Defining the Differential Corticosteroid Response Basis from Multiple Omics Approaches
Abstract
:1. Introduction
2. Mechanisms of Glucocorticoid Action
2.1. Genomic Mechanisms of Glucocorticoid Action
2.2. Non-Genomic Mechanisms of Glucocorticoid Action
2.2.1. Cell Membrane Mediated Effects
2.2.2. GR-Mediated Effects
3. Genomics of the Glucocorticoid Response
3.1. The Glucocorticoid Receptor and Candidate Gene Studies
3.2. Genomic Studies of Glucocorticoid Response
3.2.1. Genomic Studies of Glucocorticoid Response in Asthma
3.2.2. Genomic Studies of Glucocorticoid Response in Acute Lymphoblastic Leukemia
3.2.3. Genomic Studies of Glucocorticoid Response in Other Acute and Chronic Diseases
Study | Sample | Condition(s) | GC | Outcome(s) | SNP(s) | Gene(s) | p-Value(s) * |
---|---|---|---|---|---|---|---|
[43] | 107 hospitalized patients | COVID-19 | Dexamethasone | ICU admission, duration of hospitalization | rs33388 | NR3C1 | 0.023, 0.006 |
[43] | 107 hospitalized patients | COVID-19 | Dexamethasone | Duration of hospitalization, duration of oxygen therapy, switch to methylprednisolone | rs6198 | NR3C1 | 0.001, 0.001, 0.046 |
[45] | 62 patients with UC | IBD | Methylprednisolone, hydrocortisone or budesonide | GC response (exacerbations or remission) | rs56149945 | NR3C1 | 0.002 |
[49] | 118 child–parent trios | Asthma | Budesonide | Changes in FEV1 | rs37972 | GLCCI1 | <0.05 |
[52] | 182 patients and 180 healthy controls | Asthma | Fluticasone propionate | Changes in FEV1 | rs37972, rs37973 and rs11976862 | GLCCI1 | <0.05 |
[53] | 224 patients | Asthma | ICS (not specified) | Changes in FEV1 | rs37973 | GLCCI1 | <0.05 |
[54] | 597 patients in the discovery and 9842 in the replication | Asthma | ICS (not specified) | Asthma exacerbations | rs37973 | GLCCI1 | <0.005 |
[54] | 597 patients in the discovery and 9842 in the replication | Asthma | ICS (not specified) | Asthma exacerbations | rs1134481, rs2305089 and rs3099266 | TBXT | <0.005 |
[55] | 189 patients | Asthma | Fluticasone propionate | Changes in FEV1 | rs11123610 | ALLC | 3.57 × 10−7 |
[60] | 470 patients in the discovery and 647 in the replications | Asthma | Flunisolide, budesonide, and triamcinolone | Changes in FEV1 | rs1876828 and rs242941 | CRHR1 | <0.05 |
[61] | 189 patients | Asthma | Fluticasone | Changes in FEV1 | rs242941 | CRHR1 | 2.07 × 10−3 |
[54] | 597 patients in the discovery and 9842 in the replication | Asthma | ICS (not specified) | Asthma exacerbations | rs242941 | CRHR1 | <0.005 |
[62] | 311 child patients | Asthma | Budesonide | Changes in FEV1 | rs242941 | CRHR1 | 0.05 |
[62] | 311 child patients | Asthma | Budesonide | Changes in FEV1 | rs28364072 | FCER2 | 0.006 |
[63] | 1325 child patients | Asthma | ICS (not specified) | Asthma exacerbations | rs28364072 | FCER2 | 0.0004 |
[65] | 124 child patients in the discovery and 77 in the replication | Asthma | Budesonide and fluticasone | Asthma symptoms ** | rs10044254 | FBXL7 | 9.16 × 10−8 |
[67] | 806 patients | Asthma | Beclomethasone, budesonide, ciclesonide, flunisolide, mometasone, or triamcinolone | Asthma exacerbations | rs2395672, rs279728, and rs4271056 | CMTR1 | 2.32 × 10−6, 2.64 × 10−6, and 2.77 × 10−6 |
[68] | 1321 adult and child patients | Asthma | ICS (not specified) | Asthma exacerbations | rs34631960 | THSD4 | 3.64 × 10−8 |
[68] | 1321 adult and child patients | Asthma | ICS (not specified) | Asthma exacerbations | rs2328386 | HIVEP2 | 4.98 × 10−8 |
[69] | 6851 older adult patients | Asthma | ICS (not specified) | OCS bursts | rs138717703, rs77506063, rs116023293, and rs145325916 | PTCHD4 | 3.09 × 10−9, 3.09 × 10−9, 7.65 × 10−9, and 8.99 × 10−9 |
[70] | 1347 child patients in the discovery and 1697 patients in the replication | Asthma | ICS (not specified) | Asthma exacerbations | rs5995653 | Intergenic APOBEC3B/APOBEC3C | 7.52 × 10−3 |
[70] | 166 patients | Asthma | ICS (not specified) | Changes in FEV1 | rs5995653 | Intergenic APOBEC3B/APOBEC3C | 4.91 × 10−3 |
[71] | 489 child patients | Asthma | Prednisone | BMA | rs9896933 and rs2074439 | TBCD and TUBG1 | 3.15 × 10−8 and 2.74 × 10−4 |
[74] | 499 child patients in the discovery, 81 in the child validation, and 78 adults with COPD in the adult validation cohort | Asthma/COPD | ICS (not specified) | HPA suppression | rs591118 | PDGFD | 3.5 × 10−10 |
[77] | 2285 child patients in the discovery, 361 ALL child patients, and 309 non-ALL patients in the validation | ALL | Dexamethasone or prednisone | Osteonecrosis | rs10989692 | GRIN3A | 2.68 × 10−8 |
[78] | 391 child patients | ALL | Dexamethasone | 14 pleiotropic glucocorticoid phenotypes | rs2243057 and rs6453253 | F2RL1 | 2.68 × 10−5 and 2.77 × 10−4 |
[79] | 72 leukemic cell lines | ALL | Prednisolone | IC50 | rs904419 | Intergenic FRMD4B/MITF | 4.34 × 10−8 |
[79] | 72 leukemic cell lines | ALL | Dexamethasone | IC50 | rs2306888 | TGFBR3 | 1.43 × 10−6 |
[79] | 72 leukemic cell lines | ALL | - | NR3C1 gene expression | rs11982167 | PLEKHA8 | 6.44 × 10−8 |
[80] | 296 adult patients | ARDS/COVID-19 | Not specified GC with IFN β-1a | 28-day mortality | rs9984273 | IFNAR2 | <0.001 |
[81] | 802 patients in the discovery and 199 in the replication | COPD | Triamcinolone or fluticasone | Changes in FEV1 | rs111720447 | - | discovery = 4.8 × 10−6, replication = 5.9 × 10−5 |
[43] | 107 hospitalized patients | COVID-19 | Dexamethasone | ICU admission, duration of hospitalization, duration of oxygen therapy | rs35599367 | CYP3A4 | 0.01, 0.02, 0.04 |
[45] | 62 patients with UC | IBD | Methylprednisolone, hydrocortisone, or budesonide | GC response (exacerbations or remission) | rs2817033 | FKBP5 | 0.04 |
[45] | 62 patients with UC | IBD | Methylprednisolone, hydrocortisone, or budesonide | GC response (exacerbations or remission) | rs61763106 | MAPK14 | 0.041 |
[45] | 77 patients with CD | IBD | Methylprednisolone, hydrocortisone, or budesonide | GC response (exacerbations or remission) | rs2032583 | ABCB1 | 0.034 |
4. Transcriptomics and Epigenetics of Glucocorticoid Response
5. Proteomics and Metabolomics of Glucocorticoid Response
6. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lundberg, I.E.; Grundtman, C.; Larsson, E.; Klareskog, L. Corticosteroids—From an idea to clinical use. Best Pract. Res. Clin. Rheumatol. 2004, 18, 7–19. [Google Scholar] [CrossRef]
- Ehrchen, J.M.; Roth, J.; Barczyk-Kahlert, K. More than suppression: Glucocorticoid action on monocytes and macrophages. Front. Immunol. 2019, 10, 2028. [Google Scholar] [CrossRef]
- Miyata, M.; Lee, J.Y.; Susuki-Miyata, S.; Wang, W.Y.; Xu, H.; Kai, H.; Kobayashi, K.S.; Flavell, R.A.; Li, J.D. Glucocorticoids suppress inflammation via the upregulation of negative regulator IRAK-M. Nat. Commun. 2015, 6, 6062. [Google Scholar] [CrossRef]
- Liu, D.; Ahmet, A.; Ward, L.; Krishnamoorthy, P.; Mandelcorn, E.D.; Leigh, R.; Brown, J.P.; Cohen, A.; Kim, H. A practical guide to the monitoring and management of the complications of systemic corticosteroid therapy. Allergy Asthma Clin. Immunol. 2013, 9, 30. [Google Scholar] [CrossRef]
- Williams, D.M. Clinical pharmacology of corticosteroids. Respir. Care 2018, 63, 655–670. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J.; Adcock, I.M. Glucocorticoid resistance in inflammatory diseases. Lancet 2009, 373, 1905–1917. [Google Scholar] [CrossRef]
- Dendoncker, K.; Libert, C. Glucocorticoid resistance as a major drive in sepsis pathology. Cytokine Growth Factor Rev. 2017, 35, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Roden, D.M.; George, A.L., Jr. The genetic basis of variability in drug responses. Nat. Rev. Drug Discov. 2002, 1, 37–44. [Google Scholar] [CrossRef]
- Wilson, J.F.; Weale, M.E.; Smith, A.C.; Gratrix, F.; Fletcher, B.; Thomas, M.G.; Bradman, N.; Goldstein, D.B. Population genetic structure of variable drug response. Nat. Genet. 2001, 29, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Hench, P.S.; Kendall, E.C.; Slocumb, C.H.; Polley, H.F. The effect of a hormone of the adrenal cortex (17-hydroxy-11-dehydrocorticosterone; compound E) and of pituitary adrenocorticotropic hormone on rheumatoid arthritis. Proc Staff Meet Mayo Clin 1949, 24, 181–197. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.F.; Toft, D.O. Steroid receptors and their associated proteins. Mol. Endocrinol. 1993, 7, 4–11. [Google Scholar] [PubMed]
- Chen, S.; Smith, D.F. Hop as an adaptor in the heat shock protein 70 (HSP70) and HSP90 chaperone machinery. J. Biol. Chem. 1998, 273, 35194–35200. [Google Scholar] [CrossRef] [PubMed]
- Morishima, Y.; Murphy, P.J.; Li, D.P.; Sanchez, E.R.; Pratt, W.B. Stepwise assembly of a glucocorticoid receptor. HSP90 heterocomplex resolves two sequential ATP-dependent events involving first HSP70 and then HSP90 in opening of the steroid binding pocket. J. Biol. Chem. 2000, 275, 18054–18060. [Google Scholar] [CrossRef] [PubMed]
- Morishima, Y.; Kanelakis, K.C.; Murphy, P.J.; Lowe, E.R.; Jenkins, G.J.; Osawa, Y.; Pratt, W.B. The HSP90 cochaperone p23 is the limiting component of the multiprotein HSP90/HSP70-based chaperone system in vivo where it acts to stabilize the client protein: HSP90 complex. J. Biol. Chem. 2003, 278, 48754–48763. [Google Scholar] [CrossRef]
- Timmermans, S.; Souffriau, J.; Libert, C. A general introduction to glucocorticoid biology. Front. Immunol. 2019, 10, 1545. [Google Scholar] [CrossRef]
- Amratia, D.A.; Viola, H.; Ioachimescu, O.C. Glucocorticoid therapy in respiratory illness: Bench to bedside. J. Investig. Med. 2022, 70, 1662–1680. [Google Scholar] [CrossRef] [PubMed]
- Stahn, C.; Buttgereit, F. Genomic and nongenomic effects of glucocorticoids. Nat. Clin. Pract. Rheumatol. 2008, 4, 525–533. [Google Scholar] [CrossRef]
- Panettieri, R.A.; Schaafsma, D.; Amrani, Y.; Koziol-White, C.; Ostrom, R.; Tliba, O. Non-genomic effects of glucocorticoids: An updated view. Trends Pharmacol. Sci. 2019, 40, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Alangari, A.A. Genomic and non-genomic actions of glucocorticoids in asthma. Ann. Thorac. Med. 2010, 5, 133–139. [Google Scholar] [CrossRef]
- Urbach, V.; Verriere, V.; Grumbach, Y.; Bousquet, J.; Harvey, B.J. Rapid anti-secretory effects of glucocorticoids in human airway epithelium. Steroids 2006, 71, 323–328. [Google Scholar] [CrossRef]
- Sun, H.W.; Liu, L.; Li, M.G.; Jiang, C.L. Rapid inhibitory effect of glucocorticoids on peak of [Ca2+]i and PLC in airway smooth muscle. Zhongguo Ying Yong Sheng Li Xue Za Zhi = Zhongguo Yingyong Shenglixue Zazhi = Chin. J. Appl. Physiol. 2010, 26, 440–443. [Google Scholar]
- Urbach, V.; Walsh, D.E.; Mainprice, B.; Bousquet, J.; Harvey, B.J. Rapid non- genomic inhibition of ATP-induced Cl-secretion by dexamethasone in human bronchial epithelium. J. Physiol. 2002, 545, 869–878. [Google Scholar] [CrossRef]
- Chhabra, S.K.; Khanduja, A.; Jain, D. Decreased sodium-potassium and calcium adenosine triphosphatase activity in asthma: Modulation by inhaled and oral corticosteroids. Indian J. Chest Dis. Allied Sci. 1999, 41, 15–26. [Google Scholar]
- Gardner, J.P.; Zhang, L. Glucocorticoid modulation of Ca2+ homeostasis in human B lymphoblasts. J. Physiol. 1999, 514, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, Y.X.; Zhou, J.; Long, F.; Sun, H.W.; Liu, Y.; Chen, Y.Z.; Jiang, C.L. Rapid non-genomic inhibitory effects of glucocorticoids on human neutrophil degranulation. Inflamm. Res. 2005, 54, 37–41. [Google Scholar] [CrossRef]
- Flaherty, R.L.; Owen, M.; Fagan-Murphy, A.; Intabli, H.; Healy, D.; Patel, A.; Flint, M.S. Glucocorticoids induce production of reactive oxygen species/reactive nitrogen species and DNA damage through an iNOS mediated pathway in breast cancer. Breast Cancer Res. 2017, 19, 35. [Google Scholar] [CrossRef]
- Croxtall, J.D.; Choudhury, Q.; Flower, R.J. Glucocorticoids act within minutes to inhibit recruitment of signalling factors to activated EGF receptors through a receptor-dependent, transcription-independent mechanism. Br. J. Pharmacol. 2000, 130, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Löwenberg, M.; Tuynman, J.; Bilderbeek, J.; Gaber, T.; Buttgereit, F.; van Deventer, S.; Peppelenbosch, M.; Hommes, D. Rapid immunosuppressive effects of glucocorticoids mediated through Lck and Fyn. Blood 2005, 106, 1703–1710. [Google Scholar] [CrossRef] [PubMed]
- Park, O.H.; Do, E.; Kim, Y.K. A new function of glucocorticoid receptor: Regulation of mRNA stability. BMB Rep. 2015, 48, 367. [Google Scholar] [CrossRef]
- Barnes, P.J. Corticosteroid effects on cell signalling. Eur. Respir. J. 2006, 27, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Park, O.H.; Park, J.; Ryu, I.; Kim, J.; Ko, J.; Kim, Y.K. Glucocorticoid receptor interacts with PNRC2 in a ligand-dependent manner to recruit UPF1 for rapid mRNA degradation. Proc. Natl. Acad. Sci. USA 2015, 112, E1540–E1549. [Google Scholar] [CrossRef]
- Ramamoorthy, S.; Cidlowski, J.A. Corticosteroids: Mechanisms of action in health and disease. Rheum. Dis. Clin. 2016, 42, 15–31. [Google Scholar] [CrossRef]
- Cruz-Topete, D.; Cidlowski, J.A. Glucocorticoids: Molecular mechanisms of action. In Immunopharmacology and Inflammation; Riccardi, C., Levi-Schaffer, F., Tiligada, E., Eds.; Springer: Cham, Switzerland, 2018; pp. 249–266. [Google Scholar]
- Oakley, R.H.; Cidlowski, J.A. Cellular processing of the glucocorticoid receptor gene and protein: New mechanisms for generating tissue-specific actions of glucocorticoids. J. Biol. Chem. 2011, 286, 3177–3184. [Google Scholar] [CrossRef]
- Oakley, R.H.; Cidlowski, J.A. The biology of the glucocorticoid receptor: New signaling mechanisms in health and disease. J. Allergy Clin. Immunol. 2013, 132, 1033–1044. [Google Scholar] [CrossRef]
- Kadmiel, M.; Cidlowski, J.A. Glucocorticoid receptor signaling in health and disease. Trends Pharmacol. Sci. 2013, 34, 518–530. [Google Scholar] [CrossRef] [PubMed]
- Nicolaides, N.C.; Chrousos, G. The human glucocorticoid receptor. In Vitamins and Hormones; Academic Press: Cambridge, MA, USA, 2023; Volume 123, pp. 417–438. [Google Scholar]
- Kino, T. Single nucleotide variations of the human GR gene manifested as pathologic mutations or polymorphisms. Endocrinology 2018, 159, 2506–2519. [Google Scholar] [CrossRef]
- van Rossum, E.F.; Koper, J.W.; Van Den Beld, A.W.; Uitterlinden, A.G.; Arp, P.; Ester, W.; Janssen, J.A.M.J.L.; Brinkmann, A.O.; de Jong, F.H.J.; Lamberts, S.W.; et al. Identification of the BclI polymorphism in the glucocorticoid receptor gene: Association with sensitivity to glucocorticoids in vivo and body mass index. Clin. Endocrinol. 2003, 59, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Hauer, D.; Weis, F.; Papassotiropoulos, A.; Schmoeckel, M.; Beiras-Fernandez, A.; Lieke, J.; Kaufmann, I.; Kirchhoff, F.; Vogeser, M.; Schelling, G.; et al. Relationship of a common polymorphism of the glucocorticoid receptor gene to traumatic memories and posttraumatic stress disorder in patients after intensive care therapy. Crit. Care Med. 2011, 39, 643–650. [Google Scholar] [CrossRef]
- Ross, I.L.; Levitt, N.S.; Van der Merwe, L.; Schatz, D.A.; Johannsson, G.; Dandara, C.; Pillay, T.S.; Blom, D.J. Investigation of glucocorticoid receptor polymorphisms in relation to metabolic parameters in Addison’s disease. Eur. J. Endocrinol. 2013, 168, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Russcher, H.; van Rossum, E.F.; de Jong, F.H.; Brinkmann, A.O.; Lamberts, S.W.; Koper, J.W. Increased expression of the glucocorticoid receptor-A translational isoform as a result of the ER22/23EK polymorphism. Mol. Endocrinol. 2005, 19, 1687–1696. [Google Scholar] [CrossRef] [PubMed]
- Štampar, P.; Blagus, T.; Goričar, K.; Bogovič, P.; Turel, G.; Strle, F.; Dolžan, V. Genetic variability in the glucocorticoid pathway and treatment outcomes in hospitalized patients with COVID-19: A pilot study. Front. Pharmacol. 2024, 15, 1418567. [Google Scholar] [CrossRef]
- Gross, K.L.; Lu, N.Z.; Cidlowski, J.A. Molecular mechanisms regulating glucocorticoid sensitivity and resistance. Mol. Cell. Endocrinol. 2009, 300, 7–16. [Google Scholar] [CrossRef]
- Skrzypczak-Zielinska, M.; Gabryel, M.; Marszalek, D.; Dobrowolska, A.; Slomski, R. NGS study of glucocorticoid response genes in inflammatory bowel disease patients. Arch. Med. Sci. 2019, 17, 417. [Google Scholar] [CrossRef]
- Nicolaides, N.C.; Polyzos, A.; Koniari, E.; Lamprokostopoulou, A.; Papageorgiou, I.; Golfinopoulou, E.; Papathanasiou, C.; Sertedaki, A.; Thanos, D.; Charmandari, E.; et al. Transcriptomics in tissue glucocorticoid sensitivity. Eur. J. Clin. Investig. 2019, 49, e13129. [Google Scholar] [CrossRef] [PubMed]
- Nicolaides, N.C.; Ioannidi, M.K.; Koniari, E.; Papageorgiou, I.; Bartzeliotou, A.; Sertedaki, A.; Klapa, M.I.; Charmandari, E. Untargeted plasma metabolomics unravels a metabolic signature for tissue sensitivity to glucocorticoids in healthy subjects: Its implications in dietary planning for a healthy lifestyle. Nutrients 2021, 13, 2120. [Google Scholar] [CrossRef] [PubMed]
- Nicolaides, N.C.; Makridakis, M.; Stroggilos, R.; Lygirou, V.; Koniari, E.; Papageorgiou, I.; Sertedaki, A.; Zoidakis, J.; Charmandari, E. Plasma Proteomics in Healthy Subjects with Differences in Tissue Glucocorticoid Sensitivity Identifies A Novel Proteomic Signature. Biomedicines 2022, 10, 184. [Google Scholar] [CrossRef] [PubMed]
- Tantisira, K.G.; Lasky-Su, J.; Harada, M.; Murphy, A.; Litonjua, A.A.; Himes, B.E.; Lange, C.; Lazarus, R.; Sylvia, J.; Klanderman, B.; et al. Genomewide association between GLCCI1 and response to glucocorticoid therapy in asthma. N. Engl. J. Med. 2011, 365, 1173–1183. [Google Scholar] [CrossRef]
- Chapman, M.S.; Askew, D.J.; Kuscuoglu, U.; Miesfeld, R.L. Transcriptional control of steroid-regulated apoptosis in murine thymoma cells. Mol. Endocrinol. (Baltim. Md.) 1996, 10, 967–978. [Google Scholar]
- Ho, C.Y.; Wong, C.K.; Ko, F.W.; Chan, C.H.; Ho, A.S.; Hui, D.S.; Lam, C.W. Apoptosis and B-cell lymphoma-2 of peripheral blood T lymphocytes and soluble Fas in patients with allergic asthma. Chest 2002, 122, 1751–1758. [Google Scholar] [CrossRef]
- Hu, C.; Xun, Q.; Li, X.; He, R.; Lu, R.; Zhang, S.; Hu, X.; Feng, J. GLCCI1 Variation Is Associated with Asthma Susceptibility and Inhaled Corticosteroid Response in a Chinese Han Population. Arch. Med. Res. 2016, 47, 118–125. [Google Scholar] [CrossRef]
- Izuhara, Y.; Matsumoto, H.; Kanemitsu, Y.; Izuhara, K.; Tohda, Y.; Horiguchi, T.; Kita, H.; Kuwabara, K.; Tomii, K.; Otsuka, K.; et al. GLCCI1 variant accelerates pulmonary function decline in patients with asthma receiving inhaled corticosteroids. Allergy 2014, 69, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Edris, A.; de Roos, E.W.; McGeachie, M.J.; Verhamme, K.M.C.; Brusselle, G.G.; Tantisira, K.G.; Iribarren, C.; Lu, M.; Wu, A.C.; Stricker, B.H.; et al. Pharmacogenetics of inhaled corticosteroids and exacerbation risk in adults with asthma. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol. 2022, 52, 33–45. [Google Scholar] [CrossRef]
- Park, T.J.; Park, J.S.; Cheong, H.S.; Park, B.L.; Kim, L.H.; Heo, J.S.; Kim, Y.K.; Kim, K.U.; Uh, S.T.; Lee, H.S.; et al. Genome-wide association study identifies ALLC polymorphisms correlated with FEV₁ change by corticosteroid. Clin. Chim. Acta Int. J. Clin. Chem. 2014, 436, 20–26. [Google Scholar] [CrossRef]
- Vigetti, D.; Pollegioni, L.; Monetti, C.; Prati, M.; Bernardini, G.; Gornati, R. Property comparison of recombinant amphibian and mammalian allantoicases. FEBS Lett. 2002, 512, 323–328. [Google Scholar] [CrossRef]
- Howard, T.D.; Postma, D.S.; Hawkins, G.A.; Koppelman, G.H.; Zheng, S.L.; Wysong, A.K.; Xu, J.; Meyers, D.A.; Bleecker, E.R. Fine mapping of an IgE-controlling gene on chromosome 2q: Analysis of CTLA4 and CD28. J. Allergy Clin. Immunol. 2002, 110, 743–751. [Google Scholar] [CrossRef]
- Repapi, E.; Sayers, I.; Wain, L.V.; Burton, P.R.; Johnson, T.; Obeidat, M.E.; Zhao, J.H.; Ramasamy, A.; Zhai, G.; Tobin, M.D.; et al. Genome-wide association study identifies five loci associated with lung function. Nat. Genet. 2010, 42, 36–44. [Google Scholar] [CrossRef]
- Chrousos, G. The hypothalamic–pituitary–adrenal axis and immune-mediated inflammation. N. Engl. J. Med. 1995, 332, 1351–1363. [Google Scholar] [CrossRef]
- Tantisira, K.G.; Lake, S.; Silverman, E.S.; Palmer, L.J.; Lazarus, R.; Silverman, E.K.; Liggett, S.B.; Gelfand, E.W.; Rosenwasser, L.J.; Weiss, S.T. Corticosteroid pharmacogenetics: Association of sequence variants in CRHR1 with improved lung function in asthmatics treated with inhaled corticosteroids. Hum. Mol. Genet. 2004, 13, 1353–1359. [Google Scholar] [CrossRef] [PubMed]
- Mougey, E.B.; Chen, C.; Tantisira, K.G.; Blake, K.V.; Peters, S.P.; Wise, R.A.; Weiss, S.T.; Lima, J.J. Pharmacogenetics of asthma controller treatment. Pharmacogenomics J. 2013, 13, 242–250. [Google Scholar] [CrossRef]
- Rogers, A.J.; Tantisira, K.G.; Fuhlbrigge, A.L.; Litonjua, A.A.; Lasky-Su, J.A.; Szefler, S.J.; Strunk, R.C.; Zeiger, R.S.; Weiss, S.T. Predictors of poor response during asthma therapy differ with definition of outcome. Pharmacogenomics 2009, 10, 1231–1242. [Google Scholar] [CrossRef]
- Koster, E.S.; Maitland-van der Zee, A.H.; Tavendale, R.; Mukhopadhyay, S.; Vijverberg, S.J.H.; Raaijmakers, J.A.M.; Palmer, C.N.A. FCER2 T2206C variant associated with chronic symptoms and exacerbations in steroid-treated asthmatic children. Allergy 2011, 66, 1546–1552. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lear, T.; Zhao, Y.; Zhao, J.; Zou, C.; Chen, B.B.; Mallampalli, R.K. F-box protein Fbxl18 mediates polyubiquitylation and proteasomal degradation of the pro-apoptotic SCF subunit Fbxl7. Cell Death Dis. 2015, 6, e1630. [Google Scholar] [CrossRef] [PubMed]
- Park, H.W.; Dahlin, A.; Tse, S.; Duan, Q.L.; Schuemann, B.; Martinez, F.D.; Peters, S.P.; Szefler, S.J.; Lima, J.J.; Tantisira, K.G.; et al. Genetic predictors associated with improvement of asthma symptoms in response to inhaled corticosteroids. J. Allergy Clin. Immunol. 2014, 133, 664–669. [Google Scholar] [CrossRef]
- Bélanger, F.; Stepinski, J.; Darzynkiewicz, E.; Pelletier, J. Characterization of hMTr1, a human Cap1 2′-O-ribose methyltransferase. J. Biol. Chem. 2010, 285, 33037–33044. [Google Scholar] [CrossRef]
- Dahlin, A.; Denny, J.; Roden, D.M.; Brilliant, M.H.; Ingram, C.; Kitchner, T.E.; Linneman, J.G.; Shaffer, C.M.; Weeke, P.; Wu, A.C.; et al. CMTR1 is associated with increased asthma exacerbations in patients taking inhaled corticosteroids. Immun. Inflamm. Dis. 2015, 3, 350–359. [Google Scholar] [CrossRef]
- Dahlin, A.; Sordillo, J.E.; McGeachie, M.; Kelly, R.S.; Tantisira, K.G.; Lutz, S.M.; Lasky-Su, J.; Wu, A.C. Genome-wide interaction study reveals age-dependent determinants of responsiveness to inhaled corticosteroids in individuals with asthma. PLoS ONE 2020, 15, e0229241. [Google Scholar] [CrossRef]
- Wang, A.L.; Lahousse, L.; Dahlin, A.; Edris, A.; McGeachie, M.; Lutz, S.M.; Sordillo, J.E.; Brusselle, G.; Lasky-Su, J.; Wu, A.C.; et al. Novel genetic variants associated with inhaled corticosteroid treatment response in older adults with asthma. Thorax 2023, 78, 432–441. [Google Scholar] [CrossRef]
- Hernandez-Pacheco, N.; Farzan, N.; Francis, B.; Karimi, L.; Repnik, K.; Vijverberg, S.J.; Soares, P.; Schieck, M.; Gorenjak, M.; Pino-Yanes, M.; et al. Genome-wide association study of inhaled corticosteroid response in admixed children with asthma. Clin. Exp. Allergy 2019, 49, 789–798. [Google Scholar] [CrossRef]
- Park, H.W.; Ge, B.; Tse, S.; Grundberg, E.; Pastinen, T.; Kelly, H.W.; Tantisira, K.G. Genetic risk factors for decreased bone mineral accretion in children with asthma receiving multiple oral corticosteroid bursts. J. Allergy Clin. Immunol. 2015, 136, 1240–1246. [Google Scholar] [CrossRef]
- Kelly, H.W.; Van Natta, M.L.; Covar, R.A.; Tonascia, J.; Green, R.P.; Strunk, R.C.; CAMP Research Group. Effect of long-term corticosteroid use on bone mineral density in children: A prospective longitudinal assessment in the childhood Asthma Management Program (CAMP) study. Pediatrics 2008, 122, e53–e61. [Google Scholar] [CrossRef]
- Tse, S.M.; Kelly, H.W.; Litonjua, A.A.; Van Natta, M.L.; Weiss, S.T.; Tantisira, K.G.; Childhood Asthma Management Program Research Group. Corticosteroid use and bone mineral accretion in children with asthma: Effect modification by vitamin D. J. Allergy Clin. Immunol. 2012, 130, 53–60. [Google Scholar] [CrossRef]
- Hawcutt, D.B.; Francis, B.; Carr, D.F.; Jorgensen, A.L.; Yin, P.; Wallin, N.; Natalie O’Hara; Zhang, E.J.; Bloch, K.M.; Pirmohamed, M. Susceptibility to corticosteroid-induced adrenal suppression: A genome-wide association study. Lancet Respir. Med. 2018, 6, 442–450. [Google Scholar] [CrossRef]
- Kawedia, J.D.; Kaste, S.C.; Pei, D.; Panetta, J.C.; Cai, X.; Cheng, C.; Neale, G.; Howard, S.C.; Evans, W.E.; Relling, M.V.; et al. Pharmacokinetic, pharmacodynamic, and pharmacogenetic determinants of osteonecrosis in children with acute lymphoblastic leukemia. Blood J. Am. Soc. Hematol. 2011, 117, 2340–2347. [Google Scholar] [CrossRef]
- Mattano, L.A.; Devidas, M.; Nachman, J.B.; Sather, H.N.; Hunger, S.P.; Steinherz, P.G.; Gaynon, P.S.; Seibel, N.L.; Children’s Oncology Group. Effect of alternate-week versus continuous dexamethasone scheduling on the risk of osteonecrosis in paediatric patients with acute lymphoblastic leukaemia: Results from the CCG-1961 randomised cohort trial. Lancet Oncol. 2012, 13, 906–915. [Google Scholar] [CrossRef]
- Karol, S.E.; Yang, W.; Van Driest, S.L.; Chang, T.Y.; Kaste, S.; Bowton, E.; Basford, M.; Bastarache, L.; Roden, D.M.; Relling, M.V.; et al. Genetics of glucocorticoid-associated osteonecrosis in children with acute lymphoblastic leukemia. Blood J. Am. Soc. Hematol. 2015, 126, 1770–1776. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, L.B.; Pounds, S.; Cheng, C.; Cao, X.; Yang, W.; Smith, C.; Karol, S.E.; Liu, C.; Panetta, J.C.; Relling, M.V.; et al. Genetics of pleiotropic effects of dexamethasone. Pharmacogenetics Genom. 2017, 27, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, T.; Urayama, K.Y.; Watanabe, A.; Akahane, K.; Goi, K.; Huang, M.; Kagami, K.; Abe, M.; Sugita, K.; Inukai, T.; et al. Inherited genetic variants associated with glucocorticoid sensitivity in leukaemia cells. J. Cell. Mol. Med. 2020, 24, 12920–12932. [Google Scholar] [CrossRef]
- Jalkanen, J.; Khan, S.; Elima, K.; Huttunen, T.; Wang, N.; Hollmén, M.; Elo, L.L.; Jalkanen, S. Polymorphism in interferon alpha/beta receptor contributes to glucocorticoid response and outcome of ARDS and COVID-19. Crit. Care 2023, 27, 112. [Google Scholar] [CrossRef] [PubMed]
- Obeidat, M.E.; Faiz, A.; Li, X.; Van Den Berge, M.; Hansel, N.N.; Joubert, P.; Hao, K.; Brandsma, C.-A.; Rafaels, N.; Sin, D.D.; et al. The pharmacogenomics of inhaled corticosteroids and lung function decline in COPD. Eur. Respir. J. 2019, 54, 1900521. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, B.; Hong, W.; Zeng, J.; He, X.; Chen, J.; Zheng, H.; Qiu, S.; Deng, Y.; Zhang, Y.; et al. Associations of clinical characteristics and treatment regimens with the duration of viral RNA shedding in patients with COVID-19. Int. J. Infect. Dis. 2020, 98, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Chen, Y.; Yuan, J.; Yi, P.; Ding, C.; Wu, W.; Li, Y.; Ni, Q.; Zou, R.; Li, L.; et al. Factors associated with prolonged viral RNA shedding in patients with coronavirus disease 2019 (COVID-19). Clin. Infect. Dis. 2020, 71, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Budhathoki, P.; Shrestha, D.B.; Rawal, E.; Khadka, S. Corticosteroids in COVID-19: Is it rational? A systematic review and meta-analysis. SN Compr. Clin. Med. 2020, 2, 2600–2620. [Google Scholar] [CrossRef]
- Singanayagam, A.; Glanville, N.; Girkin, J.L.; Ching, Y.M.; Marcellini, A.; Porter, J.D.; Toussaint, M.; Walton, R.P.; Finney, L.J.; Johnston, S.L.; et al. Corticosteroid suppression of antiviral immunity increases bacterial loads and mucus production in COPD exacerbations. Nat. Commun. 2018, 9, 2229. [Google Scholar] [CrossRef]
- Davenport, E.E.; Burnham, K.L.; Radhakrishnan, J.; Humburg, P.; Hutton, P.; Mills, T.C.; Rautanen, A.; Gordon, A.C.; Garrard, C.; Knight, J.C.; et al. Genomic landscape of the individual host response and outcomes in sepsis: A prospective cohort study. Lancet Respir. Med. 2016, 4, 259–271. [Google Scholar] [CrossRef]
- Antcliffe, D.B.; Burnham, K.L.; Al-Beidh, F.; Santhakumaran, S.; Brett, S.J.; Hinds, C.J.; Ashby, D.; Knight, J.C.; Gordon, A.C. Transcriptomic signatures in sepsis and a differential response to steroids. From the VANISH randomized trial. Am. J. Respir. Crit. Care Med. 2019, 199, 980–986. [Google Scholar] [CrossRef]
- Baines, K.J.; Simpson, J.L.; Wood, L.G.; Scott, R.J.; Fibbens, N.L.; Powell, H.; Cowan, D.C.; Taylor, D.R.; Cowan, J.O.; Gibson, P.G. Sputum gene expression signature of 6 biomarkers discriminates asthma inflammatory phenotypes. J. Allergy Clin. Immunol. 2014, 133, 997–1007. [Google Scholar] [CrossRef]
- Berthon, B.S.; Gibson, P.G.; Wood, L.G.; MacDonald-Wicks, L.K.; Baines, K.J. A sputum gene expression signature predicts oral corticosteroid response in asthma. Eur. Respir. J. 2017, 49, 1700180. [Google Scholar] [CrossRef]
- Ditz, B.; Sarma, A.; Kerstjens, H.A.; Liesker, J.J.; Bathoorn, E.; Vonk, J.M.; Bernal, V.; Horvatovich, P.; Guryev, V.; van den Berge, M.; et al. The sputum transcriptome better predicts COPD exacerbations after the withdrawal of inhaled corticosteroids than sputum eosinophils. ERJ Open Res. 2021, 7, 97–2021. [Google Scholar] [CrossRef]
- Kuo, C.H.S.; Pavlidis, S.; Loza, M.; Baribaud, F.; Rowe, A.; Pandis, I.; Sousa, A.; Corfield, J.; Djukanovic, R.; Chung, K.F.; et al. T-helper cell type 2 (Th2) and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in U-BIOPRED. European Respir. J. 2017, 49, 1602135. [Google Scholar] [CrossRef] [PubMed]
- Faiz, A.; Pavlidis, S.; Kuo, C.H.; Rowe, A.; Hiemstra, P.S.; Timens, W.; Berg, M.; Wisman, M.; Guo, Y.-K.; Van Den Berge, M.; et al. Th2 high and mast cell gene signatures are associated with corticosteroid sensitivity in COPD. Thorax 2023, 78, 335–343. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, W.; Zha, Y.; Wang, X.; Wang, L.; Han, J.; Zhang, J.; Lv, W. Transcriptomic and Lipidomic Profiles in Nasal Polyps of Glucocorticoid Responders and Non-Responders: Before and After Treatment. Front. Pharmacol. 2022, 12, 814953. [Google Scholar] [CrossRef]
- Woodruff, P.G.; Boushey, H.A.; Dolganov, G.M.; Barker, C.S.; Yang, Y.H.; Donnelly, S.; Ellwanger, A.; Sidhu, S.S.; Dao-Pick, T.P.; Fahy, J.V.; et al. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc. Natl. Acad. Sci. USA 2007, 104, 15858–15863. [Google Scholar] [CrossRef] [PubMed]
- Davies, T.H.; Ning, Y.M.; Sánchez, E.R. A new first step in activation of steroid receptors: Hormone-induced switching of FKBP51 and FKBP52 immunophilins. J. Biol. Chem. 2002, 277, 4597–4600. [Google Scholar] [CrossRef] [PubMed]
- Holleman, A.; Cheok, M.H.; den Boer, M.L.; Yang, W.; Veerman, A.J.; Kazemier, K.M.; Pei, D.; Cheng, C.; Pui, C.-H.; Evans, W.E.; et al. Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N. Engl. J. Med. 2004, 351, 533–542. [Google Scholar] [CrossRef]
- Paugh, S.W.; Bonten, E.J.; Savic, D.; Ramsey, L.B.; Thierfelder, W.E.; Gurung, P.; Malireddi, R.K.S.; Actis, M.; Mayasundari, A.; Evans, W.E.; et al. NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells. Nat. Genet. 2015, 47, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.L.; Qiu, W.; DeMeo, D.L.; Raby, B.A.; Weiss, S.T.; Tantisira, K.G. DNA methylation is associated with improvement in lung function on inhaled corticosteroids in pediatric asthmatics. Pharmacogenetics Genom. 2019, 29, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.L.; Gruzieva, O.; Qiu, W.; Kebede Merid, S.; Celedón, J.C.; Raby, B.A.; Söderhäll, C.; DeMeo, D.L.; Weiss, S.T.; Tantisira, K.G.; et al. DNA methylation is associated with inhaled corticosteroid response in persistent childhood asthmatics. Clin. Exp. Allergy 2019, 49, 1225–1234. [Google Scholar] [CrossRef]
- Giordano, R.; Picu, A.; Bonelli, L.; Broglio, F.; Prodam, F.; Grottoli, S.; Ghigo, E.; Arvat, E. The activation of somatostatinergic receptors by either somatostatin-14 or cortistatin-17 often inhibits ACTH hypersecretion in patients with Cushing’s disease. Eur. J. Endocrinol. 2007, 157, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Rey, E.; Pedreño, M.; Delgado-Maroto, V.; Souza-Moreira, L.; Delgado, M. Lulling immunity, pain, and stress to sleep with cortistatin. Ann. N. Y. Acad. Sci. 2015, 1351, 89–98. [Google Scholar] [CrossRef]
- Wang, H.; Gottfries, J.; Barrenäs, F.; Benson, M. Identification of novel biomarkers in seasonal allergic rhinitis by combining proteomic, multivariate and pathway analysis. PLoS ONE 2011, 6, e23563. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Kham, S.K.Y.; Koh, G.S.; Lim, J.Y.S.; Ariffin, H.; Chew, F.T.; Yeoh, A.E.J. Identification of prognostic protein biomarkers in childhood acute lymphoblastic leukemia (ALL). J. Proteom. 2011, 74, 843–857. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, L.; Evans, C.A.; Matheson, E.; Minto, L.; Keilty, C.; Sanichar, M.; Case, M.; Schwab, C.; Williamson, D.; Irving, J.A.; et al. Quantitative proteomic analysis reveals maturation as a mechanism underlying glucocorticoid resistance in B lineage ALL and re-sensitization by JNK inhibition. Br. J. Haematol. 2015, 171, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Bordag, N.; Klie, S.; Jürchott, K.; Vierheller, J.; Schiewe, H.; Albrecht, V.; Tonn, J.-C.; Schwartz, C.; Schichor, C.; Selbig, J. Glucocorticoid (dexamethasone)-induced metabolome changes in healthy males suggest prediction of response and side effects. Sci. Rep. 2015, 5, 15954. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.H.; Fitzpatrick, A.M.; Medriano, C.A.; Jones, D. High-resolution metabolomics to identify urine biomarkers in corticosteroid-resistant asthmatic children. J. Allergy Clin. Immunol. 2017, 139, 1518–1524. [Google Scholar] [CrossRef]
- Kachroo, P.; Sordillo, J.E.; Lutz, S.M.; Weiss, S.T.; Kelly, R.S.; McGeachie, M.J.; Wu, A.C.; Lasky-Su, J.A. Pharmaco-metabolomics of inhaled corticosteroid response in individuals with asthma. J. Pers. Med. 2021, 11, 1148. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef]
- Choi, S.W.; Mak, T.S.H.; O’Reilly, P.F. Tutorial: A guide to performing polygenic risk score analyses. Nat. Protoc. 2020, 15, 2759–2772. [Google Scholar] [CrossRef]
- Chakraborty, S.; Hosen, M.I.; Ahmed, M.; Shekhar, H.U. Onco-multi-OMICS approach: A new frontier in cancer research. BioMed Res. Int. 2018, 2018, 9836256. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wang, J.; Wang, X.; Zhu, J.; Liu, Q.; Shi, Z.; Chambers, M.C.; Zimmerman, L.J.; Shaddox, K.F.; Liebler, D.C.; et al. Proteogenomic characterization of human colon and rectal cancer. Nature 2014, 513, 382–387. [Google Scholar] [CrossRef]
- Ren, S.; Shao, Y.; Zhao, X.; Hong, C.S.; Wang, F.; Lu, X.; Li, J.; Ye, G.; Yan, M.; Sun, Y.; et al. Integration of metabolomics and transcriptomics reveals major metabolic pathways and potential biomarker involved in prostate cancer. Mol. Cell. Proteom. 2016, 15, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Millar, J.E.; Craven, T.H.; Shankar-Hari, M. Steroids and Immunomodulatory Therapies for Acute Respiratory Distress Syndrome. Clin. Chest Med. 2024, 45, 885–894. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jiang, W.; He, Q.; Wang, C.; Liu, B.; Zhou, P.; Dong, N.; Tong, Q. Early, low-dose and short-term application of corticosteroid treatment in patients with severe COVID-19 pneumonia: Single-center experience from Wuhan, China. MedRxiv 2020. [Google Scholar] [CrossRef]
- Chaudhuri, D.; Sasaki, K.; Karkar, A.; Sharif, S.; Lewis, K.; Mammen, M.J.; Alexander, P.; Ye, Z.; Lozano, L.E.C.; Rochwerg, B.; et al. Corticosteroids in COVID-19 and non-COVID-19 ARDS: A systematic review and meta-analysis. Intensive Care Med. 2021, 47, 521–537. [Google Scholar] [CrossRef]
- RECOVERY Collaborative GrouDexamethasone in hospitalized patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramirez-Falcon, M.; Suarez-Pajes, E.; Flores, C. Defining the Differential Corticosteroid Response Basis from Multiple Omics Approaches. Int. J. Mol. Sci. 2024, 25, 13611. https://doi.org/10.3390/ijms252413611
Ramirez-Falcon M, Suarez-Pajes E, Flores C. Defining the Differential Corticosteroid Response Basis from Multiple Omics Approaches. International Journal of Molecular Sciences. 2024; 25(24):13611. https://doi.org/10.3390/ijms252413611
Chicago/Turabian StyleRamirez-Falcon, Melody, Eva Suarez-Pajes, and Carlos Flores. 2024. "Defining the Differential Corticosteroid Response Basis from Multiple Omics Approaches" International Journal of Molecular Sciences 25, no. 24: 13611. https://doi.org/10.3390/ijms252413611
APA StyleRamirez-Falcon, M., Suarez-Pajes, E., & Flores, C. (2024). Defining the Differential Corticosteroid Response Basis from Multiple Omics Approaches. International Journal of Molecular Sciences, 25(24), 13611. https://doi.org/10.3390/ijms252413611