Genome-Wide Identification of the SlSET Gene Family and the Function of SlSET6 Under Salt Stress
<p>Phylogenetic analysis of SET proteins from Arabidopsis, rice, and tomato. Five different subfamilies are represented by red, purple, blue, orange, and pink, respectively. Circles, triangles, and stars represent Arabidopsis, rice, and tomato.</p> "> Figure 2
<p>Phylogenetic, motif, conserved domain, and structural analyses. (<b>a</b>) Phylogenetic tree of SlSET proteins. (<b>b</b>) Conserved motifs of SlSET proteins: a total of 15 motifs were identified; different colored squares indicate different motifs. (<b>c</b>) Conserved domains of SlSET proteins: a total of 4 types of SET domains were identified. (<b>d</b>) Gene structure of <span class="html-italic">SET</span> genes.</p> "> Figure 3
<p><span class="html-italic">Cis</span>-element analysis of SET genes’ promoters. <span class="html-italic">Cis</span>-acting elements are divided into 4 categories according to their functions, including light responsiveness, plant growth and development, plant hormone related and stress related. The number represents the number of <span class="html-italic">cis</span>-acting elements in the promoter region of the corresponding gene.</p> "> Figure 4
<p>Location and collinearity analysis of <span class="html-italic">SET</span> genes. Red lines and red names indicate <span class="html-italic">SlSET</span> genes that have a collinearity relationship. Gray lines indicate all the collinearity genes in the tomato genome.</p> "> Figure 5
<p>Synteny analysis of <span class="html-italic">SET</span> genes in <span class="html-italic">S. lycopersicum</span> (orange), <span class="html-italic">A. thaliana</span> (green), <span class="html-italic">O. sativa</span> (yellow), and <span class="html-italic">S. tuberosum</span> (brown). Gray lines indicate genes have a synteny relationship in different genomes, and blue lines indicate <span class="html-italic">SET</span> genes.</p> "> Figure 6
<p>Transcriptomic heatmap of <span class="html-italic">SlSET</span> genes under salt stress. Red color indicates a high expression level under salt stress; white color indicates a low expression level under salt stress. A 1, 2 and 3 at the end of samples denotes the biological replicates. The heatmap was visualized using TBtools software (v2.142).</p> "> Figure 7
<p>qRT-PCR analysis of 9 <span class="html-italic">SlSET</span> genes under salt stress. Error bars on the graph represent the standard error of the mean (SEM; n = 3 biological replicates). Different letters indicate statistically significance differences between groups, as determined using Fisher’s LSD test at a 5% level of significance. Experimental data were subjected to a one-way ANOVA.</p> "> Figure 8
<p>Functional analysis of the <span class="html-italic">SlSET6</span> gene under salt stress. (<b>a</b>) Phenotypic observations of pTRV2-00 and pTRV2-<span class="html-italic">SlSET6</span> plants. (<b>b</b>) Relative expression level of the <span class="html-italic">SlSET6</span> gene in pTRV2-00 and pTRV2-<span class="html-italic">SlSET6</span> plants. (<b>c</b>) MDA content. (<b>d</b>) CAT activity. (<b>e</b>) Pro content. (<b>f</b>) POD activity. (<b>g</b>) SOD activity. Error bars on the graph represent the standard error of the mean (SEM; n = 3 biological replicates). Different letters indicate statistically significance differences between groups, as determined using Fisher’s LSD test at a 5% level of significance. Experimental data were subjected to a one-way ANOVA.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Identification and Physicochemical Properties of the SET Gene Family in Tomato
2.2. Phylogenetic Analysis of the SET Gene Family in Tomato
2.3. Gene Structure, Domain, and Conserved Motif Analysis of the Tomato SET Gene Family
2.4. Cis-Regulatory Elements of the Tomato SET Gene Family
2.5. Chromosome Distribution and Collinearity Analysis of the SET Gene Family of Tomato
2.6. Synteny Analysis of the SET Gene Family of Tomato
2.7. Transcriptome Data Extraction and Analysis
2.8. Analysis of the Expression Patterns of Nine SlSET Genes in Tomato Under Salt Stress
2.9. Function of SlSET6 Under Salt Stress
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Stress Treatment
4.2. Identification of the SET Gene Family in Tomato
4.3. Phylogenetic Analysis of SET Proteins
4.4. Conserved Motif, Conserved Domain, and Gene Structure Analysis of the SET Gene Family
4.5. Promoter Analysis
4.6. Chromosome Location and Duplication Analysis
4.7. Synteny Analysis
4.8. Transcriptomic Data Analysis
4.9. Total RNA Extraction and qRT-PCR Analysis
4.10. VIGS of SlSET6 and Functional Analysis
4.11. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kornberg, R.D. Chromatin Structure: A Repeating Unit of Histones and DNA. Science 1974, 184, 868–871. [Google Scholar] [CrossRef]
- Deal, R.B.; Henikoff, S. Histone variants and modifications in plant gene regulation. Curr. Opin. Plant Biol. 2011, 14, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Pfluger, J.; Wagner, D. Histone modifications and dynamic regulation of genome accessibility in plants. Curr. Opin. Plant Biol. 2007, 10, 645–652. [Google Scholar] [CrossRef]
- Jenuwein, T.; Allis, C.D. Translating the Histone Code. Science 2001, 293, 1074–1080. [Google Scholar] [CrossRef] [PubMed]
- Strahl, B.D.; Allis, C.D. The language of covalent histone modifications. Nature 2000, 403, 41–45. [Google Scholar] [CrossRef]
- Ng, D.W.K.; Wang, T.; Chandrasekharan, M.B.; Aramayo, R.; Kertbundit, S.; Hall, T.C. Plant SET domain-containing proteins: Structure, function and regulation. Biochim. Biophys. Acta (BBA)—Gene Struct. Expr. 2007, 1769, 316–329. [Google Scholar] [CrossRef] [PubMed]
- Dillon, S.C.; Zhang, X.; Trievel, R.C.; Cheng, X. The SET-domain protein superfamily: Protein lysine methyltransferases. Genome Biol. 2005, 6, 227. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kaur, S.; Seem, K.; Kumar, S.; Mohapatra, T. Understanding 3D Genome Organization and Its Effect on Transcriptional Gene Regulation Under Environmental Stress in Plant: A Chromatin Perspective. Front. Cell Dev. Biol. 2021, 9, 774719. [Google Scholar] [CrossRef]
- Boltsis, I.; Grosveld, F.; Giraud, G.; Kolovos, P. Chromatin Conformation in Development and Disease. Front. Cell Dev. Biol. 2021, 9, 723859. [Google Scholar] [CrossRef]
- Kumar, V.; Thakur, J.K.; Prasad, M. Histone acetylation dynamics regulating plant development and stress responses. Cell. Mol. Life Sci. 2021, 78, 4467–4486. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Liu, Y.; Liang, Y.; Zhou, D.; Li, S.; Lin, S.; Dong, H.; Huang, L. The function of histone lysine methylation related SET domain group proteins in plants. Protein Sci. 2020, 29, 1120–1137. [Google Scholar] [CrossRef]
- Black, J.C.; Van Rechem, C.; Whetstine, J.R. Histone Lysine Methylation Dynamics: Establishment, Regulation, and Biological Impact. Mol. Cell 2012, 48, 491–507. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Lu, F.; Cui, X.; Cao, X. Histone Methylation in Higher Plants. Annu. Rev. Plant Biol. 2010, 61, 395–420. [Google Scholar] [CrossRef]
- Li, Y.; Ge, K.; Li, T.; Cai, R.; Chen, Y. The engagement of histone lysine methyltransferases with nucleosomes: Structural basis, regulatory mechanisms, and therapeutic implications. Protein Cell 2023, 14, 165–179. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-M.; Sasaki, T.; Ueda, M.; Sako, K.; Seki, M. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. Front. Plant Sci. 2015, 6, 114. [Google Scholar] [CrossRef]
- Xiao, J.; Lee, U.-S.; Wagner, D. Tug of war: Adding and removing histone lysine methylation in Arabidopsis. Curr. Opin. Plant Biol. 2016, 34, 41–53. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, C.; Zhao, Y.; Zhou, S.; Wang, W.; Zhou, D.-X. The rice enhancer of zeste [E(z)] genes SDG711 and SDG718 are respectively involved in long day and short day signaling to mediate the accurate photoperiod control of flowering time. Front. Plant Sci. 2014, 5, 591. [Google Scholar] [CrossRef] [PubMed]
- Marmorstein, R. Structure of SET domain proteins: A new twist on histone methylation. Trends Biochem. Sci. 2003, 28, 59–62. [Google Scholar] [CrossRef]
- Rea, S.; Eisenhaber, F.; O’Carroll, D.; Strahl, B.D.; Sun, Z.-W.; Schmid, M.; Opravil, S.; Mechtler, K.; Ponting, C.P.; Allis, C.D.; et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 2000, 406, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Serre, N.B.C.; Alban, C.; Bourguignon, J.; Ravanel, S. An outlook on lysine methylation of non-histone proteins in plants. J. Exp. Bot. 2018, 69, 4569–4581. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Mei, X.; Zhang, J.; Ye, L.; Hu, Y.; Chen, T.; Wang, Y.; Liu, M.; Zhang, Y.; Xin, X.-F. CURLY LEAF modulates apoplast liquid water status in Arabidopsis leaves. Plant Physiol. 2023, 193, 792–808. [Google Scholar] [CrossRef]
- Pu, L.; Sung, Z.R. PcG and trxG in plants—Friends or foes. Trends Genet. 2015, 31, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Wagner, D. Polycomb repression in the regulation of growth and development in Arabidopsis. Curr. Opin. Plant Biol. 2015, 23, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Cheng, J.; Zhuang, Y.; Ye, L.; Li, Z.; Wang, Y.; Qi, M.; Xu, L.; Zhang, Y. Polycomb repressive complex 2 attenuates ABA-induced senescence in Arabidopsis. Plant J. 2019, 97, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Pontvianne, F.; Blevins, T.; Pikaard, C.S. Arabidopsis Histone Lysine Methyltransferases. Adv. Bot. Res. 2010, 53, 1–22. [Google Scholar] [CrossRef]
- Aquea, F.; Vega, A.; Timmermann, T.; Poupin, M.J.; Arce-Johnson, P. Genome-wide analysis of the SET DOMAIN GROUP family in Grapevine. Plant Cell Rep. 2011, 30, 1087–1097. [Google Scholar] [CrossRef] [PubMed]
- Sehrish, S.; Sumbal, W.; Xie, M.; Zhao, C.; Zuo, R.; Gao, F.; Liu, S. Genome-Wide Identification and Characterization of SET Domain Family Genes in Brassica napus L. Int. J. Mol. Sci. 2022, 23, 1936. [Google Scholar] [CrossRef] [PubMed]
- Batra, R.; Gautam, T.; Pal, S.; Chaturvedi, D.; Rakhi; Jan, I.; Balyan, H.S.; Gupta, P.K. Identification and characterization of SET domain family genes in bread wheat (Triticum aestivum L.). Sci. Rep. 2020, 10, 14624. [Google Scholar] [CrossRef] [PubMed]
- Suppiyar, V.; Bonthala, V.S.; Shrestha, A.; Krey, S.; Stich, B. Genome-wide identification and expression analysis of the SET domain-containing gene family in potato (Solanum tuberosum L.). BMC Genom. 2024, 25, 442. [Google Scholar] [CrossRef] [PubMed]
- Aiese Cigliano, R.; Sanseverino, W.; Cremona, G.; Ercolano, M.R.; Conicella, C.; Consiglio, F.M. Genome-wide analysis of histone modifiers in tomato: Gaining an insight into their developmental roles. BMC Genom. 2013, 14, 57. [Google Scholar] [CrossRef] [PubMed]
- Cortina, C.; Culiáñez-Macià, F.A. Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci. 2005, 169, 75–82. [Google Scholar] [CrossRef]
- Wei, G.; Liu, K.; Shen, T.; Shi, J.; Liu, B.; Han, M.; Peng, M.; Fu, H.; Song, Y.; Zhu, J.; et al. Position-specific intron retention is mediated by the histone methyltransferase SDG725. BMC Biol. 2018, 16, 44. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Wang, X.; Su, L.; Zhai, J.; Cao, S.; Zhang, D.; Liu, C.; Bi, Y.; Qian, Q.; Cheng, Z.; et al. SDG714, a Histone H3K9 Methyltransferase, Is Involved in Tos17 DNA Methylation and Transposition in Rice. Plant Cell 2007, 19, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Fang, J.; Zhao, T.; Xu, B.; Zhang, F.; Liu, L.; Tang, J.; Zhang, G.; Deng, X.; Chen, F.; et al. The Histone Methyltransferase SDG724 Mediates H3K36me2/3 Deposition at MADS50 and RFT1 and Promotes Flowering in Rice. Plant Cell 2012, 24, 3235–3247. [Google Scholar] [CrossRef]
- Dong, G.; Ma, D.-P.; Li, J. The histone methyltransferase SDG8 regulates shoot branching in Arabidopsis. Biochem. Biophys. Res. Commun. 2008, 373, 659–664. [Google Scholar] [CrossRef]
- Cazzonelli, C.I.; Cuttriss, A.J.; Cossetto, S.B.; Pye, W.; Crisp, P.; Whelan, J.; Finnegan, E.J.; Turnbull, C.; Pogson, B.J. Regulation of Carotenoid Composition and Shoot Branching in Arabidopsis by a Chromatin Modifying Histone Methyltransferase, SDG8. Plant Cell 2009, 21, 39–53. [Google Scholar] [CrossRef]
- Hussain, Q.; Ye, T.; Li, S.; Nkoh, J.N.; Zhou, Q.; Shang, C. Genome-Wide Identification and Expression Analysis of the Copper Transporter (COPT/Ctr) Gene Family in Kandelia obovata, a Typical Mangrove Plant. Int. J. Mol. Sci. 2023, 24, 15579. [Google Scholar] [CrossRef]
- Wang, H.; Chen, W.; Xu, Z.; Chen, M.; Yu, D. Functions of WRKYs in plant growth and development. Trends Plant Sci. 2023, 28, 630–645. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Wang, P.; Wu, J.; Kong, L.; Ma, L.; Jiang, S.; Ren, W.; Liu, W.; Guo, Y.; et al. Genome-wide identification of YABBY gene family and its expression pattern analysis in Astragalus mongholicus. Plant Signal. Behav. 2024, 19, 2355740. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Mathioudakis, N.; Diagouraga, B.; Dong, A.; Dombrovski, L.; Baudat, F.; Cusack, S.; de Massy, B.; Kadlec, J. Molecular Basis for the Regulation of the H3K4 Methyltransferase Activity of PRDM9. Cell Rep. 2013, 5, 13–20. [Google Scholar] [CrossRef]
- Lian, C.; Li, Q.; Yao, K.; Zhang, Y.; Meng, S.; Yin, W.; Xia, X. Populus trichocarpa PtNF-YA9, A Multifunctional Transcription Factor, Regulates Seed Germination, Abiotic Stress, Plant Growth and Development in Arabidopsis. Front. Plant Sci. 2018, 9, 954. [Google Scholar] [CrossRef]
- Jian, H.; Wei, F.; Chen, P.; Hu, T.; Lv, X.; Wang, B.; Wang, H.; Guo, X.; Ma, L.; Lu, J.; et al. Genome-wide analysis of SET domain genes and the function of GhSDG51 during salt stress in upland cotton (Gossypium hirsutum L.). BMC Plant Biol. 2023, 23, 653. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Xue, S.; Quan, T.; Cui, D.; Han, L.; Cong, W.; Li, M.; Yun, D.-J.; Liu, B.; et al. SET DOMAIN GROUP 721 protein functions in saline–alkaline stress tolerance in the model rice variety Kitaake. Plant Biotechnol. J. 2021, 19, 2576–2588. [Google Scholar] [CrossRef]
- Alvarez-Venegas, R.; Abdallat, A.A.; Guo, M.; Alfano, J.R.; Avramova, Z. Epigenetic Control of a Transcription Factor at the Cross Section of Two Antagonistic Pathways. Epigenetics 2007, 2, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Yu, Y.; Meyer, D.; Wu, C.; Shen, W.-H. Prevention of early flowering by expression of FLOWERING LOCUS C requires methylation of histone H3 K36. Nat. Cell Biol. 2005, 7, 1256–1260. [Google Scholar] [CrossRef]
- Kim, S.Y.; He, Y.; Jacob, Y.; Noh, Y.-S.; Michaels, S.; Amasino, R. Establishment of the Vernalization-Responsive, Winter-Annual Habit in Arabidopsis Requires a Putative Histone H3 Methyl Transferase. Plant Cell 2005, 17, 3301–3310. [Google Scholar] [CrossRef]
- Cartagena, J.A.; Matsunaga, S.; Seki, M.; Kurihara, D.; Yokoyama, M.; Shinozaki, K.; Fujimoto, S.; Azumi, Y.; Uchiyama, S.; Fukui, K. The Arabidopsis SDG4 contributes to the regulation of pollen tube growth by methylation of histone H3 lysines 4 and 36 in mature pollen. Dev. Biol. 2008, 315, 355–368. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.-H.; Meyer, D. Ectopic Expression of the NtSET1 Histone Methyltransferase Inhibits Cell Expansion, and Affects Cell Division and Differentiation in Tobacco Plants. Plant Cell Physiol. 2004, 45, 1715–1719. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.K.; Wang, Y.; Zhang, Y.; Li, S.G.; Lu, X.C.; Li, H.; Zou, C.; Xu, Z.H.; Bai, S.N. OsSET1, a novel SET-domain-containing gene from rice. J. Exp. Bot. 2003, 54, 1995–1996. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, D.; Jiao, X.; Wu, Q.; Wang, W. The Serine Acetyltransferase (SAT) Gene Family in Tea Plant (Camellia sinensis): Identification, Classification and Expression Analysis under Salt Stress. Int. J. Mol. Sci. 2024, 25, 9794. [Google Scholar] [CrossRef]
- Ma, J.; Li, C.; Sun, L.; Ma, X.; Qiao, H.; Zhao, W.; Yang, R.; Song, S.; Wang, S.; Huang, H. The SlWRKY57-SlVQ21/SlVQ16 module regulates salt stress in tomato. J. Integr. Plant Biol. 2023, 65, 2437–2455. [Google Scholar] [CrossRef]
- Luo, H.; Wu, X.; Zhu, X.-H.; Yi, X.; Du, D.; Jiang, D.-S. The functions of SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) in biological process and disease. Epigenetics Chromatin 2023, 16, 47. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, M.; Zhong, M.; Luo, C.; Shi, S.; Qian, Y.; Kang, Y.; Jiang, B. Genome-wide identification of bZIP gene family and expression analysis of BhbZIP58 under heat stress in wax gourd. BMC Plant Biol. 2023, 23, 598. [Google Scholar] [CrossRef] [PubMed]
- Thorstensen, T.; Grini, P.E.; Aalen, R.B. SET domain proteins in plant development. Biochim. Biophys. Acta (BBA)—Gene Regul. Mech. 2011, 1809, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, Y.; Li, X.; Zhang, Y.; Chen, X.; Liu, J.; Qiua, Y.; Wang, A. Integration of metabolomics and transcriptomics reveals the regulation mechanism of the phenylpropanoid biosynthesis pathway in insect resistance traits in Solanum habrochaites. Hortic. Res. 2024, 11, uhad277. [Google Scholar] [CrossRef] [PubMed]
- Mo, F.; Xue, X.; Meng, L.; Zhang, Y.; Cui, Y.; Liu, J.; Cheng, M.; Wang, P.; Lv, R.; Meng, F.; et al. Genome-wide identification and expression analysis of SLAC1 gene family in tomato (Solanum lycopersicum) and the function of SlSLAC1–6 under cold stress. Sci. Hortic. 2023, 313, 111904. [Google Scholar] [CrossRef]
- Ling, L.; Li, M.; Chen, N.; Xie, X.; Han, Z.; Ren, G.; Yin, Y.; Jiang, H. Genome-Wide Identification of NAC Gene Family and Expression Analysis under Abiotic Stresses in Avena sativa. Genes 2023, 14, 1186. [Google Scholar] [CrossRef]
- Yan, P.; Zeng, Y.; Shen, W.; Tuo, D.; Li, X.; Zhou, P. Nimble Cloning: A Simple, Versatile, and Efficient System for Standardized Molecular Cloning. Front. Bioeng. Biotechnol. 2020, 7, 460. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Gao, Y.; Zhu, C.; Li, X.; Gao, Y.; Li, K. Genome-Wide Identification of the SlSET Gene Family and the Function of SlSET6 Under Salt Stress. Int. J. Mol. Sci. 2024, 25, 13461. https://doi.org/10.3390/ijms252413461
Yang X, Gao Y, Zhu C, Li X, Gao Y, Li K. Genome-Wide Identification of the SlSET Gene Family and the Function of SlSET6 Under Salt Stress. International Journal of Molecular Sciences. 2024; 25(24):13461. https://doi.org/10.3390/ijms252413461
Chicago/Turabian StyleYang, Xueying, Yan Gao, Chengyu Zhu, Xin Li, Yuliang Gao, and Kuihua Li. 2024. "Genome-Wide Identification of the SlSET Gene Family and the Function of SlSET6 Under Salt Stress" International Journal of Molecular Sciences 25, no. 24: 13461. https://doi.org/10.3390/ijms252413461
APA StyleYang, X., Gao, Y., Zhu, C., Li, X., Gao, Y., & Li, K. (2024). Genome-Wide Identification of the SlSET Gene Family and the Function of SlSET6 Under Salt Stress. International Journal of Molecular Sciences, 25(24), 13461. https://doi.org/10.3390/ijms252413461