Multiple Myeloma: Genetic and Epigenetic Biomarkers with Clinical Potential
<p>Hierarchical cluster analysis between 16 multiple myeloma (MM) cases and six non-cancerous blood diseases (NCBD) cases for the microRNAs (miRNAs) that were chosen for validation by RT-PCR in the analyzed groups. Each column represents the expression of a miRNA, and each row denotes a nucleic acid sample. Yellow: upregulated miRNA; blue: downregulated miRNA; green: minor changes; red: a graphical representation of a group of samples.</p> "> Figure 2
<p>Comparative analysis of gene expression levels between multiple myeloma (MM) (n = 45) and non-cancerous samples (NCBD) (n = 43). The figure presents the median value, upper and lower quartiles, non-outlier range, and outliers appearing as circles.</p> "> Figure 3
<p>Comparative analysis of gene expression levels between multiple myeloma samples of patients with favorable (n = 28) and unfavorable (n = 17) prognosis. The figure presents the median value, upper and lower quartiles, non-outlier range, and outliers appearing as circles.</p> "> Figure 4
<p>ROC analysis for the (<b>A</b>) <span class="html-italic">CRISP3</span>, (<b>B</b>) <span class="html-italic">TIMP1</span>, and (<b>C</b>) <span class="html-italic">CRISP3</span>/<span class="html-italic">TIMP1</span> genes. AUC, sensitivity (Sn), and specificity (Sp) values are indicated. Red line is a diagonal support line, blue is a ROC curve.</p> "> Figure 4 Cont.
<p>ROC analysis for the (<b>A</b>) <span class="html-italic">CRISP3</span>, (<b>B</b>) <span class="html-italic">TIMP1</span>, and (<b>C</b>) <span class="html-italic">CRISP3</span>/<span class="html-italic">TIMP1</span> genes. AUC, sensitivity (Sn), and specificity (Sp) values are indicated. Red line is a diagonal support line, blue is a ROC curve.</p> "> Figure 5
<p>Interactions between microRNAs(miRNAs) and their target genes. Blue squares represent miRNAs, and purple circles indicate their target genes.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Epigenetic Biomarkers in Multiple Myeloma
2.2. Genetic Biomarkers in Multiple Myeloma
2.3. Bioinformatics Analysis of MiRNA–MRNA Interaction
3. Discussion
4. Materials and Methods
4.1. Clinical Samples
4.2. Isolation of Total RNA from Fine-Needle Aspiration Cytological Specimens
4.3. RNA Sequencing
4.4. Validation of RNA Sequencing Results by RT-qPCR Analysis
4.5. Gene Expression Analysis by RT-qPCR Method
4.6. Reverse Transcription
4.7. Real-Time PCR
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Utley, A.; Lipchick, B.; Lee, K.P.; Nikiforov, M.A. Targeting Multiple Myeloma through the Biology of Long-Lived Plasma Cells. Cancers 2020, 12, 2117. [Google Scholar] [CrossRef] [PubMed]
- Bird, S.A.; Boyd, K. Multiple myeloma: An overview of management. Palliat. Care Soc. Pract. 2019, 13, 1178224219868235. [Google Scholar] [CrossRef]
- Wiedmeier-Nutor, J.E.; Bergsagel, P.L. Review of Multiple Myeloma Genetics including Effects on Prognosis, Response to Treatment, and Diagnostic Workup. Life 2022, 12, 812. [Google Scholar] [CrossRef] [PubMed]
- Cardona-Benavides, I.J.; de Ramón, C.; Gutiérrez, N.C. Genetic Abnormalities in Multiple Myeloma: Prognostic and Therapeutic Implications. Cells 2021, 10, 336. [Google Scholar] [CrossRef]
- Kumar, S.K.; Rajkumar, S.V. The multiple myelomas—Current concepts in cytogenetic classification and therapy. Nat. Rev. Clin. Oncol. 2018, 15, 409–421. [Google Scholar] [CrossRef] [PubMed]
- Walker, B.A.; Leone, P.E.; Chiecchio, L.; Dickens, N.J.; Jenner, M.W.; Boyd, K.D.; Johnson, D.C.; Gonzalez, D.; Dagrada, G.P.; Protheroe, R.K.; et al. A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. Blood 2010, 116, e56–e65. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xu, S.W.; Zhu, X.Y.; Guo, Q.Y.; Zhu, M.; Mao, X.L.; Chen, Y.H.; Li, S.W.; Luo, W.D. Identification and Validation of a Novel RNA-Binding Protein-Related Gene-Based Prognostic Model for Multiple Myeloma. Front. Genet. 2021, 12, 665173. [Google Scholar] [CrossRef] [PubMed]
- Soliman, A.M.; Lin, T.S.; Mahakkanukrauh, P.; Das, S. Role of microRNAs in Diagnosis, Prognosis and Management of Multiple Myeloma. Int. J. Mol. Sci. 2020, 21, 7539. [Google Scholar] [CrossRef]
- Davis-Dusenbery, B.N.; Hata, A. MicroRNA in Cancer: The Involvement of Aberrant MicroRNA Biogenesis Regulatory Pathways. Genes Cancer 2010, 1, 1100–1114. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Xia, T.; Ling, Y.; Chen, B. MiRNAs with prognostic significance in multiple myeloma: A systemic review and meta-analysis. Medicine 2019, 98, e16711. [Google Scholar] [CrossRef] [PubMed]
- Puła, A.; Robak, P.; Jarych, D.; Mikulski, D.; Misiewicz, M.; Drozdz, I.; Fendler, W.; Szemraj, J.; Robak, T. The Relationship between Serum miRNAs and Early Mortality in Multiple Myeloma Patients Treated with Bortezomib-Based Regimens. Int. J. Mol. Sci. 2023, 24, 2938. [Google Scholar] [CrossRef]
- Che, F.; Wan, C.; Dai, J.; Chen, J. Increased expression of miR-27 predicts poor prognosis and promotes tumorigenesis in human multiple myeloma. Biosci. Rep. 2019, 39, BSR20182502. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Zhang, R.; Qu, X.; Zhao, M.; Zhang, S.; Wu, H.; Jianyong, L.; Chen, L. MiR-15a, miR-16-1 and miR-17-92 cluster expression are linked to poor prognosis in multiple myeloma. Leuk. Res. 2012, 36, 1505–1509. [Google Scholar] [CrossRef] [PubMed]
- Corre, J.; Munshi, N.C.; Avet-Loiseau, H. Risk factors in multiple myeloma: Is it time to reconsider? Blood 2021, 137, 16–19. [Google Scholar] [CrossRef] [PubMed]
- Bębnowska, D.; Hrynkiewicz, R.; Grywalska, E.; Pasiarski, M.; Sosnowska-Pasiarska, B.; Smarz-Widelska, I.; Góźdź, S.; Roliński, J.; Niedźwiedzka-Rystwej, P. Immunological Prognostic Factors in Multiple Myeloma. Int. J. Mol. Sci. 2021, 22, 3587. [Google Scholar] [CrossRef] [PubMed]
- Caro, J.; Al Hadidi, S.; Usmani, S.; Yee, A.J.; Raje, N.; Davies, F.E. How to treat high-risk myeloma at diagnosis and relapse. Am. Soc. Clin. Oncol. Ed. Book. 2021, 41, 291–309. [Google Scholar] [CrossRef] [PubMed]
- Pawlyn, C.; Cairns, D.; Kaiser, M.; Striha, A.; Jones, J.; Shah, V.; Jenner, M.; Drayson, M.; Owen, R.; Gregory, W.; et al. The relative importance of factors predicting outcome for myeloma patients at different ages: Results from 3894 patients in the Myeloma XI trial. Leukemia 2020, 34, 604–612. [Google Scholar] [CrossRef]
- Pawlyn, C.; Davies, F.E. Toward personalized treatment in multiple myeloma based on molecular characteristics. Blood 2019, 133, 660–675. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Gao, Z.; Guan, M.; Liu, N.; Meng, F.; Wang, G. ASF1B Promotes Oncogenesis in Lung Adenocarcinoma and Other Cancer Types. Front. Oncol. 2021, 11, 731547. [Google Scholar] [CrossRef] [PubMed]
- Pon, J.R.; Marra, M.A. MEF2 transcription factors: Developmental regulators and emerging cancer genes. Oncotarget 2016, 7, 2297–2312. [Google Scholar] [CrossRef]
- Cha, J.H.; Chan, L.C.; Li, C.W.; Hsu, J.L.; Hung, M.C. Mechanisms Controlling PD-L1 Expression in Cancer. Mol. Cell 2019, 76, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Tachibana, K.; Yamasaki, D.; Ishimoto, K.; Doi, T. The Role of PPARs in Cancer. PPAR Res. 2008, 2008, 102737. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhao, C.; Ye, Y.; Wang, Z.; He, Y.; Li, Y.; Mao, H. High expression of fibronectin 1 indicates poor prognosis in gastric cancer. Oncol. Lett. 2020, 19, 93–102. [Google Scholar] [CrossRef]
- Dratwa, M.; Wysoczańska, B.; Łacina, P.; Kubik, T.; Bogunia-Kubik, K. TERT-Regulation and Roles in Cancer Formation. Front. Immunol. 2020, 11, 589929. [Google Scholar] [CrossRef]
- Yan, W.; Huang, J.; Zhang, Q.; Zhang, J. Role of Metastasis Suppressor KAI1/CD82 in Different Cancers. J. Oncol. 2021, 2021, 9924473. [Google Scholar] [CrossRef] [PubMed]
- Duch, P.; Díaz-Valdivia, N.; Ikemori, R.; Gabasa, M.; Radisky, E.S.; Arshakyan, M.; Gea-Sorlí, S.; Mateu-Bosch, A.; Bragado, P.; Carrasco, J.L.; et al. Aberrant TIMP-1 overexpression in tumor-associated fibroblasts drives tumor progression through CD63 in lung adenocarcinoma. Matrix Biol. 2022, 111, 207–225. [Google Scholar] [CrossRef] [PubMed]
- Cintra, R.C.; Céspedes, A.G.; Conceição, M.P.F.; Oliveira, M.V.A.S.; Buron, A.; Rodrigues das Neves, D.; Moraes, F.A.; Gamarra, O.M.; Rodrigues de Bastos, D. Computational insights into CRISP3 downregulation in cervical cancer and its cervical lineages pattern. Precis. Clin. Med. 2024, 7, pbae016. [Google Scholar] [CrossRef]
- Guimaraes, D.P.; Hainaut, P. TP53: A key gene in human cancer. Biochimie 2002, 84, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, H.; Yi, S.; Gu, L.; Zhou, M. Mutual regulation of MDM4 and TOP2A in cancer cell proliferation. Mol. Oncol. 2019, 13, 1047–1058. [Google Scholar] [CrossRef]
- Barwick, B.G.; Gupta, V.A.; Vertino, P.M.; Boise, L.H. Cell of Origin and Genetic Alterations in the Pathogenesis of Multiple Myeloma. Front Immunol. 2019, 10, 1121. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Liu, D.; Li, L. PD-1/PD-L1 pathway: Current researches in cancer. Am. J. Cancer Res. 2020, 10, 727–742. [Google Scholar] [PubMed]
- Tamura, H.; Ishibashi, M.; Sunakawa-Kii, M.; Inokuchi, K. PD-L1-PD-1 Pathway in the Pathophysiology of Multiple Myeloma. Cancers 2020, 12, 924. [Google Scholar] [CrossRef] [PubMed]
- Motomura, W.; Okumura, T.; Takahashi, N.; Obara, T.; Kohgo, Y. Activation of peroxisome proliferator-activated receptor gamma by troglitazone inhibits cell growth through the increase of p27KiP1 in human. Pancreatic carcinoma cells. Cancer Res. 2000, 60, 5558–5564. [Google Scholar]
- Garcia-Bates, T.M.; Bernstein, S.H.; Phipps, R.P. Peroxisome proliferator-activated receptor gamma overexpression suppresses growth and induces apoptosis in human multiple myeloma cells. Clin. Cancer Res. 2008, 14, 6414–6425. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.X.; Luo, J.H.; Wu, L.Q. FN1 overexpression is correlated with unfavorable prognosis and immune infiltrates in breast cancer. Front. Genet. 2022, 13, 913659. [Google Scholar] [CrossRef] [PubMed]
- Geng, Q.S.; Huang, T.; Li, L.F.; Shen, Z.B.; Xue, W.H.; Zhao, J. Over-Expression and Prognostic Significance of FN1, Correlating with Immune Infiltrates in Thyroid Cancer. Front. Med. 2022, 8, 812278. [Google Scholar] [CrossRef]
- Ma, J.; Chen, S.; Su, M.; Wang, W. High FN1 expression is associated with poor survival in esophageal squamous cell carcinoma. Medicine 2023, 102, e33388. [Google Scholar] [CrossRef] [PubMed]
- Tancred, T.M.; Belch, A.R.; Reiman, T.; Pilarski, L.M.; Kirshner, J. Altered expression of fibronectin and collagens I and IV in multiple myeloma and monoclonal gammopathy of undetermined significance. J. Histochem. Cytochem. 2009, 57, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Larsson, C.; Xu, D. Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: Old actors and new players. Oncogene 2019, 38, 6172–6183. [Google Scholar] [CrossRef]
- Aref, S.; Al Saeed, A.; El Menshawy, N.; Abdalla, D.; El Ashery, M. Prognostic relevance of telomere length and telomerase reverse transcriptase variant (rs2242652) on the multiple myeloma patients. J. Clin. Lab. Anal. 2020, 34, e23133. [Google Scholar] [CrossRef] [PubMed]
- Malik, F.A.; Sanders, A.J.; Jiang, W.G. KAI-1/CD82, the molecule and clinical implication in cancer and cancer metastasis. Histol. Histopathol. 2009, 24, 519–530. [Google Scholar] [PubMed]
- Tohami, T.; Drucker, L.; Shapiro, H.; Radnay, J.; Lishner, M. Overexpression of tetraspanins affects multiple myeloma cell survival and invasive potential. FASEB J. 2007, 21, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Zhang, L.Y.; Xiang, Y.H.; Li, D.; Zhang, J. Matrix metalloproteinases and tissue inhibitors in multiple myeloma: Promote or inhibit? Front. Oncol. 2023, 13, 1127407. [Google Scholar] [CrossRef]
- Brew, K.; Nagase, H. The tissue inhibitors of metalloproteinases (TIMPs): An ancient family with structural and functional diversity. Biochim. Biophys. Acta 2010, 1803, 55–71. [Google Scholar] [CrossRef]
- Song, G.; Xu, S.; Zhang, H.; Wang, Y.; Xiao, C.; Jiang, T.; Wu, L.; Zhang, T.; Sun, X.; Zhong, L.; et al. TIMP1 is a prognostic marker for the progression and metastasis of colon cancer through FAK-PI3K/AKT and MAPK pathway. J. Exp. Clin. Cancer Res. 2016, 35, 148. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, R.; Oda, T.; Murakami, Y.; Matsumura, I.; Watanabe, S.; Asao, Y.; Masuda, Y.; Gotoh, N.; Kasamatsu, T.; Takei, H.; et al. Myeloma Microenvironmental TIMP1 Induces the Invasive Phenotype in Fibroblasts to Modulate Disease Progression. Int. J. Mol. Sci. 2023, 24, 2216. [Google Scholar] [CrossRef]
- Terpos, E.; Dimopoulos, M.A.; Shrivastava, V.; Leitzel, K.; Christoulas, D.; Migkou, M.; Gavriatopoulou, M.; Anargyrou, K.; Hamer, P.; Kastritis, E.; et al. High levels of serum TIMP-1 correlate with advanced disease and predict for poor survival in patients with multiple myeloma treated with novel agents. Leuk. Res. 2010, 34, 399–402. [Google Scholar] [CrossRef] [PubMed]
- Ko, W.C.; Sugahara, K.; Sakuma, T.; Yen, C.Y.; Liu, S.Y.; Liaw, G.A.; Shibahara, T. Copy number changes of CRISP3 in oral squamous cell carcinoma. Oncol. Lett. 2012, 3, 75–81. [Google Scholar] [CrossRef]
- Leng, D.; Miao, R.; Huang, X.; Wang, Y. In silico analysis identifies CRISP3 as a potential peripheral blood biomarker for multiple myeloma: From data modeling to validation with RT-PCR. Oncol. Lett. 2018, 15, 5167–5174. [Google Scholar] [CrossRef]
- Yeh, M.; Oh, C.S.; Yoo, J.Y.; Kaur, B.; Lee, T.J. Pivotal role of microRNA-138 in human cancers. Am. J. Cancer Res. 2019, 9, 1118–1126. [Google Scholar] [PubMed]
- Yan, X.; Wang, K.; Shi, C.; Xu, K.; Lai, B.; Yang, S.; Sheng, L.; Zhang, P.; Chen, Y.; Mu, Q.; et al. MicroRNA-138 promotes the progression of multiple myeloma through targeting paired PAX5. Mutat. Res. 2024, 829, 111869. [Google Scholar] [CrossRef]
- Yuan, Z.M.; Yang, Z.L.; Zheng, Q. Deregulation of microRNA expression in thyroid tumors. J. Zhejiang Univ. Sci. B 2014, 15, 212–224. [Google Scholar] [CrossRef]
- Zhou, N.; Fei, D.; Zong, S.; Zhang, M.; Yue, Y. MicroRNA-138 inhibits proliferation, migration and invasion through targeting hTERT in cervical cancer. Oncol. Lett. 2016, 12, 3633–3639. [Google Scholar] [CrossRef]
- Yan, T.B.; Li, C.; Jiao, G.J.; Wu, W.L.; Liu, H.C. TIMP-1 suppressed by miR-138 participates in endoplasmic reticulum stress-induced osteoblast apoptosis in osteoporosis. Free Radic. Res. 2018, 52, 223–231. [Google Scholar] [CrossRef]
- Rostami, F.; Tavakol Hamedani, Z.; Sadoughi, A.; Mehrabadi, M.; Kouhkan, F. PDL1 targeting by miR-138-5p amplifies anti-tumor immunity and Jurkat cells survival in non-small cell lung cancer. Sci. Rep. 2024, 14, 13542. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Su, Z.; Gu, W.; Shen, X.; Zhao, Q.; Shi, L.; Jin, C.; Wang, X.; Cong, H.; Ju, S. MiR-19b and miR-20a suppress apoptosis, promote proliferation and induce tumorigenicity of multiple myeloma cells by targeting PTEN. Cancer Biomark. 2019, 24, 279–289. [Google Scholar] [CrossRef]
- Chen, Y.H.; Song, Y.; Yu, Y.L.; Cheng, W.; Tong, X. miRNA-10a promotes cancer cell proliferation in oral squamous cell carcinoma by upregulating GLUT1 and promoting glucose metabolism. Oncol. Lett. 2019, 17, 5441–5446. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Feng, X.; Jin, Y.; Liu, Y.; Zeng, L.; Zhou, D.; Feng, Y. Upregulation of miRNA-10a-5p promotes tumor progression in cervical cancer by suppressing UBE2I signaling. J. Obstet. Gynaecol. 2023, 43, 2171283. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Liu, L.; Li, J.; Yan, M.; Lin, H.; Liu, Y.; Chu, D.; Tu, H.; Gu, A.; Yao, M. MiRNA-10a is upregulated in NSCLC and may promote cancer by targeting PTEN. Oncotarget 2015, 6, 30239–30250. [Google Scholar] [CrossRef] [PubMed]
- Ke, K.; Lou, T. MicroRNA-10a suppresses breast cancer progression via PI3K/Akt/mTOR pathway. Oncol. Lett. 2017, 14, 5994–6000. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.; Meng, X.; Liang, H.; Zhang, H.; Liu, X.; Li, L.; Li, W.; Sun, W.; Zhang, H.; Zen, K.; et al. miR-10a inhibits cell proliferation and promotes cell apoptosis by targeting BCL6 in diffuse large B-cell lymphoma. Protein Cell 2016, 7, 899–912. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Fu, C.; Guan, H.; Zhang, Z.; Zhou, T.; Li, B. Prognostic significance of miR-126 in various cancers: A meta-analysis. Onco Targets Ther. 2016, 9, 2547–2555. [Google Scholar] [CrossRef] [PubMed]
- Meister, J.; Schmidt, M.H.H. miR-126 and miR-126*: New players in cancer. Sci. World J. 2010, 10, 2090–2100. [Google Scholar] [CrossRef]
- Liu, L.; Han, Q.; Cai, J.; Xiao, M.; Huang, D.; Cao, J. The clinical validity of miR-126 as a prognostic marker in epithelial ovarian cancer. Medicine 2023, 102, e33085. [Google Scholar] [CrossRef]
- Liu, T.; Fan, H.W.; Lu, S.; Wang, S.Q.; Li, F. MiR-126 induces myeloma cell line Karpas707 apoptosis by downregulating anti-apoptotic protein MCL. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 6873–6879. [Google Scholar]
- Poli, V.; Seclì, L.; Avalle, L. The Microrna-143/145 Cluster in Tumors: A Matter of Where and When. Cancers 2020, 12, 708. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Kumar, R.; Seth, T.; Garg, B.; Sati, H.C.; Sharma, A. Clinical significance of circulatory microRNA-203 in serum as novel potential diagnostic marker for multiple myeloma. J. Cancer Res. Clin. Oncol. 2019, 145, 1601–1611. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Su, Y.; Zheng, Z.; Qi, J.; Wang, W.; Wang, C. miR-146b-5p promotes colorectal cancer progression by targeting TRAF6. Exp. Ther. Med. 2022, 23, 231. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, H.; Dong, Y.; Fan, Y.; Li, Y.; Zhao, C.; Wang, C.; Liu, J.; Li, X.; Dong, M.; et al. MiR-146b-5p functions as a suppressor miRNA and prognosis predictor in non-small cell lung cancer. J. Cancer 2017, 8, 1704–1716. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.Y.; Zhang, X.D.; Zhu, J.; Guo, X.Y.; Wang, J.F. Low expression of microRNA-146b-5p and microRNA-320d predicts poor outcome of large B-cell lymphoma treated with cyclophosphamide, doxorubicin, vincristine, and prednisone. Hum. Pathol. 2014, 45, 1664–1673. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Wei, M.; Ji, X. MicroRNA-146b overexpression associates with deteriorated clinical characteristics, increased International Staging System stage, cacoethic chromosome abnormality, and unfavorable prognosis in multiple myeloma patients. J. Clin. Lab. Anal. 2020, 34, e23168. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, X.; Wang, D.; Zeng, L.; Li, B.; Zhang, Y.; Su, S.; Wei, L.; You, H.; Fang, Y.; et al. miR-146b-5p regulates bone marrow mesenchymal stem cell differentiation by SIAH2/PPARγ in aplastic anemia children and benzene-induced aplastic anemia mouse model. Cell Cycle 2020, 19, 2460–2471. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Tao, W.; Zhang, L.; Li, S. Oncogenic role of microRNA-20a in human multiple myeloma. Onco Targets Ther. 2017, 10, 4465–4474. [Google Scholar] [CrossRef]
- Jiang, Y.; Chang, H.; Chen, G. Effects of microRNA-20a on the proliferation, migration and apoptosis of multiple myeloma via the PTEN/PI3K/AKT signaling pathway. Oncol. Lett. 2018, 15, 10001–10007. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, Y.; Peng, Z.; Wang, Y. Overexpression of miR-20a promotes the progression of osteosarcoma by directly targeting QKI2. Oncol. Lett. 2019, 18, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Shen, Y.; Jiang, F.; Wang, Y.; Chu, L.; Sun, J.; Shen, P.; Chen, M. MicroRNA-20a promotes non-small cell lung cancer proliferation by upregulating PD-L1 by targeting PTEN. Oncol. Lett. 2022, 23, 148. [Google Scholar] [CrossRef] [PubMed]
- Leone, E.; Morelli, E.; Di Martino, M.T.; Amodio, N.; Foresta, U.; Gullà, A.; Rossi, M.; Neri, A.; Giordano, A.; Munshi, N.C.; et al. Targeting miR-21 inhibits in vitro and in vivo multiple myeloma cell growth. Clin. Cancer Res. 2013, 19, 2096–2106. [Google Scholar] [CrossRef]
- Drevytska, T.I.; Nagibin, V.S.; Gurianova, V.L.; Kedlyan, V.R.; Moibenko, A.A.; Dosenko, V.E. Silencing of TERT decreases levels of miR-1, miR-21, miR-29a and miR-208a in cardiomyocytes. Cell Biochem. Funct. 2014, 32, 565–570. [Google Scholar] [CrossRef]
- Jia, X.; Wang, X.; Guo, X.; Ji, J.; Lou, G.; Zhao, J.; Zhou, W.; Guo, M.; Zhang, M.; Li, C.; et al. MicroRNA-124: An emerging therapeutic target in cancer. Cancer Med. 2019, 8, 5638–5650. [Google Scholar] [CrossRef]
- Sabour Takanlu, J.; Aghaie Fard, A.; Mohammdi, S.; Hosseini Rad, S.M.A.; Abroun, S.; Nikbakht, M. Indirect Tumor Inhibitory Effects of MicroRNA-124 through Targeting EZH2 in The Multiple Myeloma Cell Line. Cell J. 2020, 22, 23–29. [Google Scholar] [PubMed]
- Roshani Asl, E.; Rasmi, Y.; Baradaran, B. MicroRNA-124-3p suppresses PD-L1 expression and inhibits tumorigenesis of colorectal cancer cells via modulating STAT3 signaling. J. Cell Physiol. 2021, 236, 7071–7087. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Shi, L.; Xin, W.; Xu, J.; Xu, J.; Li, Q.; Xu, Z.; Wang, J.; Wang, G.; Yao, W.; et al. Activation of PPARγ inhibits pro-inflammatory cytokines production by upregulation of miR-124 in vitro and in vivo. Biochem. Biophys. Res. Commun. 2017, 486, 726–731. [Google Scholar] [CrossRef]
- Wang, H.; Ding, Q.; Wang, M.; Guo, M.; Zhao, Q. miR-29b inhibits the progression of multiple myeloma through downregulating FOXP1. Hematology 2019, 24, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Amodio, N.; Bellizzi, D.; Leotta, M.; Raimondi, L.; Biamonte, L.; D’Aquila, P.; Di Martino, M.T.; Calimeri, T.; Rossi, M.; Lionetti, M.; et al. miR-29b induces SOCS-1 expression by promoter demethylation and negatively regulates migration of multiple myeloma and endothelial cells. Cell Cycle 2013, 12, 3650–3662. [Google Scholar] [CrossRef]
- Veryaskina, Y.A.; Titov, S.E.; Ivanov, M.K.; Ruzankin, P.S.; Tarasenko, A.S.; Shevchenko, S.P.; Kovynev, I.B.; Stupak, E.V.; Pospelova, T.I.; Zhimulev, I.F. Selection of reference genes for quantitative analysis of microRNA expression in three different types of cancer. PLoS ONE 2022, 17, e0254304. [Google Scholar] [CrossRef] [PubMed]
- Veryaskina, Y.A.; Titov, S.E.; Kovynev, I.B.; Pospelova, T.I.; Zhimulev, I.F. The miRNA Profile in Non-Hodgkin’s Lymphoma Patients with Secondary Myelodysplasia. Cells 2020, 9, 2318. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Titov, S.E.; Ivanov, M.K.; Demenkov, P.S.; Katanyan, G.A.; Kozorezova, E.S.; Malek, A.V.; Veryaskina, Y.A.; Zhimulev, I.F. Combined quantitation of HMGA2 mRNA, microRNAs, and mitochondrial-DNA content enables the identification and typing of thyroid tumors in fine-needle aspiration smears. BMC Cancer 2019, 19, 1010. [Google Scholar] [CrossRef]
Fold Change | p-Value | |
---|---|---|
miR-96 | −2.05 | 1 × 10−6 |
miR-124 | 3.54 | 1 × 10−6 |
miR-138 | 11.1 | 1 × 10−5 |
miR-10a | 3.26 | 1 × 10−2 |
miR-126 | 1.47 | 1 × 10−3 |
miR-143 | 1.91 | 3 × 10−2 |
miR-146b | 2.03 | 2 × 10−4 |
miR-20a | 1.39 | 3 × 10−2 |
miR-21 | 1.53 | 1 × 10−3 |
miR-29b | 1.45 | 1 × 10−4 |
Let-7a | 6.99 | 1 × 10−15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veryaskina, Y.A.; Titov, S.E.; Skvortsova, N.V.; Kovynev, I.B.; Antonenko, O.V.; Demakov, S.A.; Demenkov, P.S.; Pospelova, T.I.; Ivanov, M.K.; Zhimulev, I.F. Multiple Myeloma: Genetic and Epigenetic Biomarkers with Clinical Potential. Int. J. Mol. Sci. 2024, 25, 13404. https://doi.org/10.3390/ijms252413404
Veryaskina YA, Titov SE, Skvortsova NV, Kovynev IB, Antonenko OV, Demakov SA, Demenkov PS, Pospelova TI, Ivanov MK, Zhimulev IF. Multiple Myeloma: Genetic and Epigenetic Biomarkers with Clinical Potential. International Journal of Molecular Sciences. 2024; 25(24):13404. https://doi.org/10.3390/ijms252413404
Chicago/Turabian StyleVeryaskina, Yuliya A., Sergei E. Titov, Natalia V. Skvortsova, Igor B. Kovynev, Oksana V. Antonenko, Sergei A. Demakov, Pavel S. Demenkov, Tatiana I. Pospelova, Mikhail K. Ivanov, and Igor F. Zhimulev. 2024. "Multiple Myeloma: Genetic and Epigenetic Biomarkers with Clinical Potential" International Journal of Molecular Sciences 25, no. 24: 13404. https://doi.org/10.3390/ijms252413404
APA StyleVeryaskina, Y. A., Titov, S. E., Skvortsova, N. V., Kovynev, I. B., Antonenko, O. V., Demakov, S. A., Demenkov, P. S., Pospelova, T. I., Ivanov, M. K., & Zhimulev, I. F. (2024). Multiple Myeloma: Genetic and Epigenetic Biomarkers with Clinical Potential. International Journal of Molecular Sciences, 25(24), 13404. https://doi.org/10.3390/ijms252413404