The Potential Application of Resveratrol and Its Derivatives in Central Nervous System Tumors
Abstract
:1. Resveratrol—An Introduction and Historical Overview
2. Metabolism
- Glucuronidation: This is the major metabolic pathway for resveratrol. It is conjugated with glucuronic acid by UDP-glucuronosyltransferases, primarily UGT1A1 and UGT1A9 [30,32,35,36,37,38]. This process forms resveratrol glucuronides, such as resveratrol-3-O-glucuronide and resveratrol-4′-O-glucuronide [30,32,35,38]. These glucuronides are more water-soluble and are readily excreted in urine and bile.
- Sulfation: Resveratrol can also be sulfated by sulfotransferases, mainly SULT1A1 and SULT1E1, to form resveratrol sulfates like resveratrol-3-sulfate and resveratrol-4′-sulfate [30,32,35,36,37,38,39]. These conjugated metabolites are more water-soluble, facilitating their excretion in urine and bile [35,39,40].
- Hydrogenation: Resveratrol can be hydrogenated in the gut by the microflora to form dihydroresveratrol, formed by the saturation of the double bond in the stilbene structure [33,36,41,42]. It has been shown to possess distinct biological activities compared to resveratrol—some studies suggest that dihydroresveratrol may have enhanced antioxidant properties and potentially different effects on cell signaling pathways [42].
- Methylation: Methylation involves the addition of a methyl group to the resveratrol molecule, primarily at hydroxyl groups, by methyltransferase enzymes using S-adenosylmethionine as the methyl donor [43]. A key example is the methylation of resveratrol to form pterostilbene, a dimethylated analog [43,44]. Methylation can increase resveratrol’s stability and absorption in the gastrointestinal tract, potentially leading to improved bioavailability. Methylated metabolites may exhibit different pharmacological properties compared to resveratrol, potentially enhancing antioxidant, anti-inflammatory, and even anti-cancer effects [36,43,44].
- Individual genetic variations in UGT (UDP-glucuronosyltransferase) and SULT (Sulfotransferase) enzyme activity can affect metabolism rates.
- Gut microbiome composition can modulate the production of hydrogenated resveratrol metabolites.
- Dosage and route of administration—with higher doses and different routes potentially altering the rate and extent of metabolic processes.
- The food matrix, including other compounds present in food, can influence both resveratrol absorption and its subsequent metabolism.
3. Bioavailability
4. Biological Effects
- Anti-inflammatory properties [4,56,57,58,59,60,61]: Resveratrol exerts its anti-inflammatory effects through multiple mechanisms. It inhibits the production of pro-inflammatory cytokines like TNF-α and IL-6, key players in the inflammatory cascade [57,62]. Additionally, resveratrol suppresses the activation of NF-κB, a crucial transcription factor regulating inflammatory responses [58]. Furthermore, it modulates dendritic cell function, promoting a tolerogenic phenotype that dampens T-cell activation and proliferation [62]. By targeting these diverse pathways, RVS effectively mitigates inflammation.
- Anti-oxidant properties [61,63,64,65,66,67,68]: Resveratrol’s antioxidant activity stems from a combination of direct and indirect mechanisms. It acts as a direct scavenger of reactive oxygen species, effectively neutralizing these harmful molecules [66]. Furthermore, RVS enhances the activity of endogenous antioxidant enzymes, such as glutathione peroxidase, bolstering the cellular defense system against oxidative stress [64,65]. This dual action makes resveratrol a valuable asset in managing oxidative stress.
- Anti-aging properties [69,70,71,72,73]: Resveratrol demonstrates several mechanisms that contribute to its potential anti-aging effects. It activates autophagy, a crucial cellular process for maintaining homeostasis and repair, by promoting AMP-activated protein kinase phosphorylation [69]. Resveratrol also reduces oxidative stress, a key factor in aging and cellular senescence, by decreasing reactive oxygen species [69,71]. Furthermore, it inhibits pro-inflammatory cytokines, offering protection against age-related diseases [72].
- Cardioprotective properties [68,72,74,75,76,77,78,79,80]: Resveratrol exhibits promising cardioprotective effects through multiple mechanisms. Studies show it inhibits ferroptosis, a form of regulated cell death, in cardiomyocytes by modulating the VDAC1/GPX4 (voltage-dependent anion channel 1 and glutathione peroxidase 4) pathway, improving mitochondrial integrity, and reducing lipid peroxidation [74]. It also mitigates doxorubicin-induced cardiotoxicity by decreasing iron accumulation and increasing glutathione levels [75]. Resveratrol modulates key signaling pathways, activating Sirt1/p53 to reduce ferroptosis and improve cardiac function [77], while inhibiting Notch/NF-κB to reduce inflammation and oxidative stress [72]. These mechanisms contribute to improved cardiac function and reduced infarct size in various experimental models, highlighting resveratrol’s therapeutic potential for cardiovascular diseases [76].
- Neuroprotective properties [81,82,83,84,85,86,87,88,89,90,91]: Resveratrol shows promise as a neuroprotective agent due to its multi-faceted mechanisms of action. It modulates critical signaling pathways, such as the PI3K/Akt pathway, enhancing PI3K and AKT expression while downregulating GSK-3β, which is crucial in Alzheimer’s disease models, thus promoting cell survival and reducing apoptosis [81]. RVS also reduces oxidative stress, as evidenced by lowered oxidative stress markers and improved antioxidant levels in ischemia-reperfusion injury models [82]. Furthermore, it mitigates excitotoxicity, preserving neuronal integrity and improving motor function in spinal cord injury models [84]. Novel delivery methods, such as intranasal administration of resveratrol nanoparticles, enhance bioavailability and neuroprotection, particularly in multiple sclerosis models, offering improved therapeutic outcomes [85].
- Analgesic properties [92,93,94,95,96,97,98]: Resveratrol demonstrates analgesic properties through several mechanisms. It inhibits acid-sensing ion channels in dorsal root ganglion neurons, reducing acid-induced pain [93]. Resveratrol also suppresses neuroinflammation by inhibiting the JAK2/STAT3 signaling pathway, thereby decreasing pro-inflammatory cytokines like TNF-α (tumor necrosis factor α) and IL-6 (interleukin 6) in spinal cord injury models, which contributes to alleviating mechanical allodynia [98]. Furthermore, it mitigates visceral pain by blocking the TRAF6/NF-κB signaling pathway, a key player in inflammatory pain [95].
- Anti-cancer properties [4,6,58,99,100,101,102,103,104,105,106,107,108,109]: Resveratrol holds promise as an anti-cancer agent due to its diverse mechanisms of action. It induces apoptosis in cancer cells, promoting programmed cell death [102]. Additionally, RVS regulates the cell cycle, particularly arresting it at the S phase, which inhibits cancer cell proliferation [6]. Its ability to reduce cell migration and invasion further limits cancer spread [6,103]. Clinical applications have shown resveratrol’s efficacy with minimal adverse effects, suggesting its potential as a chemotherapeutic agent [6]. Furthermore, nanoformulations are being explored to address its poor bioavailability.
5. Toxicity
6. Resveratrol and the Blood–Brain Barrier
7. Routes of Administration in Brain Tumors
8. Resveratrol and Temozolomide
9. Radiosensitizing Agent
10. Proapoptotic and Antiproliferative Effects
11. p53
12. STAT 3 and JAK
13. PI3K/Akt and AKT/PTEN
14. BAX and Bcl-2
15. NF-kB and Tumor Necrosis Factor
16. VEGF
17. Potential Aplication of Resveratrol Derivative—Pterostilbene
18. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fraga, C.G.; Croft, K.D.; Kennedy, D.O.; Tomás-Barberán, F.A. The effects of polyphenols and other bioactives on human health. Food Funct. 2019, 10, 514–528. [Google Scholar] [CrossRef] [PubMed]
- Martínez, L.; Durán, M.; Malovini, E.; De Rosas, M.I.; Deis, L.; Cavagnaro, J.B. A Very Promising Molecule: Resveratrol, Induced Synthesis, and Health Benefits. In Psychiatry and Neuroscience Update; Gargiulo, P., Mesones Arroyo, H., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Gundogdu, S.; Kuruuzum-Uz, A. Overview of Extraction, Isolation, and Bioavailability Enhancement of Resveratrol: Phytochemistry and Bioavailability of Resveratrol. In Handbook of Research on Advanced Phytochemicals and Plant-Based Drug Discovery; Singh, A., Ed.; IGI Global: Hershey, PA, USA, 2022; pp. 341–349. [Google Scholar] [CrossRef]
- Kumar, S.; Chang, Y.C.; Lai, K.H.; Hwang, T.L. Resveratrol, a Molecule with Anti-Inflammatory and Anti-Cancer Activities: Natural Product to Chemical Synthesis. Curr. Med. Chem. 2021, 28, 3773–3786. [Google Scholar] [CrossRef] [PubMed]
- Koç, T.Y.; Doğan, S.; Karadayı, M. Potential Using of Resveratrol and Its Derivatives in Medicine. Eurasian J. Med. 2024, 56, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Bhuia, M.S.; Chowdhury, R.; Akter, M.A.; Ali, M.A.; Afroz, M.; Akbor, M.S.; Sonia, F.A.; Mubarak, M.S.; Islam, M.T. A mechanistic insight into the anticancer potentials of resveratrol: Current perspectives. Phytother. Res. 2024, 38, 3877–3898. [Google Scholar] [CrossRef]
- Persano, F.; Gigli, G.; Leporatti, S. Natural Compounds as Promising Adjuvant Agents in The Treatment of Gliomas. Int. J. Mol. Sci. 2022, 23, 3360. [Google Scholar] [CrossRef]
- Hasan, M.; Bae, H. An Overview of Stress-Induced Resveratrol Synthesis in Grapes: Perspectives for Resveratrol-Enriched Grape Products. Molecules 2017, 22, 294. [Google Scholar] [CrossRef]
- Armijo, G.; Schlechter, R.; Agurto, M.; Muñoz, D.; Nuñez, C.; Arce-Johnson, P. Grapevine Pathogenic Microorganisms: Understanding Infection Strategies and Host Response Scenarios. Front. Plant Sci. 2016, 7, 382. [Google Scholar] [CrossRef]
- Wang, F.; Chatterjee, S. Dominant Carbons in trans- and cis-Resveratrol Isomerization. J. Phys. Chem. B 2017, 121, 4745–4755. [Google Scholar] [CrossRef]
- Lepak, A.; Gutmann, A.; Kulmer, S.T.; Nidetzky, B. Creating a Water-Soluble Resveratrol-Based Antioxidant by Site-Selective Enzymatic Glucosylation. Chembiochem 2015, 16, 1870–1874. [Google Scholar] [CrossRef]
- Demonceaux, M.; Goux, M.; Schimith, L.; Goulart dos Santos, M.; Hendrickx, J.; Offmann, B.; Miral, C. Enzymatic Synthesis, Characterization and Molecular Docking of a New Functionalized Polyphenol: Resveratrol-3,4′-α-Diglucoside. Results Chem. 2023, 5, 100956. [Google Scholar] [CrossRef]
- Donnez, D.; Jeandet, P.; Clément, C.; Courot, E. Bioproduction of resveratrol and stilbene derivatives by plant cells and microorganisms. Trends Biotechnol. 2009, 27, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Orduña, L.; Li, M.; Navarro-Payá, D.; Zhang, C.; Santiago, A.; Romero, P.; Ramšak, Ž.; Magon, G.; Höll, J.; Merz, P.; et al. Direct regulation of shikimate, early phenylpropanoid, and stilbenoid pathways by Subgroup 2 R2R3-MYBs in grapevine. Plant J. 2022, 110, 529–547. [Google Scholar] [CrossRef] [PubMed]
- Villa-Ruano, N.; Rivera, A.; Rubio-Rosas, E.; Landeta-Cortés, G.; Varela-Caselis, J.L.; Romero-Arenas, O. Comparative Activity of Six Recombinant Stilbene Synthases in Yeast for Resveratrol Production. Appl. Sci. 2020, 10, 4847. [Google Scholar] [CrossRef]
- Jiang, J.; Xi, H.; Dai, Z.; Lecourieux, F.; Yuan, L.; Liu, X.; Patra, B.; Wei, Y.; Li, S.; Wang, L. VvWRKY8 represses stilbene synthase genes through direct interaction with VvMYB14 to control resveratrol biosynthesis in grapevine. J. Exp. Bot. 2019, 70, 715–729. [Google Scholar] [CrossRef] [PubMed]
- Vannozzi, A.; Wong, D.C.J.; Höll, J.; Hmmam, I.; Matus, J.T.; Bogs, J.; Ziegler, T.; Dry, I.; Barcaccia, G.; Lucchin, M. Combinatorial Regulation of Stilbene Synthase Genes by WRKY and MYB Transcription Factors in Grapevine (Vitis vinifera L.). Plant Cell Physiol. 2018, 59, 1043–1059. [Google Scholar] [CrossRef]
- Valletta, A.; Iozia, L.M.; Leonelli, F. Impact of Environmental Factors on Stilbene Biosynthesis. Plants 2021, 10, 90. [Google Scholar] [CrossRef]
- Takaoka, M. The Phenolic Substances of White Helleboro (Veratrum Grandiflorum Hoes. Fil.). III. Nippon. Kagaku Kaishi 1940, 61, 1067–1069. [Google Scholar] [CrossRef]
- Nonomura, S.; Kanagawa, H.; Makimoto, A. Chemical Constituents of Polygonaceous Plants. I: Studies on the Components of Ko-j o-kon. (Polygonum cuspidatum SIEB. et ZUCC.). Yakugaku Zasshi 1963, 83, 988–990. [Google Scholar] [CrossRef]
- Langcake, P.; Pryce, R.J. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol. Plant Pathol. 1976, 9, 77–86. [Google Scholar] [CrossRef]
- Renaud, S.; de Lorgeril, M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 1992, 339, 1523–1526. [Google Scholar] [CrossRef]
- Gawlik, M. The French paradox (1992-2022)—Three decades of research on the cardioprotective properties of grape wine. Bromatol. I Chem. Toksykol. 2023, LIV, 229–249. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, M.; Li, J.; Chen, K.; Xia, L.; Wang, W.; Ren, P.; Huang, X. Ex vivo to in vivo extrapolation of syringic acid and ferulic acid as grape juice proxies for endothelium-dependent vasodilation: Redefining vasoprotective resveratrol of the French paradox. Food Chem. 2021, 363, 130323. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, X.; Ren, J. From French Paradox to cancer treatment: Anti-cancer activities and mechanisms of resveratrol. Anticancer Agents Med. Chem. 2014, 14, 806–825. [Google Scholar] [CrossRef] [PubMed]
- Saez-Lopez, C.; Brianso-Llort, L.; Torres-Torronteras, J.; Simó, R.; Hammond, G.L.; Selva, D.M. Resveratrol Increases Hepatic SHBG Expression through Human Constitutive Androstane Receptor: A new Contribution to the French Paradox. Sci. Rep. 2017, 7, 12284. [Google Scholar] [CrossRef]
- Catalgol, B.; Batirel, S.; Taga, Y.; Ozer, N.K. Resveratrol: French paradox revisited. Front. Pharmacol. 2012, 3, 141. [Google Scholar] [CrossRef]
- Francioso, A.; Mastromarino, P.; Masci, A.; d’Erme, M.; Mosca, L. Chemistry, stability and bioavailability of resveratrol. Med. Chem. 2014, 10, 237–245. [Google Scholar] [CrossRef]
- Wiciński, M.; Erdmann, J.; Nowacka, A.; Kuźmiński, O.; Michalak, K.; Janowski, K.; Ohla, J.; Biernaciak, A.; Szambelan, M.; Zabrzyński, J. Natural Phytochemicals as SIRT Activators-Focus on Potential Biochemical Mechanisms. Nutrients 2023, 15, 3578. [Google Scholar] [CrossRef]
- Kiskova, T.; Kubatka, P.; Büsselberg, D.; Kassayova, M. The Plant-Derived Compound Resveratrol in Brain Cancer: A Review. Biomolecules 2020, 10, 161. [Google Scholar] [CrossRef]
- Salehi, B.; Mishra, A.P.; Nigam, M.; Sener, B.; Kilic, M.; Sharifi-Rad, M.; Fokou, P.V.T.; Martins, N.; Sharifi-Rad, J. Resveratrol: A Double-Edged Sword in Health Benefits. Biomedicines 2018, 6, 91. [Google Scholar] [CrossRef]
- Li, Q.S.; Li, Y.; Deora, G.S.; Ruan, B.F. Derivatives and Analogues of Resveratrol: Recent Advances in Structural Modification. Mini Rev. Med. Chem. 2019, 19, 809–825. [Google Scholar] [CrossRef]
- Jarosova, V.; Vesely, O.; Doskocil, I.; Tomisova, K.; Marsik, P.; Jaimes, J.D.; Smejkal, K.; Kloucek, P.; Havlik, J. Metabolism of cis- and trans-Resveratrol and Dihydroresveratrol in an Intestinal Epithelial Model. Nutrients 2020, 12, 595. [Google Scholar] [CrossRef] [PubMed]
- Febres-Molina, C.; Sánchez, L.; Prat-Resina, X.; Jaña, G.A. Glucosylation mechanism of resveratrol through the mutant Q345F sucrose phosphorylase from the organism Bifidobacterium adolescentis: A computational study. Org. Biomol. Chem. 2022, 20, 5270–5283. [Google Scholar] [CrossRef] [PubMed]
- Simões, M.S.; Ames-Sibin, A.P.; Lima, E.P.; Pateis, V.O.; Bersani-Amado, C.A.; Mathias, P.C.F.; Peralta, R.M.; Sá-Nakanishi, A.B.; Bracht, L.; Bracht, A.; et al. Resveratrol biotransformation and actions on the liver metabolism of healthy and arthritic rats. Life Sci. 2022, 310, 120991. [Google Scholar] [CrossRef] [PubMed]
- Qiao, M.; Guang, C.; Ding, L.; Shi, X.; Chai, L.; Feng, X. Metabolic Study of Resveratrol in Rat Biosamples by UPLC-Q-TOF/MS. J. Anal. Tech. Res. 2020, 2, 96–109. [Google Scholar] [CrossRef]
- Poór, M.; Kaci, H.; Bodnárová, S.; Mohos, V.; Fliszár-Nyúl, E.; Kunsági-Máté, S.; Özvegy-Laczka, C.; Lemli, B. Interactions of resveratrol and its metabolites (resveratrol-3-sulfate, resveratrol-3-glucuronide, and dihydroresveratrol) with serum albumin, cytochrome P450 enzymes, and OATP transporters. Biomed. Pharmacother. 2022, 151, 113136. [Google Scholar] [CrossRef]
- Talib, W.H.; Alsayed, A.R.; Farhan, F.; Al Kury, L.T. Resveratrol and Tumor Microenvironment: Mechanistic Basis and Therapeutic Targets. Molecules 2020, 25, 4282. [Google Scholar] [CrossRef]
- Miksits, M.; Maier-Salamon, A.; Aust, S.; Thalhammer, T.; Reznicek, G.; Kunert, O.; Haslinger, E.; Szekeres, T.; Jaeger, W. Sulfation of resveratrol in human liver: Evidence of a major role for the sulfotransferases SULT1A1 and SULT1E1. Xenobiotica 2005, 35, 1101–1119. [Google Scholar] [CrossRef]
- Böhmdorfer, M.; Szakmary, A.; Schiestl, R.H.; Vaquero, J.; Riha, J.; Brenner, S.; Thalhammer, T.; Szekeres, T.; Jäger, W. Involvement of UDP-Glucuronosyltransferases and Sulfotransferases in the Excretion and Tissue Distribution of Resveratrol in Mice. Nutrients 2017, 9, 1347. [Google Scholar] [CrossRef]
- Dong, Z.; Jiang, W., Jr. Gut Eggerthella lenta promotes the efficacy of resveratrol through reductive metabolism. bioRxiv 2024. [CrossRef]
- Ji, Q.G.; Ma, M.H.; Hu, X.M.; Zhang, Y.J.; Xu, X.H.; Nian, H. Detection and structural characterization of the metabolites of dihydroresveratrol in rats by liquid chromatography coupled to high-resolution tandem mass spectrometry. Rapid Commun. Mass. Spectrom. 2021, 35, e8991. [Google Scholar] [CrossRef]
- Jing, X.; Pingping, D.; Yifang, C.; Huajian, L.; Shan, J.; Yong, W.; Jiayu, Z. Comprehensive analysis of dihydromyricetin metabolites in rats using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry. J. Sep. Sci. 2022, 45, 3930–3941. [Google Scholar] [CrossRef] [PubMed]
- Dellinger, R.W.; Garcia, A.M.; Meyskens, F.L., Jr. Differences in the glucuronidation of resveratrol and pterostilbene: Altered enzyme specificity and potential gender differences. Drug Metab. Pharmacokinet. 2014, 29, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Rotches-Ribalta, M.; Andres-Lacueva, C.; Estruch, R.; Escribano, E.; Urpi-Sarda, M. Pharmacokinetics of resveratrol metabolic profile in healthy humans after moderate consumption of red wine and grape extract tablets. Pharmacol. Res. 2012, 66, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Poschner, S.; Maier-Salamon, A.; Zehl, M.; Wackerlig, J.; Dobusch, D.; Meshcheryakova, A.; Mechtcheriakova, D.; Thalhammer, T.; Pachmann, B.; Jäger, W. Resveratrol Inhibits Key Steps of Steroid Metabolism in a Human Estrogen-Receptor Positive Breast Cancer Model: Impact on Cellular Proliferation. Front. Pharmacol. 2018, 9, 742. [Google Scholar] [CrossRef]
- Cottart, C.H.; Nivet-Antoine, V.; Laguillier-Morizot, C.; Beaudeux, J.L. Resveratrol bioavailability and toxicity in humans. Mol. Nutr. Food Res. 2010, 54, 7–16. [Google Scholar] [CrossRef]
- Walle, T. Bioavailability of resveratrol. Ann. N. Y. Acad. Sci. 2011, 1215, 9–15. [Google Scholar] [CrossRef]
- Nawaz, W.; Zhou, Z.; Deng, S.; Ma, X.; Ma, X.; Li, C.; Shu, X. Therapeutic Versatility of Resveratrol Derivatives. Nutrients. 2017, 9, 1188. [Google Scholar] [CrossRef]
- Bojanowski, K.; Bojanowski, R. Two Methods of Oral Delivery of Resveratrol: A case study. J. Aging Res. Clin. Pract. 2015, 4, 185–189. [Google Scholar] [CrossRef]
- Peñalva, R.; Morales, J.; González-Navarro, C.J.; Larrañeta, E.; Quincoces, G.; Peñuelas, I.; Irache, J.M. Increased Oral Bioavailability of Resveratrol by Its Encapsulation in Casein Nanoparticles. Int. J. Mol. Sci. 2018, 19, 2816. [Google Scholar] [CrossRef]
- Chimento, A.; De Amicis, F.; Sirianni, R.; Sinicropi, M.S.; Puoci, F.; Casaburi, I.; Saturnino, C.; Pezzi, V. Progress to Improve Oral Bioavailability and Beneficial Effects of Resveratrol. Int. J. Mol. Sci. 2019, 20, 1381. [Google Scholar] [CrossRef]
- de Vries, K.; Strydom, M.; Steenkamp, V. Bioavailability of resveratrol: Possibilities for enhancement. J. Herbal. Med. 2017, 11, 71–77. [Google Scholar] [CrossRef]
- Shi, A.; Wang, J.; Guo, R.; Feng, X.; Ge, Y.; Liu, H.; Agyei, D.; Wang, Q. Improving resveratrol bioavailability using water-in-oil-in-water (W/O/W) emulsion: Physicochemical stability, in vitro digestion resistivity and transport properties. J. Funct. Foods 2021, 87, 104717. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, R.; Zhang, Q.; Luo, M.; Lu, F.; He, Z.; Jiang, Q.; Zhang, T. Dual Strategy for Improving the Oral Bioavailability of Resveratrol: Enhancing Water Solubility and Inhibiting Glucuronidation. J. Agric. Food Chem. 2021, 69, 9249–9258. [Google Scholar] [CrossRef] [PubMed]
- de Sá Coutinho, D.; Pacheco, M.T.; Frozza, R.L.; Bernardi, A. Anti-Inflammatory Effects of Resveratrol: Mechanistic Insights. Int. J. Mol. Sci. 2018, 19, 1812. [Google Scholar] [CrossRef]
- Meng, T.; Xiao, D.; Muhammed, A.; Deng, J.; Chen, L.; He, J. Anti-Inflammatory Action and Mechanisms of Resveratrol. Molecules 2021, 26, 229. [Google Scholar] [CrossRef]
- Salla, M.; Pandya, V.; Bhullar, K.S.; Kerek, E.; Wong, Y.F.; Losch, R.; Ou, J.; Aldawsari, F.S.; Velazquez-Martinez, C.; Thiesen, A.; et al. Resveratrol and Resveratrol-Aspirin Hybrid Compounds as Potent Intestinal Anti-Inflammatory and Anti-Tumor Drugs. Molecules 2020, 25, 3849. [Google Scholar] [CrossRef]
- Lomholt, S.; Mellemkjaer, A.; Iversen, M.B.; Pedersen, S.B.; Kragstrup, T.W. Resveratrol displays anti-inflammatory properties in an ex vivo model of immune mediated inflammatory arthritis. BMC Rheumatol. 2018, 2, 27. [Google Scholar] [CrossRef]
- El-Ghazaly, M.; Fadel, N.; Hassan, D.; El-Rehim, H.; Zaki, H.; Kenawy, S. Potential anti-inflammatory action of resveratrol and piperine in adjuvant-induced arthritis: Effect on pro-inflammatory cytokines and oxidative stress biomarkers. Egypt. Rheumatol. 2019, 42, 71–77. [Google Scholar] [CrossRef]
- Recalde, M.D.; Miguel, C.A.; Noya-Riobó, M.V.; González, S.L.; Villar, M.J.; Coronel, M.F. Resveratrol exerts anti-oxidant and anti-inflammatory actions and prevents oxaliplatin-induced mechanical and thermal allodynia. Brain Res. 2020, 1748, 147079. [Google Scholar] [CrossRef]
- Kim, W.S.; Song, H.Y.; Mushtaq, S.; Kim, J.M.; Byun, E.H.; Yuk, J.M.; Byun, E.B. Therapeutic Potential of Gamma-Irradiated Resveratrol in Ulcerative Colitis via the Anti-Inflammatory Activity and Differentiation of Tolerogenic Dendritic Cells. Cell Physiol. Biochem. 2019, 52, 1117–1138. [Google Scholar] [CrossRef]
- Constantinescu, T.; Mihiş, A. Resveratrol as a privileged molecule with antioxidant activity. Food Chem. Adv. 2023, 3, 100539. [Google Scholar] [CrossRef]
- Freitas, C.; Lourenço, A.; Timoteo, M.; Soares, M.; Figueiredo, J.; Pereira, T.; Caseiro, A. Antioxidant effect of Resveratrol on vascular function. Rev. Científica Da Rede Académica Das Ciências Da Saúde Da Lusofonia 2023, 5. [Google Scholar] [CrossRef]
- Gu, T.; Wang, N.; Wu, T.; Ge, Q.; Chen, L. Antioxidative Stress Mechanisms behind Resveratrol: A Multidimensional Analysis. J. Food Qual. 2021, 2021, 5571733. [Google Scholar] [CrossRef]
- Agbadua, O.G.; Kúsz, N.; Berkecz, R.; Gáti, T.; Tóth, G.; Hunyadi, A. Oxidized Resveratrol Metabolites as Potent Antioxidants and Xanthine Oxidase Inhibitors. Antioxidants 2022, 11, 1832. [Google Scholar] [CrossRef]
- Xia, N.; Daiber, A.; Förstermann, U.; Li, H. Antioxidant effects of resveratrol in the cardiovascular system. Br. J. Pharmacol. 2017, 174, 1633–1646. [Google Scholar] [CrossRef]
- Planinc, M.; Jovanović, I.N.; Rašić, D.; Peraica, M.; Sutlić, Ž. Resveratrol as antioxidant in cardiac surgery: Is there potential for clinical application? Arh. Hig. Rada Toksikol. 2022, 73, 256–259. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, H.; Wu, X.; Xu, Y.; Tan, Q. Resveratrol activates autophagy and protects from UVA-induced photoaging in human skin fibroblasts and the skin of male mice by regulating the AMPK pathway. Biogerontology 2024, 25, 649–664. [Google Scholar] [CrossRef]
- Liang, Y.; Chen, X.; Teng, Z.; Wang, X.; Yang, J.; Liu, G. Discovery of a 4-Hydroxy-3′-Trifluoromethoxy-Substituted Resveratrol Derivative as an Anti-Aging Agent. Molecules 2023, 29, 86. [Google Scholar] [CrossRef]
- Kohandel, Z.; Darrudi, M.; Naseri, K.; Samini, F.; Aschner, M.; Pourbagher-Shahri, A.M.; Samarghandian, S. The Role of Resveratrol in Aging and Senescence: A Focus on Molecular Mechanisms. Curr. Mol. Med. 2024, 24, 867–875. [Google Scholar] [CrossRef]
- Wang, L.F.; Li, W.J.; Zhang, X.Y.; Zhang, Y.C.; Chen, G.F.; Zhou, X.Y.; Xv, D.M.; Wu, Q. Resveratrol prevents age-related heart impairment through inhibiting the Notch/NF-κB pathway. Food Sci. Nutr. 2023, 12, 1035–1045. [Google Scholar] [CrossRef]
- Guldedava, K.; Imnadze, N. Resveratrol the main constituent of cosmetology and dermatological products: Review. Exp. Clin. Med. Ga. 2023, 4, 125–132. [Google Scholar] [CrossRef]
- Hu, T.; Zou, H.X.; Zhang, Z.Y.; Wang, Y.C.; Hu, F.J.; Huang, W.X.; Liu, J.C.; Lai, S.Q.; Huang, H. Resveratrol protects cardiomyocytes against ischemia/reperfusion-induced ferroptosis via inhibition of the VDAC1/GPX4 pathway. Eur. J. Pharmacol. 2024, 971, 176524. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Sun, X.; Wang, Z.; Chen, M.; He, Y.; Zhang, H.; Han, D.; Zheng, L. Resveratrol protects against doxorubicin-induced cardiotoxicity by attenuating ferroptosis through modulating the MAPK signaling pathway. Toxicol. Appl. Pharmacol. 2024, 482, 116794. [Google Scholar] [CrossRef] [PubMed]
- Salian, T.R.; Noushida, N.; Jaswanth Gowda, B.H.; Chakraborty, M.; Enumadisetty Srinivasulu, S.P.; Ahmed, M.G. Cardioprotective Potential of Resveratrol Alone and in Combination with Piperine on Isoproterenol-induced Myocardial Infarction in Rat: Investigation on Oral Bioavailability of Resveratrol. Int. J. Pharm. Investig. 2023, 14, 107–116. [Google Scholar] [CrossRef]
- Zhang, W.; Qian, S.; Tang, B.; Kang, P.; Zhang, H.; Shi, C. Resveratrol inhibits ferroptosis and decelerates heart failure progression via Sirt1/p53 pathway activation. J. Cell Mol. Med. 2023, 27, 3075–3089. [Google Scholar] [CrossRef]
- Capurso, C.; Bellanti, F.; Lo Buglio, A.; Vendemiale, G. Cardioprotective Effects of Resveratrol in the Mediterranean Diet: A Short Narrative Review. Dietetics 2023, 2, 174–190. [Google Scholar] [CrossRef]
- Wang, P.; Yang, Y.; Guo, J.; Ma, T.; Hu, Y.; Huang, L.; He, Y.; Xi, J. Resveratrol Inhibits Zinc Deficiency-Induced Mitophagy and Exerts Cardiac Cytoprotective Effects. Biol. Trace Elem. Res. 2024, 202, 1669–1682. [Google Scholar] [CrossRef]
- Fang, W.J.; Li, X.M.; Zhou, X.K.; Xiong, Y. Resveratrol improves diabetic cardiomyopathy by preventing asymmetric dimethylarginine-caused peroxisome proliferator-activated receptor-γ coactivator-1α acetylation. Eur. J. Pharmacol. 2022, 936, 175342. [Google Scholar] [CrossRef]
- Ozpak, L.; Bağca, B.G. Neuroprotective effects of resveratrol through modulation of PI3K/Akt/GSK-3β pathway and metalloproteases. IUBMB Life. 2024, 76, 1199–1208. [Google Scholar] [CrossRef]
- Çetin, R.; Bahadir, S.; Basar, İ.; Aslanoglu, B.; Atlas, B.; Kaya, S.; Güzel, B.C.; Turan, Y. Neuroprotective effects of the combined treatment of resveratrol and urapidil in experimental cerebral ischemia-reperfusion injury in rats. Acta Cir. Bras. 2024, 39, e395329. [Google Scholar] [CrossRef]
- Diao, W.; Yin, M.; Qi, Y.; Fu, Y.; Gu, L.; Lin, J.; Zhang, L.; Jiang, N.; Wang, Q.; Wang, Y.; et al. Resveratrol has neuroprotective effects and plays an anti-inflammatory role through Dectin-1/p38 pathway in Aspergillus fumigatus keratitis. Cytokine 2024, 179, 156626. [Google Scholar] [CrossRef] [PubMed]
- Zylberberg, B.; Poodts, M.; Roncoroni, J.; Coronel, M.F.; Mazzone, G.L. Resveratrol evokes neuroprotective effects and improves foot stance following kainate-induced excitotoxic damage to the mouse spinal cord. Neuropharmacology 2024, 250, 109906. [Google Scholar] [CrossRef] [PubMed]
- Shamsher, E.; Khan, R.S.; Davis, B.M.; Dine, K.; Luong, V.; Cordeiro, M.F.; Shindler, K.S. Intranasal Resveratrol Nanoparticles Enhance Neuroprotection in a Model of Multiple Sclerosis. Int. J. Mol. Sci. 2024, 25, 4047. [Google Scholar] [CrossRef] [PubMed]
- Subhan, I.; Siddique, Y.H. Resveratrol: Protective Agent Against Alzheimer’s Disease. Cent. Nerv. Syst. Agents Med. Chem. 2024, 24, 249–263. [Google Scholar] [CrossRef]
- Farkhakfar, A.; Hassanpour, S.; Zendehdel, M. Resveratrol plays neuroprotective role on ketamine-induced schizophrenia-like behaviors and oxidative damage in mice. Neurosci. Lett. 2023, 813, 137436. [Google Scholar] [CrossRef]
- Bala, S.; Misra, A.; Kaur, U.; Chakrabarti, S.S. Resveratrol: A Novel Drug for the Management of Neurodegenerative Disorders. In Traditional Medicine for Neuronal Health; Bentham Science Publishers: Sharjah, United Arab Emirates, 2023. [Google Scholar] [CrossRef]
- Gomes, B.A.Q.; Silva, J.P.B.; Romeiro, C.F.R.; Dos Santos, S.M.; Rodrigues, C.A.; Gonçalves, P.R.; Sakai, J.T.; Mendes, P.F.S.; Varela, E.L.P.; Monteiro, M.C. Neuroprotective Mechanisms of Resveratrol in Alzheimer’s Disease: Role of SIRT1. Oxid. Med. Cell Longev. 2018, 2018, 8152373. [Google Scholar] [CrossRef]
- Xia, D.; Sui, R.; Zhang, Z. Administration of resveratrol improved Parkinson’s disease-like phenotype by suppressing apoptosis of neurons via modulating the MALAT1/miR-129/SNCA signaling pathway. J. Cell Biochem. 2019, 120, 4942–4951. [Google Scholar] [CrossRef]
- Andrade, S.; Ramalho, M.J.; Pereira, M.D.C.; Loureiro, J.A. Resveratrol Brain Delivery for Neurological Disorders Prevention and Treatment. Front. Pharmacol. 2018, 9, 1261. [Google Scholar] [CrossRef]
- Amale, P.N.; Deshpande, S.A.; Bora, V.R. Central and Peripheral Analgesic and Anti-inflammatory effect of Plumbagin and Resveratrol: A Preclinical Study. Res. J. Pharm. Technol. 2023, 16, 4406–4414. [Google Scholar] [CrossRef]
- Wei, S.; Liu, T.T.; Hu, W.P.; Qiu, C.Y. Resveratrol inhibits the activity of acid-sensing ion channels in male rat dorsal root ganglion neurons. J. Neurosci. Res. 2022, 100, 1755–1764. [Google Scholar] [CrossRef]
- Zabihian, M.A.; Hosseini, M.; Bahrami, F.; Iman, M.; Ghasemi, M.; Mohammadi, M.T.; Bahari, Z. Intracerebroventricular injection of propranolol blocked analgesic and neuroprotective effects of resveratrol following L5 spinal nerve ligation in rat. J. Complement. Integr. Med. 2021, 18, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Xu, H.M.; Han, Y.; Zhang, Y.L. Analgesic effect of resveratrol on colitis-induced visceral pain via inhibition of TRAF6/NF-κB signaling pathway in the spinal cord. Brain Res. 2019, 1724, 146464. [Google Scholar] [CrossRef] [PubMed]
- Mirasheh, M.H.; Zohrehvand, M.R.; Kazemi, R.; Bahari, Z.; Bahrami, F.; Jangravi, Z.; Graily, M. The Analgesic and Anxiolytic Activity of Resveratrol Mediated by Different Sub-Types of α-Adrenoceptors of Anterior Cingulate Cortex Following Neuropathic Pain in Male Rats. J. Adv. Med. Biomed. Res. 2020, 28, 183–190. [Google Scholar] [CrossRef]
- Wang, G.; Hu, Z.; Song, X.; Cui, Q.; Fu, Q.; Jia, R.; Zou, Y.; Li, L.; Yin, Z. Analgesic and Anti-Inflammatory Activities of Resveratrol through Classic Models in Mice and Rats. Evid. Based Complement. Alternat Med. 2017, 2017, 5197567. [Google Scholar] [CrossRef]
- Han, J.; Hua, Z.; Yang, W.J.; Wang, S.; Yan, F.; Wang, J.N.; Sun, T. Resveratrol suppresses neuroinflammation to alleviate mechanical allodynia by inhibiting Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway in a rat model of spinal cord injury. Front. Mol. Neurosci. 2023, 16, 1116679. [Google Scholar] [CrossRef]
- Cilibrasi, C.; Riva, G.; Romano, G.; Cadamuro, M.; Bazzoni, R.; Butta, V.; Paoletta, L.; Dalprà, L.; Strazzabosco, M.; Lavitrano, M.; et al. Resveratrol Impairs Glioma Stem Cells Proliferation and Motility by Modulating the Wnt Signaling Pathway. PLoS ONE 2017, 12, e0169854. [Google Scholar] [CrossRef]
- Clark, P.A.; Bhattacharya, S.; Elmayan, A.; Darjatmoko, S.R.; Thuro, B.A.; Yan, M.B.; van Ginkel, P.R.; Polans, A.S.; Kuo, J.S. Resveratrol targeting of AKT and p53 in glioblastoma and glioblastoma stem-like cells to suppress growth and infiltration. J. Neurosurg. 2017, 126, 1448–1460. [Google Scholar] [CrossRef]
- Öztürk, Y.; Günaydın, C.; Yalçın, F.; Nazıroğlu, M.; Braidy, N. Resveratrol Enhances Apoptotic and Oxidant Effects of Paclitaxel through TRPM2 Channel Activation in DBTRG Glioblastoma Cells. Oxid. Med. Cell Longev. 2019, 2019, 4619865. [Google Scholar] [CrossRef]
- Kursvietiene, L.; Kopustinskiene, D.M.; Staneviciene, I.; Mongirdiene, A.; Kubová, K.; Masteikova, R.; Bernatoniene, J. Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions. Antioxidants 2023, 12, 2056. [Google Scholar] [CrossRef]
- Anwar, M.J.; Altaf, A.; Imran, M.; Amir, M.; Alsagaby, S.; Alabdulmonem, W.; Mujtaba, A.; El-Ghorab, A.; Ghoneim, M.; Hussain, M.; et al. Anti-cancer perspectives of resveratrol: A comprehensive review. Food Agric. Immunol. 2023, 34, 2265686. [Google Scholar] [CrossRef]
- Ma, Y.Q.; Zhang, M.; Sun, Z.H.; Tang, H.Y.; Wang, Y.; Liu, J.X.; Zhang, Z.X.; Wang, C. Identification of anti-gastric cancer effects and molecular mechanisms of resveratrol: From network pharmacology and bioinformatics to experimental validation. World J. Gastrointest. Oncol. 2024, 16, 493–513. [Google Scholar] [CrossRef] [PubMed]
- Sarfraz, M.; Arafat, M.; Zaidi, S.H.H.; Eltaib, L.; Siddique, M.I.; Kamal, M.; Ali, A.; Asdaq, S.M.B.; Khan, A.; Aaghaz, S.; et al. Resveratrol-Laden Nano-Systems in the Cancer Environment: Views and Reviews. Cancers 2023, 15, 4499. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Wang, W.; Tang, X.; Goh, R.M.W.; Thuya, W.L.; Ho, P.C.L.; Chen, L.; Wang, L. Inhibitory Potential of Resveratrol in Cancer Metastasis: From Biology to Therapy. Cancers 2023, 15, 2758. [Google Scholar] [CrossRef] [PubMed]
- Rezakhani, L.; Salmani, S.; Eliyasi Dashtaki, M.; Ghasemi, S. Resveratrol: Targeting Cancer Stem Cells and ncRNAs to Overcome Cancer Drug Resistance. Curr. Mol. Med. 2024, 24, 951–961. [Google Scholar] [CrossRef]
- Kumar, A.; Kurmi, B.D.; Singh, A.; Singh, D. Potential role of resveratrol and its nano-formulation as anti-cancer agent. Explor. Target. Antitumor Ther. 2022, 3, 643–658. [Google Scholar] [CrossRef]
- Amini, P.; Moazamiyanfar, R.; Dakkali, M.S.; Khani, A.; Jafarzadeh, E.; Mouludi, K.; Khodamoradi, E.; Johari, R.; Taeb, S.; Najafi, M. Resveratrol in Cancer Therapy: From Stimulation of Genomic Stability to Adjuvant Cancer Therapy: A Comprehensive Review. Curr. Top. Med. Chem. 2023, 23, 629–648. [Google Scholar] [CrossRef]
- Johnson, W.D.; Morrissey, R.L.; Usborne, A.L.; Kapetanovic, I.; Crowell, J.A.; Muzzio, M.; McCormick, D.L. Subchronic oral toxicity and cardiovascular safety pharmacology studies of resveratrol, a naturally occurring polyphenol with cancer preventive activity. Food Chem. Toxicol. 2011, 49, 3319–3327. [Google Scholar] [CrossRef]
- Edwards, J.A.; Beck, M.; Riegger, C.; Bausch, J. Safety of resveratrol with examples for high purity, trans-resveratrol, resVida®. Ann. N. Y. Acad. Sci. 2011, 1215, 131–137. [Google Scholar] [CrossRef]
- Agarwal, A.; Khandelwal, A.; Pal, K.; Khare, N.K.; Jadhav, V.; Gurjar, M.; Punatar, S.; Gokarn, A.; Bonda, A.; Nayak, L.; et al. A novel pro-oxidant combination of resveratrol and copper reduces transplant related toxicities in patients receiving high dose melphalan for multiple myeloma (RESCU 001). PLoS ONE 2022, 17, e0262212. [Google Scholar] [CrossRef]
- Radeva, L.; Yordanov, Y.; Spassova, I.; Kovacheva, D.; Tzankova, V.; Yoncheva, K. Double-Loaded Doxorubicin/Resveratrol Polymeric Micelles Providing Low Toxicity on Cardiac Cells and Enhanced Cytotoxicity on Lymphoma Cells. Pharmaceutics 2023, 15, 1287. [Google Scholar] [CrossRef]
- Auti, A.; Alessio, N.; Ballini, A.; Dioguardi, M.; Cantore, S.; Scacco, S.; Vitiello, A.; Quagliuolo, L.; Rinaldi, B.; Santacroce, L.; et al. Protective Effect of Resveratrol against Hypoxia-Induced Neural Oxidative Stress. J. Pers. Med. 2022, 12, 1202. [Google Scholar] [CrossRef] [PubMed]
- Katila, N.; Duwa, R.; Bhurtel, S.; Khanal, S.; Maharjan, S.; Jeong, J.H.; Lee, S.; Choi, D.Y.; Yook, S. Enhancement of blood-brain barrier penetration and the neuroprotective effect of resveratrol. J. Control Release 2022, 346, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Nath, J.; Roy, R.; Sathyamoorthy, Y.; Paul, S.; Goswami, S.; Chakravarty, H.; Paul, R.; Borah, A. Resveratrol as a therapeutic choice for traumatic brain injury: An insight into its molecular mechanism of action. Brain Disorders 2022, 6, 100038. [Google Scholar] [CrossRef]
- Mo, Y.; Duan, L.; Yang, Y.; Liu, W.; Zhang, Y.; Zhou, L.; Su, S.; Lo, P.C.; Cai, J.; Gao, L.; et al. Nanoparticles improved resveratrol brain delivery and its therapeutic efficacy against intracerebral hemorrhage. Nanoscale 2021, 13, 3827–3840. [Google Scholar] [CrossRef]
- Dadgostar, E.; Fallah, M.; Izadfar, F.; Heidari-Soureshjani, R.; Aschner, M.; Tamtaji, O.R.; Mirzaei, H. Therapeutic Potential of Resveratrol in the Treatment of Glioma: Insights into its Regulatory Mechanisms. Mini Rev. Med. Chem. 2021, 21, 2835–2847. [Google Scholar] [CrossRef]
- Hiroki, H.; Kohji, I.; Kei, S.; Atsuhito, K.; Yuya, K.; Ryusuke, H. Enzymatic Synthesis of Resveratrol Oligosaccharides (Gluco-oligosaccharides) and their Enhanced Application as Antidementia Drugs that Cross the Blood-brain Barrier (BBB). Int. J. Curr. Microbiol. App. Sci. 2022, 11, 260–266. [Google Scholar] [CrossRef]
- Moukham, H.; Lambiase, A.; Barone, G.D.; Tripodi, F.; Coccetti, P. Exploiting Natural Niches with Neuroprotective Properties: A Comprehensive Review. Nutrients 2024, 16, 1298. [Google Scholar] [CrossRef]
- Alquisiras-Burgos, I.; González-Herrera, I.G.; Alcalá-Alcalá, S.; Aguilera, P. Nose-to Brain Delivery of Resveratrol, a Non-Invasive Method for the Treatment of Cerebral Ischemia. Drugs Drug Candidates 2024, 3, 102–125. [Google Scholar] [CrossRef]
- Jalili, C.; Kiani, A.; Gholami, M.; Bahrehmand, F.; Fakhri, S.; Kakehbaraei, S.; Kakebaraei, S. Brain targeting based nanocarriers loaded with resveratrol in Alzheimer’s disease: A review. IET Nanobiotechnol. 2023, 17, 154–170. [Google Scholar] [CrossRef]
- Komorowska, J.; Wątroba, M.; Bednarzak, M.; Grabowska, A.D.; Szukiewicz, D. Anti-Inflammatory Action of Resveratrol in the Central Nervous System in Relation to Glucose Concentration-An In Vitro Study on a Blood-Brain Barrier Model. Int. J. Mol. Sci. 2024, 25, 3110. [Google Scholar] [CrossRef]
- Shu, X.H.; Wang, L.L.; Li, H.; Song, X.; Shi, S.; Gu, J.Y.; Wu, M.L.; Chen, X.Y.; Kong, Q.Y.; Liu, J. Diffusion Efficiency and Bioavailability of Resveratrol Administered to Rat Brain by Different Routes: Therapeutic Implications. Neurotherapeutics 2015, 12, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Dionigi, L.; Ragonese, F.; Monarca, L.; Covino, S.; de Luca, A.; Iannitti, R.G.; Bastioli, F.; Moulas, A.N.; Allegretti, M.; Fioretti, B. Focus on the Use of Resveratrol as an Adjuvant in Glioblastoma Therapy. Curr. Pharm. Des. 2020, 26, 2102–2108. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Shu, X.H.; Wu, M.L.; Zheng, X.; Jia, B.; Kong, Q.Y.; Liu, J.; Li, H. Postoperative resveratrol administration improves prognosis of rat orthotopic glioblastomas. BMC Cancer 2018, 18, 871. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, Y.; Jiao, Y.; Guo, A.; Xu, X.; Qu, X.; Wang, S.; Zhao, J.; Li, Y.; Cao, Y. Resveratrol sensitizes glioblastoma-initiating cells to temozolomide by inducing cell apoptosis and promoting differentiation. Oncol. Rep. 2016, 35, 343–351. [Google Scholar] [CrossRef]
- Wu, M.; Song, D.; Li, H.; Ahmad, N.; Xu, H.; Yang, X.; Wang, Q.; Cheng, X.; Deng, S.; Shu, X. Resveratrol Enhances Temozolomide Efficacy in Glioblastoma Cells through Downregulated MGMT and Negative Regulators-Related STAT3 Inactivation. Int. J. Mol. Sci. 2023, 24, 9453. [Google Scholar] [CrossRef]
- Liu, Y.; Song, X.; Wu, M.; Wu, J.; Liu, J. Synergistic Effects of Resveratrol and Temozolomide Against Glioblastoma Cells: Underlying Mechanism and Therapeutic Implications. Cancer Manag. Res. 2020, 12, 8341–8354. [Google Scholar] [CrossRef]
- Richard, S. The Therapeutic Potential of Resveratrol in Gliomas. Adv. Biosci. Clin. Med. 2019, 7, 44–59. [Google Scholar] [CrossRef]
- Mittal, S.; Shah, S.; Yadav, H.N.; Ali, J.; Gupta, M.M.; Baboota, S. Quality by design engineered, enhanced anticancer activity of temozolomide and resveratrol coloaded NLC and brain targeting via lactoferrin conjugation in treatment of glioblastoma. Eur. J. Pharm. Biopharm. 2023, 191, 175–188. [Google Scholar] [CrossRef]
- Mittal, S.; Ali, J.; Baboota, S. DoE Engineered Development and Validation of an RP-HPLC Method for Simultaneous Estimation of Temozolomide and Resveratrol in Nanostructured Lipid Carrier. J. AOAC Int. 2022, 105, 1258–1267. [Google Scholar] [CrossRef]
- Qian, L.; Mao, L.; Mo, W.; Wang, R.; Zhang, Y. Resveratrol Enhances the Radiosensitivity by Inducing DNA Damage and Antitumor Immunity in a Glioblastoma Rat Model under 3 T MRI Monitoring. J. Oncol. 2022, 2022, 9672773. [Google Scholar] [CrossRef]
- Baatout, S.; Derradji, H.; Jacquet, P.; Ooms, D.; Michaux, A.; Mergeay, M. Enhanced radiation-induced apoptosis of cancer cell lines after treatment with resveratrol. Int. J. Mol. Med. 2004, 13, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precis. Oncol. 2017, 1, 35. [Google Scholar] [CrossRef] [PubMed]
- Komorowska, D.; Gajewska, A.; Hikisz, P.; Bartosz, G.; Rodacka, A. Comparison of the Effects of Resveratrol and Its Derivatives on the Radiation Response of MCF-7 Breast Cancer Cells. Int. J. Mol. Sci. 2021, 22, 9511. [Google Scholar] [CrossRef] [PubMed]
- Lele, W.; Lei, L.; Liting, Q. Resveratrol sensitizes A549 cells to irradiation damage via suppression of store-operated calcium entry with Orai1 and STIM1 downregulation. Exp. Ther. Med. 2021, 21, 587. [Google Scholar] [CrossRef]
- Banegas, Y.C.; Ocolotobiche, E.E.; Padula, G.; Córdoba, E.E.; Fernández, E.; Güerci, A.M. Evaluation of resveratrol radiomodifying potential for radiotherapy treatment. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2018, 836 Pt B, 79–83. [Google Scholar] [CrossRef]
- Arabzadeh, A.; Mortezazadeh, T.; Aryafar, T.; Gharepapagh, E.; Majdaeen, M.; Farhood, B. Therapeutic potentials of resveratrol in combination with radiotherapy and chemotherapy during glioblastoma treatment: A mechanistic review. Cancer Cell Int. 2021, 21, 391. [Google Scholar] [CrossRef]
- Mortezaee, K.; Najafi, M.; Farhood, B.; Ahmadi, A.; Shabeeb, D.; Musa, A.E. Resveratrol as an Adjuvant for Normal Tissues Protection and Tumor Sensitization. Curr. Cancer Drug Targets 2020, 20, 130–145. [Google Scholar] [CrossRef]
- Lu, K.H.; Chen, Y.W.; Tsai, P.H.; Tsai, M.L.; Lee, Y.Y.; Chiang, C.Y.; Kao, C.L.; Chiou, S.H.; Ku, H.H.; Lin, C.H.; et al. Evaluation of radiotherapy effect in resveratrol-treated medulloblastoma cancer stem-like cells. Childs Nerv. Syst. 2009, 25, 543–550. [Google Scholar] [CrossRef]
- Gusakov, K.; Nazarova, N.; Abakarova, P.; Tararykova, A.; Ivanov, I. Antiproliferative effects of resveratrol and indole-3-carbinol in HPV-associated diseases prevention. Meditsinskiy Sov. Med. Council 2022, 16, 151–159. [Google Scholar] [CrossRef]
- ALkharashi, N.A. Efficacy of resveratrol against breast cancer and hepatocellular carcinoma cell lines. Saudi Med. J. 2023, 44, 246–252. [Google Scholar] [CrossRef]
- Karkon-Shayan, S.; Aliashrafzadeh, H.; Dianat-Moghadam, H.; Rastegar-Pouyani, N.; Majidi, M.; Zarei, M.; Moradi-Vastegani, S.; Bahramvand, Y.; Babaniamansour, S.; Jafarzadeh, E. Resveratrol as an antitumor agent for glioblastoma multiforme: Targeting resistance and promoting apoptotic cell deaths. Acta Histochem. 2023, 125, 152058. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, R.S.; Ibrahim, S.S.; El-Naas, A.; Koklesová, L.; Kubatka, P.; Büsselberg, D. Could Metformin and Resveratrol Support Glioblastoma Treatment? A Mechanistic View at the Cellular Level. Cancers 2023, 15, 3368. [Google Scholar] [CrossRef]
- Almeida, T.C.; Guerra, C.C.C.; De Assis, B.L.G.; de Oliveira Aguiar Soares, R.D.; Garcia, C.C.M.; Lima, A.A.; da Silva, G.N. Antiproliferative and toxicogenomic effects of resveratrol in bladder cancer cells with different TP53 status. Environ. Mol. Mutagen. 2019, 60, 740–751. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.A.; Wei, W.; Yuan, J.; Cheng, J. Resveratrol Inhibits Proliferation in HBL-52 Meningioma Cells. Onco Targets Ther. 2019, 12, 11579–11586. [Google Scholar] [CrossRef]
- Ma, J.X.; Li, H.; Cheng, X.X.; Wu, M.L.; Yu, L.J.; Kong, Q.Y.; Liu, M.; Liu, J. Inhibition of SIRT1 Transcription in Resveratrol-differentiated Medulloblastoma Cells. Funct. Foods Health Dis. 2013, 3, 154. [Google Scholar] [CrossRef]
- Herrero, A.B.; Rojas, E.A.; Misiewicz-Krzeminska, I.; Krzeminski, P.; Gutiérrez, N.C. Molecular Mechanisms of p53 Deregulation in Cancer: An Overview in Multiple Myeloma. Int. J. Mol. Sci. 2016, 17, 2003. [Google Scholar] [CrossRef]
- Issaeva, N. p53 Signaling in Cancers. Cancers 2019, 11, 332. [Google Scholar] [CrossRef]
- Karthika, C.; Najda, A.; Klepacka, J.; Zehravi, M.; Akter, R.; Akhtar, M.F.; Saleem, A.; Al-Shaeri, M.; Mondal, B.; Ashraf, G.M.; et al. Involvement of Resveratrol against Brain Cancer: A Combination Strategy with a Pharmaceutical Approach. Molecules 2022, 27, 4663. [Google Scholar] [CrossRef]
- Xie, B.; Zhang, L.; Hu, W.; Fan, M.; Jiang, N.; Duan, Y.; Jing, D.; Xiao, W.; Fragoso, R.C.; Lam, K.S.; et al. Dual blockage of STAT3 and ERK1/2 eliminates radioresistant GBM cells. Redox Biol. 2019, 24, 101189. [Google Scholar] [CrossRef]
- Wen, S.; Li, H.; Wu, M.L.; Fan, S.H.; Wang, Q.; Shu, X.H.; Kong, Q.Y.; Chen, X.Y.; Liu, J. Inhibition of NF-κB signaling commits resveratrol-treated medulloblastoma cells to apoptosis without neuronal differentiation. J. Neurooncol. 2011, 104, 169–177. [Google Scholar] [CrossRef]
- Ahmed, E.A.; Abdelsalam, S.A. Marine Bioactive Molecules as Inhibitors of the Janus Kinases: A Comparative Molecular Docking and Molecular Dynamics Simulation Approach. Curr. Issues Mol. Biol. 2024, 46, 10635–10650. [Google Scholar] [CrossRef] [PubMed]
- Pencik, J.; Pham, H.T.; Schmoellerl, J.; Javaheri, T.; Schlederer, M.; Culig, Z.; Merkel, O.; Moriggl, R.; Grebien, F.; Kenner, L. JAK-STAT signaling in cancer: From cytokines to non-coding genome. Cytokine 2016, 87, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Ou, A.; Ott, M.; Fang, D.; Heimberger, A.B. The Role and Therapeutic Targeting of JAK/STAT Signaling in Glioblastoma. Cancers 2021, 13, 437. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Peng, Q.; Tang, Y.; Wang, C.; Wang, S.; Yu, D.; Hou, S.; Wang, Y.; Zhang, L.; Lin, N. Resveratrol ameliorates glioblastoma inflammatory response by reducing NLRP3 inflammasome activation through inhibition of the JAK2/STAT3 pathway. J. Cancer Res. Clin. Oncol. 2024, 150, 168. [Google Scholar] [CrossRef] [PubMed]
- Carnero, A.; Blanco-Aparicio, C.; Renner, O.; Link, W.; Leal, J.F. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr. Cancer Drug Targets 2008, 8, 187–198. [Google Scholar] [CrossRef]
- Álvarez-Garcia, V.; Tawil, Y.; Wise, H.M.; Leslie, N.R. Mechanisms of PTEN loss in cancer: It’s all about diversity. Semin. Cancer Biol. 2019, 59, 66–79. [Google Scholar] [CrossRef]
- Obrador, E.; Moreno-Murciano, P.; Oriol-Caballo, M.; López-Blanch, R.; Pineda, B.; Gutiérrez-Arroyo, J.L.; Loras, A.; Gonzalez-Bonet, L.G.; Martinez-Cadenas, C.; Estrela, J.M.; et al. Glioblastoma Therapy: Past, Present and Future. Int. J. Mol. Sci. 2024, 25, 2529. [Google Scholar] [CrossRef]
- Gozdz, A. Proteasome Inhibitors against Glioblastoma-Overview of Molecular Mechanisms of Cytotoxicity, Progress in Clinical Trials, and Perspective for Use in Personalized Medicine. Curr. Oncol. 2023, 30, 9676–9688. [Google Scholar] [CrossRef]
- Falasca, M. PI3K/Akt signalling pathway specific inhibitors: A novel strategy to sensitize cancer cells to anti-cancer drugs. Curr. Pharm. Des. 2010, 16, 1410–1416. [Google Scholar] [CrossRef]
- Brown, K.K.; Toker, A. The phosphoinositide 3-kinase pathway and therapy resistance in cancer. F1000Prime Rep. 2015, 7, 13. [Google Scholar] [CrossRef]
- Huang, W.C.; Hung, M.C. Induction of Akt activity by chemotherapy confers acquired resistance. J. Formos. Med. Assoc. 2009, 108, 180–194. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Z.; Mousavi, M.; Moliani, A.; Bahman, Y.; Bagheri, H. Resveratrol inhibits glioblastoma cells and chemoresistance progression through blockade P-glycoprotein and targeting AKT/PTEN signaling pathway. Chem. Biol. Interact. 2023, 376, 110409. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, J.E.; Bammert, C.E.; Belton, R.J.; Jr Rovin, R.A.; Winn, R.J. Targeting DNA Repair Mechanisms to Treat Glioblastoma. InTech 2015. [CrossRef]
- Liu, T.H.; Tu, W.Q.; Tao, W.C.; Liang, Q.E.; Xiao, Y.; Chen, L.G. Verification of Resveratrol Inhibits Intestinal Aging by Downregulating ATF4/Chop/Bcl-2/Bax Signaling Pathway: Based on Network Pharmacology and Animal Experiment. Front. Pharmacol. 2020, 11, 1064. [Google Scholar] [CrossRef]
- Khanzadeh, T.; Hagh, M.F.; Talebi, M.; Yousefi, B.; Azimi, A.; Hossein Pour Feizi, A.A.; Baradaran, B. Investigation of BAX and BCL2 expression and apoptosis in a resveratrol- and prednisolone-treated human T-ALL cell line, CCRF-CEM. Blood Res. 2018, 53, 53–60. [Google Scholar] [CrossRef]
- Yamini, B. NF-κB, Mesenchymal Differentiation and Glioblastoma. Cells 2018, 7, 125. [Google Scholar] [CrossRef]
- Singh, S.; Singh, T.G. Role of Nuclear Factor Kappa B (NF-κB) Signalling in Neurodegenerative Diseases: An Mechanistic Approach. Curr. Neuropharmacol. 2020, 18, 918–935. [Google Scholar] [CrossRef]
- Wiciński, M.; Fajkiel-Madajczyk, A.; Kurant, Z.; Liss, S.; Szyperski, P.; Szambelan, M.; Gromadzki, B.; Rupniak, I.; Słupski, M.; Sadowska-Krawczenko, I. Ashwagandha’s Multifaceted Effects on Human Health: Impact on Vascular Endothelium, Inflammation, Lipid Metabolism, and Cardiovascular Outcomes-A Review. Nutrients 2024, 16, 2481. [Google Scholar] [CrossRef]
- Vartholomatos, E.; Mantziou, S.; Alexiou, G.A.; Lazari, D.; Sioka, C.; Kyritsis, A.; Markopoulos, G.S. An NF-κB- and Therapy-Related Regulatory Network in Glioma: A Potential Mechanism of Action for Natural Antiglioma Agents. Biomedicines 2022, 10, 935. [Google Scholar] [CrossRef]
- Li, H.; Jia, Z.; Li, A.; Jenkins, G.; Yang, X.; Hu, J.; Guo, W. Resveratrol repressed viability of U251 cells by miR-21 inhibiting of NF-κB pathway. Mol. Cell Biochem. 2013, 382, 137–143. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, L.; Cui, J.; Huoc, Z.; Xue, J.; Cui, H.; Mao, Q.; Yang, R. Resveratrol inhibits NF-kB signaling through suppression of p65 and IkappaB kinase activities. Pharmazie 2013, 68, 689–694. [Google Scholar] [PubMed]
- Wang, G.; Dai, F.; Yu, K.; Jia, Z.; Zhang, A.; Huang, Q.; Kang, C.; Jiang, H.; Pu, P. Resveratrol inhibits glioma cell growth via targeting oncogenic microRNAs and multiple signaling pathways. Int. J. Oncol. 2015, 46, 1739–1747. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.; Ku, B.M.; Lee, Y.K.; Jeong, J.Y.; Kang, S.; Choi, J.; Yang, Y.; Lee, D.H.; Roh, G.S.; Kim, H.J.; et al. Resveratrol reduces TNF-α-induced U373MG human glioma cell invasion through regulating NF-κB activation and uPA/uPAR expression. Anticancer Res. 2011, 31, 4223–4230. [Google Scholar] [PubMed]
- Jiao, Y.; Li, H.; Liu, Y.; Guo, A.; Xu, X.; Qu, X.; Wang, S.; Zhao, J.; Li, Y.; Cao, Y. Resveratrol Inhibits the Invasion of Glioblastoma-Initiating Cells via Down-Regulation of the PI3K/Akt/NF-κB Signaling Pathway. Nutrients 2015, 7, 4383–4402. [Google Scholar] [CrossRef]
- Huang, H.; Lin, H.; Zhang, X.; Li, J. Resveratrol reverses temozolomide resistance by downregulation of MGMT in T98G glioblastoma cells by the NF-κB-dependent pathway. Oncol. Rep. 2012, 27, 2050–2056. [Google Scholar] [CrossRef]
- Chen, J.C.; Chen, Y.; Lin, J.H.; Wu, J.M.; Tseng, S.H. Resveratrol suppresses angiogenesis in gliomas: Evaluation by color Doppler ultrasound. Anticancer Res. 2006, 26, 1237–1245. [Google Scholar]
- Hu, W.H.; Duan, R.; Xia, Y.T.; Xiong, Q.P.; Wang, H.Y.; Chan, G.K.; Liu, S.Y.; Dong, T.T.; Qin, Q.W.; Tsim, K.W. Binding of Resveratrol to Vascular Endothelial Growth Factor Suppresses Angiogenesis by Inhibiting the Receptor Signaling. J. Agric. Food Chem. 2019, 67, 1127–1137. [Google Scholar] [CrossRef]
- Chang, H. Effect of resveratrol on angiogenesis and growth of U87 human glioma xenografts in nude mice. Chin. J. Neuromedicine 2009, 8, 986–989. [Google Scholar] [CrossRef]
- Tseng, S.H.; Lin, S.M.; Chen, J.C.; Su, Y.H.; Huang, H.Y.; Chen, C.K.; Lin, P.Y.; Chen, Y. Resveratrol suppresses the angiogenesis and tumor growth of gliomas in rats. Clin. Cancer Res. 2004, 10, 2190–2202. [Google Scholar] [CrossRef]
- Qu, X.; Zhang, L.; Wang, L. Pterostilbene as a Therapeutic Alternative for Central Nervous System Disorders: A Review of the Current Status and Perspectives. J. Agric. Food Chem. 2023, 71, 14432–14457. [Google Scholar] [CrossRef]
- Gao, H.; Liu, Z.; Xu, W.; Wang, Q.; Zhang, C.; Ding, Y.; Nie, W.; Lai, J.; Chen, Y.; Huang, H. Pterostilbene promotes mitochondrial apoptosis and inhibits proliferation in glioma cells. Sci. Rep. 2021, 11, 6381. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Zhong, Z.; Sun, H.; Yan, L.; He, B.; Li, S.; Ma, S.; Yang, L.; Huang, Y. Effect of pterostilbene on glioma cells and related mechanisms. Am. J. Transl. Res. 2016, 8, 5211–5218. [Google Scholar] [PubMed]
- Chen, Z.; Fang, X.G.; Guo, X.R.; Luan, S.Q.; Hua, J.; Luo, J. Anti-glioma mechanism of pterostilbene by regulating apoptosis and GSDME-mediated pyroptosis pathways: A study based on network pharmacology and experimental research. Zhongguo Zhong Yao Za Zhi 2023, 48, 3589–3601. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, L.; Baskaran, S.; Johansson, P.; Padhan, N.; Matuszewski, D.; Green, L.C.; Elfineh, L.; Wee, S.; Häggblad, M.; Martens, U.; et al. Case-specific potentiation of glioblastoma drugs by pterostilbene. Oncotarget 2016, 7, 73200–73215. [Google Scholar] [CrossRef]
- Huynh, T.T.; Lin, C.M.; Lee, W.H.; Wu, A.T.; Lin, Y.K.; Lin, Y.F.; Yeh, C.T.; Wang, L.S. Pterostilbene suppressed irradiation-resistant glioma stem cells by modulating GRP78/miR-205 axis. J. Nutr. Biochem. 2015, 26, 466–475. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowacka, A.; Śniegocka, M.; Smuczyński, W.; Liss, S.; Ziółkowska, E.; Bożiłow, D.; Śniegocki, M.; Wiciński, M. The Potential Application of Resveratrol and Its Derivatives in Central Nervous System Tumors. Int. J. Mol. Sci. 2024, 25, 13338. https://doi.org/10.3390/ijms252413338
Nowacka A, Śniegocka M, Smuczyński W, Liss S, Ziółkowska E, Bożiłow D, Śniegocki M, Wiciński M. The Potential Application of Resveratrol and Its Derivatives in Central Nervous System Tumors. International Journal of Molecular Sciences. 2024; 25(24):13338. https://doi.org/10.3390/ijms252413338
Chicago/Turabian StyleNowacka, Agnieszka, Martyna Śniegocka, Wojciech Smuczyński, Sara Liss, Ewa Ziółkowska, Dominika Bożiłow, Maciej Śniegocki, and Michał Wiciński. 2024. "The Potential Application of Resveratrol and Its Derivatives in Central Nervous System Tumors" International Journal of Molecular Sciences 25, no. 24: 13338. https://doi.org/10.3390/ijms252413338
APA StyleNowacka, A., Śniegocka, M., Smuczyński, W., Liss, S., Ziółkowska, E., Bożiłow, D., Śniegocki, M., & Wiciński, M. (2024). The Potential Application of Resveratrol and Its Derivatives in Central Nervous System Tumors. International Journal of Molecular Sciences, 25(24), 13338. https://doi.org/10.3390/ijms252413338