastic leukemia: Metformin with induction chemotherapy of vincristine, dexamethasone, PEG-asparaginase, and doxorubicin. Pediatr. Blood Cancer 2018, 65, e27224. [Google Scholar]
- Kraus, D.; Reckenbeil, J.; Veit, N.; Kuerpig, S.; Meisenheimer, M.; Beier, I.; Stark, H.; Winter, J.; Probstmeier, R. Targeting glucose transport and the NAD pathway in tumor cells with STF-31: A re-evaluation. Cell. Oncol. 2018, 41, 485–494. [Google Scholar] [CrossRef]
- Dong, Z.; Abbas, M.N.; Kausar, S.; Yang, J.; Li, L.; Tan, L.; Cui, H. Biological Functions and Molecular Mechanisms of Antibiotic Tigecycline in the Treatment of Cancers. Int. J. Mol. Sci. 2019, 20, 3577. [Google Scholar] [CrossRef]
- Kuntz, E.M.; Baquero, P.; Michie, A.M.; Dunn, K.; Tardito, S.; Holyoake, T.L.; Helgason, G.V.; Gottlieb, E. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat. Med. 2017, 23, 1234–1240. [Google Scholar] [CrossRef] [PubMed]
- Reed, G.A.; Schiller, G.J.; Kambhampati, S.; Tallman, M.S.; Douer, D.; Minden, M.D.; Yee, K.W.; Gupta, V.; Brandwein, J.; Jitkova, Y.; et al. A Phase 1 study of intravenous infusions of tigecycline in patients with acute myeloid leukemia. Cancer Med. 2016, 5, 3031–3040. [Google Scholar] [CrossRef]
- Baran, N.; Lodi, A.; Dhungana, Y.; Herbrich, S.; Collins, M.; Sweeney, S.; Pandey, R.; Skwarska, A.; Patel, S.; Tremblay, M.; et al. Inhibition of mitochondrial complex I reverses NOTCH1-driven metabolic reprogramming in T-cell acute lymphoblastic leukemia. Nat. Commun. 2022, 13, 2801. [Google Scholar] [CrossRef] [PubMed]
- Yap, T.A.; Daver, N.; Mahendra, M.; Zhang, J.; Kamiya-Matsuoka, C.; Meric-Bernstam, F.; Kantarjian, H.M.; Ravandi, F.; Collins, M.E.; Di Francesco, M.E.; et al. Complex I inhibitor of oxidative phosphorylation in advanced solid tumors and acute myeloid leukemia: Phase I trials. Nat. Med. 2023, 29, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.; Miller, L.D.; Isom, S.; Chou, J.W.; Pladna, K.M.; Schramm, N.J.; Ellis, L.R.; Howard, D.S.; Bhave, R.R.; Manuel, M.; et al. Phase II trial of cytarabine and mitoxantrone with devimistat in acute myeloid leukemia. Nat. Commun. 2022, 13, 1673. [Google Scholar] [CrossRef]
- Roca-Portoles, A.; Rodriguez-Blanco, G.; Sumpton, D.; Cloix, C.; Mullin, M.; Mackay, G.M.; O’neill, K.; Lemgruber, L.; Luo, X.; Tait, S.W.G. Venetoclax causes metabolic reprogramming independent of BCL-2 inhibition. Cell Death Dis. 2020, 11, 616. [Google Scholar] [CrossRef]
- Jones, C.L.; Stevens, B.M.; D’Alessandro, A.; Reisz, J.A.; Culp-Hill, R.; Nemkov, T.; Pei, S.; Khan, N.; Adane, B.; Ye, H.; et al. Inhibition of Amino Acid Metabolism Selectively Targets Human Leukemia Stem Cells. Cancer Cell 2018, 34, 724–740.e4. [Google Scholar] [CrossRef]
- Pollyea, D.A.; Stevens, B.M.; Jones, C.L.; Winters, A.; Pei, S.; Minhajuddin, M.; D’alessandro, A.; Culp-Hill, R.; Riemondy, K.A.; Gillen, A.E.; et al. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. Nat. Med. 2018, 24, 1859–1866. [Google Scholar] [CrossRef] [PubMed]
- Dinardo, C.D.; Jonas, B.A.; Pullarkat, V.; Thirman, M.J.; Garcia, J.S.; Wei, A.H.; Konopleva, M.; Döhner, H.; Letai, A.; Fenaux, P.; et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. N. Engl. J. Med. 2020, 383, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Gross, Z.; Tauveron-Jalenques, U.; Requena, G.A.; Carre, M.; Meunier, M.; Tavernier, E.; Cornillon, J.; Belhabri, A.; Michallet, M.; Contejean, A.; et al. Real World Use of Azacitidine and Venetoclax in Acute Myeloid Leukemia in Frontline and Relapse/Refractory Settings: A Multicentric Study from French Auraml Group. Blood 2023, 142 (Suppl. S1), 590. [Google Scholar] [CrossRef]
- Evans, J.M.M.; Donnelly, L.A.; Emslie-Smith, A.M.; Alessi, D.R.; Morris, A.D. Metformin and reduced risk of cancer in diabetic patients. Br. Med. J. 2005, 330, 1304–1305. [Google Scholar] [CrossRef]
- Morales, D.R.; Morris, A.D. Metformin in cancer treatment and prevention. Annu. Rev. Med. 2015, 66, 17–29. [Google Scholar] [CrossRef]
- Lee, J.; Yesilkanal, A.E.; Wynne, J.P.; Frankenberger, C.; Liu, J.; Yan, J.; Elbaz, M.; Rabe, D.C.; Rustandy, F.D.; Tiwari, P.; et al. Effective breast cancer combination therapy targeting BACH1 and mitochondrial metabolism. Nature 2019, 568, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Birsoy, K.; Possemato, R.; Lorbeer, F.K.; Bayraktar, E.C.; Thiru, P.; Yucel, B.; Wang, T.; Chen, W.W.; Clish, C.B.; Sabatini, D.M. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature 2014, 508, 108–112. [Google Scholar] [CrossRef]
- Eikawa, S.; Nishida, M.; Mizukami, S.; Yamazaki, C.; Nakayama, E.; Udono, H. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc. Natl. Acad. Sci. USA 2015, 112, 1809–1814. [Google Scholar] [CrossRef] [PubMed]
- Pearce, E.L.; Walsh, M.C.; Cejas, P.J.; Harms, G.M.; Shen, H.; Wang, L.-S.; Jones, R.G.; Choi, Y. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 2009, 460, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Kunisada, Y.; Eikawa, S.; Tomonobu, N.; Domae, S.; Uehara, T.; Hori, S.; Furusawa, Y.; Hase, K.; Sasaki, A.; Udono, H. Attenuation of CD4+ CD25+ Regulatory T Cells in the Tumor Microenvironment by Metformin, a Type 2 Diabetes Drug. EBioMedicine 2017, 25, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Lin, Y.; Xiong, X.; Wang, L.; Guo, Y.; Chen, Y.; Chen, S.; Wang, G.; Lin, P.; Chen, H.; et al. Low-Dose Metformin Reprograms the Tumor Immune Microenvironment in Human Esophageal Cancer: Results of a Phase II Clinical Trial. Clin. Cancer Res. 2020, 26, 4921–4932. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Yin, K.; Tang, X.; Tian, J.; Zhang, Y.; Ma, J.; Xu, H.; Xu, Q.; Wang, S. Metformin inhibits the function of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. Biomed. Pharmacother. 2019, 120, 109458. [Google Scholar] [CrossRef]
- Covini, D.; Tardito, S.; Bussolati, O.; Chiarelli, L.R.; Pasquetto, M.V.; Digilio, R.; Valentini, G.; Scotti, C. Expanding Targets for a Metabolic Therapy of Cancer: L-Asparaginase. Recent Patents Anti-Cancer Drug Discov. 2012, 7, 4–13. [Google Scholar] [CrossRef] [PubMed]
- De Santo, C.; Booth, S.; Vardon, A.; Cousins, A.; Tubb, V.; Perry, T.; Noyvert, B.; Beggs, A.; Ng, M.; Halsey, C.; et al. The arginine metabolome in acute lymphoblastic leukemia can be targeted by the pegylated-recombinant arginase I BCT-100. Int. J. Cancer 2018, 142, 1490–1502. [Google Scholar] [CrossRef]
- Mussai, F.; De Santo, C.; Cheng, P.; Thomas, I.F.; Ariti, C.; Upton, L.; Scarpa, U.; Stavrou, V.; Sydenham, M.; Burnett, A.K.; et al. A randomised evaluation of low-dose Ara-C plus pegylated recombinant arginase BCT-100 versus low dose Ara-C in older unfit patients with acute myeloid leukaemia: Results from the LI-1 trial. Br. J. Haematol. 2023, 200, 573–578. [Google Scholar] [CrossRef]
- Fenwick, N.; Weston, R.; Wheatley, K.; Hodgson, J.; Marshall, L.; Elliott, M.; Makin, G.; Ng, A.; Brennan, B.; Lowis, S.; et al. PARC: A phase I/II study evaluating the safety and activity of pegylated recombinant human arginase BCT-100 in relapsed/refractory cancers of children and young adults. Front. Oncol. 2024, 14, 1296576. [Google Scholar] [CrossRef]
- Zaky, M.Y.; Fan, C.; Zhang, H.; Sun, X.F. Unraveling the Anticancer Potential of Statins: Mechanisms and Clinical Significance. Cancers 2023, 15, 4787. [Google Scholar] [CrossRef]
- Ottone, T.; Faraoni, I.; Fucci, G.; Divona, M.; Travaglini, S.; De Bellis, E.; Marchesi, F.; Angelini, D.F.; Palmieri, R.; Gurnari, C.; et al. Vitamin C Deficiency in Patients With Acute Myeloid Leukemia. Front. Oncol. 2022, 12, 890344. [Google Scholar] [CrossRef] [PubMed]
- Foster, M.N.; Carr, A.C.; Antony, A.; Peng, S.; Fitzpatrick, M.G. Ntravenous vitamin C administration improved blood cell counts and health-related quality of life of patient with history of relapsed acute myeloid leukaemia. Antioxidants 2018, 7, 92. [Google Scholar] [CrossRef]
- Das, A.B.; Kakadia, P.M.; Wojcik, D.; Pemberton, L.; Browett, P.J.; Bohlander, S.K.; Vissers, M.C.M. Clinical remission following ascorbate treatment in a case of acute myeloid leukemia with mutations in TET2 and WT1. Blood Cancer J. 2019, 9, 82. [Google Scholar] [CrossRef] [PubMed]
- Montesinos, P.; Recher, C.; Vives, S.; Zarzycka, E.; Wang, J.; Bertani, G.; Heuser, M.; Calado, R.T.; Schuh, A.C.; Yeh, S.-P.; et al. Ivosidenib and Azacitidine in IDH1 -Mutated Acute Myeloid Leukemia. N. Engl. J. Med. 2022, 386, 1519–1531. [Google Scholar] [CrossRef]
- de Botton, S.; Brandwein, J.M.; Wei, A.H.; Pigneux, A.; Quesnel, B.; Thomas, X.; Legrand, O.; Recher, C.; Chantepie, S.; Hunault-Berger, M.; et al. Improved survival with enasidenib versus standard of care in relapsed/refractory acute myeloid leukemia associated with IDH2 mutations using historical data and propensity score matching analysis. Cancer Med. 2021, 10, 6336–6343. [Google Scholar] [CrossRef]
- de Botton, S.; Montesinos, P.; Schuh, A.C.; Papayannidis, C.; Vyas, P.; Wei, A.H.; Ommen, H.; Semochkin, S.; Kim, H.J.; Larson, R.A.; et al. Enasidenib vs. Conventional Care in Older Patients with Late-Stage Mutant-IDH2 Relapsed/Refractory AML: A RANDOMIZED Phase 3 Trial [Internet]. Volume 21. Available online: http://ashpublications.org/blood/article-pdf/141/2/156/2073214/blood_bld-2021-014901-main.pdf (accessed on 30 July 2024).
- Barr, R.D.; Gomez-Almaguer, D.; Jaime-Perez, J.C.; Ruiz-Argüelles, G.J. Importance of Nutrition in the Treatment of Leukemia in Children and Adolescents. Arch. Med Res. 2016, 47, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Jensen, C.D.; Block, G.; Buffler, P.; Ma, X.; Selvin, S.; Month, S. Maternal Dietary Risk Factors in Childhood Acute Lymphoblastic Leukemia (United States). Cancer Causes Control. 2004, 15, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Kwan, M.L.; Jensen, C.D.; Block, G.; Hudes, M.L.; Chu, L.W.; Buffler, P.A. Maternal Diet and Risk of Childhood Acute Lymphoblastic Leukemia. Public Health Rep.® 2009, 124, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Singer, A.W.; Carmichael, S.L.; Selvin, S.; Fu, C.; Block, G.; Metayer, C. Maternal diet quality before pregnancy and risk of childhood leukaemia. Br. J. Nutr. 2016, 116, 1469–1478. [Google Scholar] [CrossRef] [PubMed]
- Fenech, M. The role of folic acid and Vitamin B12 in genomic stability of human cells. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2001, 475, 57–67. [Google Scholar] [CrossRef]
- Ajrouche, R.; Rudant, J.; Orsi, L.; Petit, A.; Baruchel, A.; Lambilliotte, A.; Gambart, M.; Michel, G.; Bertrand, Y.; Ducassou, S.; et al. Childhood acute lymphoblastic leukaemia and indicators of early immune stimulation: The Estelle study (SFCE). Br. J. Cancer 2015, 112, 1017–1026. [Google Scholar] [CrossRef] [PubMed]
- Amitay, E.L.; Dubnov Raz, G.; Keinan-Boker, L. Breastfeeding, Other Early Life Exposures and Childhood Leukemia and Lymphoma. Nutr. Cancer 2016, 68, 968–977. [Google Scholar] [CrossRef]
- Greaves, M. A causal mechanism for childhood acute lymphoblastic leukaemia. Nat. Rev. Cancer 2018, 18, 471–484. [Google Scholar] [CrossRef]
- Greaves, M.F. Speculations on the cause of childhood acute lymphoblastic leukemia. Leukemia 1988, 2, 120–125. [Google Scholar] [PubMed]
- Urayama, K.Y.; Buffler, P.A.; Gallagher, E.R.; Ayoob, J.M.; Ma, X. A meta-analysis of the association between day-care attendance and childhood acute lymphoblastic leukaemia. Int. J. Epidemiol. 2010, 39, 718–732. [Google Scholar] [CrossRef] [PubMed]
- Rudant, J.; Lightfoot, T.; Urayama, K.Y.; Petridou, E.; Dockerty, J.D.; Magnani, C.; Milne, E.; Spector, L.G.; Ashton, L.J.; Dessypris, N.; et al. Childhood Acute Lymphoblastic Leukemia and Indicators of Early Immune Stimulation: A Childhood Leukemia International Consortium Study. Am. J. Epidemiol. 2015, 181, 549–562. [Google Scholar] [CrossRef]
- Furci, F.; Cicero, N.; Allegra, A.; Gangemi, S. Microbiota, Diet and Acute Leukaemia: Tips and Tricks on Their Possible Connections. Nutrients 2023, 15, 4253. [Google Scholar] [CrossRef] [PubMed]
- Neha, C.R. Ketogenic diet as a treatment and prevention strategy for cancer: A therapeutic alternative. In Nutrition; Elsevier Inc.: Amsterdam, The Netherlands, 2024; Volume 124. [Google Scholar]
- Cheng, C.W.; Yilmaz, Ö.H. Starving leukemia to induce differentiation. Nat. Med. 2017, 23, 14–15. [Google Scholar] [CrossRef]
- Golonko, A.; Pienkowski, T.; Swislocka, R.; Orzechowska, S.; Marszalek, K.; Szczerbinski, L.; Swiergiel, A.H.; Lewandowski, W. Dietary factors and their influence on immunotherapy strategies in oncology: A comprehensive review. Cell Death Dis. 2024, 15, 254. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, P.; Pasolli, E.; Tett, A.; Asnicar, F.; Gorfer, V.; Fedi, S.; Armanini, F.; Truong, D.T.; Manara, S.; Zolfo, M.; et al. Mother-to-Infant Microbial Transmission from Different Body Sites Shapes the Developing Infant Gut Microbiome. Cell Host Microbe 2018, 24, 133–145.e5. [Google Scholar] [CrossRef] [PubMed]
- Bäckhed, F.; Roswall, J.; Peng, Y.; Feng, Q.; Jia, H.; Kovatcheva-Datchary, P.; Li, Y.; Xia, Y.; Xie, H.; Zhong, H.; et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe 2015, 17, 690–703. [Google Scholar] [CrossRef]
- Tamburini, S.; Shen, N.; Wu, H.C.; Clemente, J.C. The microbiome in early life: Implications for health outcomes. Nat. Med. 2016, 22, 713–722. [Google Scholar] [CrossRef]
- Hooper, L.V.; Littman, D.R.; Macpherson, A.J. Interactions Between the Microbiota and the Immune System. Science (1979) 2012, 336, 1268–1273. [Google Scholar] [CrossRef]
- Gao, Y.; Shang, Q.; Li, W.; Guo, W.; Stojadinovic, A.; Mannion, C.; Man, Y.-G.; Chen, T. Antibiotics for cancer treatment: A double-edged sword. J. Cancer 2020, 11, 5135–5149. [Google Scholar] [CrossRef]
- Guevara-Ramírez, P.; Cadena-Ullauri, S.; Paz-Cruz, E.; Tamayo-Trujillo, R.; Ruiz-Pozo, V.A.; Zambrano, A.K. Role of the gut microbiota in hematologic cancer. Front. Microbiol. 2023, 14, 1185787. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Kuang, Z.; Li, F.; Li, J. The causal relationship between gut microbiota and leukemia: A two-sample Mendelian randomization study. Front. Microbiol. 2023, 14, 1293333. [Google Scholar] [CrossRef] [PubMed]
- Venegas, D.P.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Corrigendum: Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, 1486. [Google Scholar]
- Geng, H.W.; Yin, F.Y.; Zhang, Z.F.; Gong, X.; Yang, Y. Butyrate Suppresses Glucose Metabolism of Colorectal Cancer Cells via GPR109a-AKT Signaling Pathway and Enhances Chemotherapy. Front. Mol. Biosci. 2021, 8, 634874. [Google Scholar] [CrossRef]
- Wang, R.; Yang, X.; Liu, J.; Zhong, F.; Zhang, C.; Chen, Y.; Sun, T.; Ji, C.; Ma, D. Gut microbiota regulates acute myeloid leukaemia via alteration of intestinal barrier function mediated by butyrate. Nat. Commun. 2022, 13, 2522. [Google Scholar] [CrossRef] [PubMed]
- Daillère, R.; Vétizou, M.; Waldschmitt, N.; Yamazaki, T.; Isnard, C.; Poirier-Colame, V.; Duong, C.P.M.; Flament, C.; Lepage, P.; Roberti, M.P.; et al. Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects. Immunity 2016, 45, 931–943. [Google Scholar] [CrossRef]
- Uribe-Herranz, M.; Rafail, S.; Beghi, S.; Gil-De-Gómez, L.; Verginadis, I.; Bittinger, K.; Pustylnikov, S.; Pierini, S.; Perales-Linares, R.; Blair, I.A.; et al. Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response. J. Clin. Investig. 2020, 130, 466–479. [Google Scholar] [CrossRef]
- Yang, K.; Hou, Y.; Zhang, Y.; Liang, H.; Sharma, A.; Zheng, W.; Wang, L.; Torres, R.; Tatebe, K.; Chmura, S.J.; et al. Suppression of local type I interferon by gut microbiota–derived butyrate impairs antitumor effects of ionizing radiation. J. Exp. Med. 2021, 218, e20201915. [Google Scholar] [CrossRef]
- Andrews, M.C.; Duong, C.P.M.; Gopalakrishnan, V.; Iebba, V.; Chen, W.-S.; Derosa, L.; Khan, A.W.; Cogdill, A.P.; White, M.G.; Wong, M.C.; et al. Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nat. Med. 2021, 27, 1432–1441. [Google Scholar] [CrossRef] [PubMed]
- Uribe-Herranz, M.; Bittinger, K.; Rafail, S.; Guedan, S.; Pierini, S.; Tanes, C.; Ganetsky, A.; Morgan, M.A.; Gill, S.; Tanyi, J.L.; et al. Gut microbiota modulates adoptive cell therapy via CD8α dendritic cells and IL-12. JCI Insight 2018, 3, e94952. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.F.; Xie, D. Targeting the gut microbiota to enhance the antitumor efficacy and attenuate the toxicity of CAR-T cell therapy: A new hope? Front. Immunol. 2024, 15, 1362133. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.; Dai, A.; Ghilardi, G.; Amelsberg, K.V.; Devlin, S.M.; Pajarillo, R.; Slingerland, J.B.; Beghi, S.; Herrera, P.S.; Giardina, P.; et al. Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy. Nat. Med. 2022, 28, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Peled, J.U.; Gomes, A.L.; Devlin, S.M.; Littmann, E.R.; Taur, Y.; Sung, A.D.; Weber, D.; Hashimoto, D.; Slingerland, A.E.; Slingerland, J.B.; et al. Microbiota as Predictor of Mortality in Allogeneic Hematopoietic-Cell Transplantation. N. Engl. J. Med. 2020, 382, 822–834. [Google Scholar] [CrossRef] [PubMed]
- Arem, H.; Moore, S.C.; Patel, A.; Hartge, P.; De Gonzalez, A.B.; Visvanathan, K.; Campbell, P.T.; Freedman, M.; Weiderpass, E.; Adami, H.O.; et al. Leisure Time Physical Activity and Mortality. JAMA Intern. Med. 2015, 175, 959. [Google Scholar] [CrossRef]
- Moore, S.C.; Lee, I.M.; Weiderpass, E.; Campbell, P.T.; Sampson, J.N.; Kitahara, C.M.; Keadle, S.K.; Arem, H.; de Gonzalez, A.B.; Hartge, P.; et al. Association of Leisure-Time Physical Activity With Risk of 26 Types of Cancer in 1.44 Million Adults. JAMA Intern. Med. 2016, 176, 816. [Google Scholar] [CrossRef] [PubMed]
- Parkin, D.M.; Boyd, L.; Walker, L.C. 16. The fraction of cancer attributable to lifestyle and environmental factors in the UK in 2010. Br. J. Cancer 2011, 105 (Suppl. S2), S77–S81. [Google Scholar] [CrossRef]
- Coombs, A.; Schilperoort, H.; Sargent, B. The effect of exercise and motor interventions on physical activity and motor outcomes during and after medical intervention for children and adolescents with acute lymphoblastic leukemia: A systematic review. Crit. Rev. Oncol. 2020, 152, 103004. [Google Scholar] [CrossRef] [PubMed]
- Collier-Bain, H.D.; Brown, F.F.; Causer, A.J.; Emery, A.; Oliver, R.; Moore, S.; Murray, J.; Turner, J.E.; Campbell, J.P. Harnessing the immunomodulatory effects of exercise to enhance the efficacy of monoclonal antibody therapies against B-cell haematological cancers: A narrative review. Front. Oncol. 2023, 13, 1244090. [Google Scholar] [CrossRef]
- Garrone, O.; Paccagnella, M.; Abbona, A.; Ruatta, F.; Vanella, P.; Denaro, N.; Tomasello, G.; Croce, N.; Barbin, F.; Rossino, M.G.; et al. Moderate physical activity during neoadjuvant chemotherapy in breast cancer patients: Effect on cancer-related inflammation and pathological complete response—The Neo-Runner study. ESMO Open 2024, 9, 103665. [Google Scholar] [CrossRef] [PubMed]
- Hojman, P.; Gehl, J.; Christensen, J.F.; Pedersen, B.K. Molecular Mechanisms Linking Exercise to Cancer Prevention and Treatment. Cell Metab. 2018, 27, 10–21. [Google Scholar] [CrossRef]
- Turner, J.E.; Brum, P.C. Does Regular Exercise Counter T Cell Immunosenescence Reducing the Risk of Developing Cancer and Promoting Successful Treatment of Malignancies? Oxid. Med. Cell. Longev. 2017, 2017, 4234765. [Google Scholar] [CrossRef] [PubMed]
- Duggal, N.A.; Niemiro, G.; Harridge, S.D.R.; Simpson, R.J.; Lord, J.M. Can physical activity ameliorate immunosenescence and thereby reduce age-related multi-morbidity? Nat. Rev. Immunol. 2019, 19, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Bigley, A.B.; Rezvani, K.; Chew, C.; Sekine, T.; Pistillo, M.; Crucian, B.; Bollard, C.M.; Simpson, R.J. Acute exercise preferentially redeploys NK-cells with a highly-differentiated phenotype and augments cytotoxicity against lymphoma and multiple myeloma target cells. Brain Behav. Immun. 2014, 39, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Inoue, R.; Tsukahara, T.; Ushida, K.; Chiji, H.; Matsubara, N.; Hara, H. Voluntary Running Exercise Alters Microbiota Composition and Increases n-Butyrate Concentration in the Rat Cecum. Biosci. Biotechnol. Biochem. 2008, 72, 572–576. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.M.; Mailing, L.J.; Niemiro, G.M.; Moore, R.; Cook, M.D.; White, B.A.; Holscher, H.D.; Woods, J.A. Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans. Med. Sci. Sports Exerc. 2018, 50, 747–757. [Google Scholar] [CrossRef]
- Short, N.J.; Daver, N.; Dinardo, C.D.; Kadia, T.; Nasr, L.F.; Macaron, W.; Yilmaz, M.; Borthakur, G.; Montalban-Bravo, G.; Garcia-Manero, G.; et al. Azacitidine, Venetoclax, and Gilteritinib in Newly Diagnosed and Relapsed or Refractory FLT3 -Mutated AML. J. Clin. Oncol. 2024, 42, 1499–1508. [Google Scholar] [CrossRef]
- Méndez-Lucas, A.; Lin, W.; Driscoll, P.C.; Legrave, N.; Novellasdemunt, L.; Xie, C.; Charles, M.; Wilson, Z.; Jones, N.P.; Rayport, S.; et al. Identifying strategies to target the metabolic flexibility of tumours. Nat. Metab. 2020, 2, 335–350. [Google Scholar] [CrossRef] [PubMed]
- van Lieshout, R.; Lize, N.; Tick, L.W.; van Deursen, J.; Driessen, E.; Janssen, T.; Custers, S.; Kranenburg, S.; van der Lee, D.; Koene, H.R.; et al. Nutrition-related problems, nutritional support practices and barriers to adherence to nutritional guidelines during intensive treatment for acute myeloid leukemia: Patients’ and hematology nurses’ perspectives and experiences. Clin. Nutr. ESPEN 2022, 48, 446–455. [Google Scholar] [CrossRef]
Method | scDNAseq | scRNAseq | CyTOF | MS | Seahorse | SCENITH |
---|---|---|---|---|---|---|
Output | Mutational status | Transcriptomic profile | Protein expression | Proteomic and metabolomic profile | Metabolic capacities and dependencies | Metabolic capacities and dependencies |
Cell purification required | No * | No * | No | Yes | Yes | No |
Single-cell resolution | Yes | Yes | Yes | Yes | No | Yes |
Compatible with cell sorting | Yes | Yes | No | No | No | Yes |
Readout | Gene mutations and protein expression | Gene expression and protein expression | Protein expression | Metabolite levels | Changes in extracellular pH and [O2] | Changes in protein synthesis levels |
Targeted | Yes | No | Yes | No | n.a. | Yes |
Cost per assay (USD) | ++++ | +++ | ++ | +++ | ++ | ++ |
Metabolic Action | Compound | Mechanism of Action | Disease | FDA-Approval/Clinical Trial |
---|---|---|---|---|
Amino Acid | L-Asparaginase | Asparagine and glutamine depletion | ALL | FDA-approved |
Nucleotide | 6-Mercaptopurine | Inhibits purine synthesis by inhibiting PPAT | ALL | FDA-approved |
Nucleotide | Methotrexate | Inhibits thymidine synthesis by inhibiting folic acid metabolism (competitive inhibitor of DHFR) | ALL, AML | FDA-approved |
Nucleotide | 5-Fluorouracil | Blocks thymidine synthesis by inhibiting TS | ALL | FDA-approved |
Nucleotide | 6-Thioguanine | Guanine analogue, inhibits nucleotide biosynthesis | ALL, AML | FDA-approved |
Nucleotide | Cytarabine | Pyrimidine analogue, inhibits nucleotide biosynthesis | ALL, AML | FDA-approved |
Nucleotide | Nelarabine | Purine analogue, inhibits nucleotide biosynthesis | T-ALL | FDA-approved |
Nucleotide | Gemcitabine | Pyrimidine analogue, inhibits nucleotide biosynthesis | ALL, AML | FDA-approved |
Metabolic Action | Compound | Mechanism of Action | Disease | Clinical Trial | Notes/Results |
---|---|---|---|---|---|
Mitochondrial | Tigecycline | Inhibits ETC synthesis | R/R AML | NCT01332786 phase 1 | Tigecycline monotherapy in R/R AML, not suitable for conventional chemotherapy |
Mitochondrial | Devimistat, CPI-613 | PDH inhibitor, TCA cycle inhibitor | AML | NCT02484391 phase 2 | Devimistat with cytarabine and mitoxantrone in AML |
Mitochondrial | Venetoclax | Induces release of cytC and apoptosis by structural alterations of mitochondrial membrane | AML | NCT02287233 phase 1/2 NCT02203773 phase 1/2 | In combination with hypomethylating agent, shows tolerable and promising activity |
Mitochondrial | Metformin | Overall: OXPHOS and TCA cycle inhibitor via activation of AMPK Inhibition of ETC complex I, mTOR, mGPD and other pathways: immunomodulatory and anti-aging | Childhood ALL | NCT01324180 phase 1 [166] | Metformin combined with chemotherapy (VPLD) In relapsed childhood ALL, revealed positive clinical effects |
ALL | NCT03118128 and NCT05326984, phase 1 | Metformin with chemotherapy in ALL with high levels of ABCB1 drug resistance gene | |||
Mitochondrial | Metformin with Cytarabine | R/R AML | NCT01849276, phase 1 | Metformin in combination with cytarabine, no results posted yet | |
Mitochondrial | Metformin with Devimistat | R/R AML | NCT05854966, phase 2 | Not open yet | |
Amino acid | L-Asparaginase | Asparagine and glutamine depletion | AML | NCT02283190 phase 1 | No results posted yet |
Amino acid | BCT-100 | Arginine depletion | R/R ALL, AML | NCT03455140 phase 1/2 | Clinical safety |
Amino acid | CB-839 | Glutaminase inhibitor (glutamine depletion) | AML, ALL | NCT02071927 phase 1 | Well tolerated |
Fatty acids | Pravastatin | HMGCR inhibitor, rate-limiting enzyme in MVA synthesis | R/R AML | NCT00107523, NCT00840177 phase 1/2 | Pravastatin with idarubicin and cytarabine |
Fatty acids | Pitavastatin | HMGCR inhibitor, rate-limiting enzyme in MVA synthesis | AML | NCT04512105 phase 1 | Pitavastatin with venetoclax |
Antioxidant | Ascorbic acid | Increases iron availability, Promotes tet2 activity | AML | NCT0352666, NCT02877277 | Observational study Randomised, double-blinded, placebo-controlled pilot study |
Mutations in metabolic genes | Ivosidenib | Mutant IDH1 inhibitor | AML IDH1 | NCT03173248 phase 3 | Significant clinical benefit of ivosidenib with azacitidine compared to placebo + azacitidine |
Mutations in metabolic genes | Enasidenib | Mutant IDH2 inhibitor | R/R AML IDH2 | NCT01915498 phase 1/2 | Significantly prolongs relative survival among patients with R/R AML and an IDH2 mutation ineligible for HSCT |
R/R AML IDH2 | NCT02577406 phase 3 | EFS was meaningfully improved with enasidenib |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capelletti, M.M.; Montini, O.; Ruini, E.; Tettamanti, S.; Savino, A.M.; Sarno, J. Unlocking the Heterogeneity in Acute Leukaemia: Dissection of Clonal Architecture and Metabolic Properties for Clinical Interventions. Int. J. Mol. Sci. 2025, 26, 45. https://doi.org/10.3390/ijms26010045
Capelletti MM, Montini O, Ruini E, Tettamanti S, Savino AM, Sarno J. Unlocking the Heterogeneity in Acute Leukaemia: Dissection of Clonal Architecture and Metabolic Properties for Clinical Interventions. International Journal of Molecular Sciences. 2025; 26(1):45. https://doi.org/10.3390/ijms26010045
Chicago/Turabian StyleCapelletti, Martina Maria, Orsola Montini, Emilio Ruini, Sarah Tettamanti, Angela Maria Savino, and Jolanda Sarno. 2025. "Unlocking the Heterogeneity in Acute Leukaemia: Dissection of Clonal Architecture and Metabolic Properties for Clinical Interventions" International Journal of Molecular Sciences 26, no. 1: 45. https://doi.org/10.3390/ijms26010045
APA StyleCapelletti, M. M., Montini, O., Ruini, E., Tettamanti, S., Savino, A. M., & Sarno, J. (2025). Unlocking the Heterogeneity in Acute Leukaemia: Dissection of Clonal Architecture and Metabolic Properties for Clinical Interventions. International Journal of Molecular Sciences, 26(1), 45. https://doi.org/10.3390/ijms26010045