The Molecular Mechanism Regulating Flavonoid Production in Rhododendron chrysanthum Pall. Against UV-B Damage Is Mediated by RcTRP5
<p>Trends in <span class="html-italic">R. chrysanthum’s</span> photosynthetic characteristics under UV-B stress: (<b>a</b>–<b>d</b>) real-time fluorescence actual, quantum yield of modulatable quenching in PSII, quantum yield of non-modulatable quenching in PSII, and photosynthetic efficiency of PSII, respectively. The data represent the mean ± SD for <span class="html-italic">n</span> = 3. A significant difference among treatments at <span class="html-italic">p</span> < 0.05 is indicated by different letters (a, b).</p> "> Figure 2
<p>Flavonoid trends in six <span class="html-italic">R. chrysanthum</span> species in response to UV-B exposure: (<b>a</b>–<b>f</b>) gallocatechin, 6-methoxyflavone, kaempferol-3-O-arabinoside, naringenin chalcone, butin, and quercetin-3-O-arabinoside, respectively. The data represent the mean ± SD for <span class="html-italic">n</span> = 3. A significant difference among treatments at <span class="html-italic">p</span> < 0.05 is indicated by different letters (a, b).</p> "> Figure 3
<p>Enrichment analysis of MYB transcription factors significantly altered by UV-B stress in the <span class="html-italic">R. chrysanthum</span>: (<b>a</b>) there were notable variations in the expression levels of eight MYB transcription factors in rhododendron that respond to UV-B stress; red indicates higher expression levels and green lower expression levels; (<b>b</b>) eight MYB transcription factors in the <span class="html-italic">R. chrysanthum</span> were analyzed for enrichment.</p> "> Figure 4
<p>Response of antioxidant enzyme system of <span class="html-italic">R. chrysanthum</span> to UV-B stress and correlation analysis with <span class="html-italic">RcTRP5</span>: (<b>a</b>–<b>c</b>) POD: peroxidase; CAT1: catalase isozyme 1; SODCC: superoxide dismutase; SODCP: superoxide dismutase; (<b>d</b>) the more pinkish the color, the stronger the positive correlation; the more bluish the color, the stronger the negative correlation. The data represent the mean ± SD for <span class="html-italic">n</span> = 3. A significant difference among treatments at <span class="html-italic">p</span> < 0.05 is indicated by different letters (a, b). Asterisks denote treatments with significant changes (<span class="html-italic">p</span> < 0.05).</p> "> Figure 5
<p><span class="html-italic">R. chrysanthum</span> regulates the production of flavonoids: (<b>a</b>) data on metabolite content and enzyme gene expression were shown on a heat map after being normalized using the formula (Xi − min(x))/(max(x) − min(x)). Heatmaps with dark-red and dark-blue hues show changes in metabolite expression, with redder hues denoting higher expression and bluer hues denoting lower expression. Red and green heatmaps show changes in the expression of enzyme genes; redder hues denote higher expression, while greener hues denote lower expression; (<b>b</b>,<b>c</b>) the more pinkish the color, the stronger the positive correlation; the more bluish the color, the stronger the negative correlation. For <span class="html-italic">n</span> = 3, the data are the mean ± SD. Asterisks denote treatments with significant changes (<span class="html-italic">p</span> < 0.05).</p> "> Figure 6
<p>Examination of two important enzymes’ acetylation changes in the <span class="html-italic">R. chrysanthum</span> flavonoid biosynthesis pathway: (<b>a</b>) from left to right: the three-dimensional architectures of the CHI’s hydrophobic clusters, salt bridges, and acetylation modification sites; (<b>b</b>) from left to right: the three-dimensional architectures of the ANS’s hydrophobic clusters, salt bridges, and acetylation modification sites.</p> "> Figure 7
<p>Correlation analysis of <span class="html-italic">R. chrysanthum’s</span> antioxidant enzyme systems and photosynthetic parameters under UV-B stress. The stronger the association, the more pinkish the color, and the stronger the correlation, the more bluish the color. For <span class="html-italic">n</span> = 3, the data are the mean ± SD. Asterisks denote treatments with significant changes (<span class="html-italic">p</span> < 0.05).</p> "> Figure 8
<p>Diagram illustrating the defense mechanisms that <span class="html-italic">R. chrysanthum</span> uses against UV-B rays. <span class="html-italic">R. chrysanthum’s</span> enzyme systems and flavonoid biosynthesis pathways under normal light and UV-B stress are depicted in the left and right leaves, respectively. The damaging injuries and reactions to UV-B stress in <span class="html-italic">R. chrysanthum</span> are shown by the red lines. Acetylation modification sites and their upregulation are indicated by pink arrows. Inhibitory effects are indicated by blue lines.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Analysis of R. chrysanthum Fluorescence Imaging Parameters Under UV-B Stress
2.2. UV-B Stress Treatment and Its Effects on the Expression of Flavonoid Compounds
2.3. RcTRP5′s Reaction to UV-B Stress
2.4. Changes in the Antioxidant Defense System of the R. chrysanthum Under UV-B Stress
2.5. Variations in the R. chrysanthum’s Flavonoid Biosynthesis Under UV-B Stress
2.6. Building and Examining the Three-Dimensional Configurations of Important Enzymes and Their Non-Covalent Interactions in the R. chrysanthum’s Flavonoid Metabolic Pathway in Reaction to UV-B Stress
2.7. Examination of the Relationship Between Physiological Indices and RcTRP5 in R. chrysanthum During UV-B Stress
2.8. Creation of a Model Map to Show How the R. chrysanthum Reacts to UV-B Stress
3. Discussion
4. Materials and Methods
4.1. Plant Material, Growing Conditions, and Treatments
4.2. Determination of Chlorophyll Fluorescence Parameters
4.3. Identification of R. chrysanthum Metabolites Using UPLC–MS/MS-Based Method
4.4. Analysis of the Transcriptome of R. chrysanthum
4.5. Proteomic Analysis of R. chrysanthum
4.5.1. Extraction of Proteins
4.5.2. Trypsin Digestion
4.5.3. TMT Labeling
4.5.4. HPLC Fractionation
4.5.5. LC–MS/MS Analysis
4.5.6. Database Search
4.6. Acetylation Modification Proteomics Assay of R. chrysanthum
4.6.1. Extraction of Proteins
4.6.2. Trypsin Digestion
4.6.3. HPLC Fractionation
4.6.4. Database Search
4.7. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gong, F.; Yu, W.; Zeng, Q.; Dong, J.; Cao, K.; Xu, H.; Zhou, X. Rhododendron chrysanthum’s Primary Metabolites Are Converted to Phenolics More Quickly When Exposed to UV-B Radiation. Biomolecules 2023, 13, 1700. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Chen, S.; Wu, H.; Yang, Y.; Xu, H. Biochemical and proteomics analyses of antioxidant enzymes reveal the potential stress tolerance in Rhododendron chrysanthum Pall. Biol. Direct 2017, 12, 10. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Li, X.; Sun, L.; Sun, M.; Xu, H.; Zhou, X. Plant hormones and phenolic acids response to UV-B stress in Rhododendron chrysanthum pall. Biol. Direct 2024, 19, 40. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Gong, F.; Cao, K.; Xu, H.; Zhou, X. Calcium signaling regulates the accumulation of phenolic acids in response to UV-B stress in Rhododendron chrysanthum Pall. Plant Cell Rep. 2024, 43, 224. [Google Scholar] [CrossRef]
- Neale, R.E.; Barnes, P.W.; Robson, T.M.; Neale, P.J.; Williamson, C.E.; Zepp, R.G.; Wilson, S.R.; Madronich, S.; Andrady, A.L.; Heikkilä, A.M.; et al. Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020. Photochem. Photobiol. Sci. 2021, 20, 1–67. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Klopsch, R.; Baldermann, S.; Voss, A.; Rohn, S.; Schreiner, M.; Neugart, S. Narrow-Banded UVB Affects the Stability of Secondary Plant Metabolites in Kale (Brassica oleracea var. sabellica) and Pea (Pisum sativum) Leaves Being Added to Lentil Flour Fortified Bread: A Novel Approach for Producing Functional Foods. Foods 2019, 8, 427. [Google Scholar]
- Kim, G.-E.; Kim, M.-S.; Sung, J. UVB Irradiation-Induced Transcriptional Changes in Lignin- and Flavonoid Biosynthesis and Indole/Tryptophan-Auxin-Responsive Genes in Rice Seedlings. Plants 2022, 11, 1618. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; She, G.; Zhang, X.; Jordan, B.; Chen, Q.; Zhao, J.; Wan, X. Metabolite profiling and transcriptomic analyses reveal an essential role of UVR8-mediated signal transduction pathway in regulating flavonoid biosynthesis in tea plants (Camellia sinensis) in response to shading. BMC Plant Biol. 2018, 18, 233. [Google Scholar] [CrossRef]
- Rizzini, L.; Favory, J.-J.; Cloix, C.; Faggionato, D.; O’Hara, A.; Kaiserli, E.; Baumeister, R.; Schäfer, E.; Nagy, F.; Jenkins, G.I.; et al. Perception of UV-B by the Arabidopsis UVR8 Protein. Science 2011, 332, 103–106. [Google Scholar] [CrossRef]
- An, J.-P.; Qu, F.-J.; Yao, J.-F.; Wang, X.-N.; You, C.-X.; Wang, X.-F.; Hao, Y.-J. The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple. Hortic. Res. 2017, 4, 17023. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, U.; Sagasser, M.; Mehrtens, F.; Stracke, R.; Weisshaar, B. Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol. Biol. 2005, 57, 155–171. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-L.; Lin-Wang, K.; Albert, N.W.; Elborough, C.; Espley, R.V.; Andre, C.M.; Fang, Z.-Z. Identification of a Strong Anthocyanin Activator, VbMYBA, From Berries of Vaccinium bracteatum Thunb. Front. Plant Sci. 2021, 12, 697212. [Google Scholar] [CrossRef] [PubMed]
- Karppinen, K.; Lafferty, D.J.; Albert, N.W.; Mikkola, N.; McGhie, T.; Allan, A.C.; Afzal, B.M.; Häggman, H.; Espley, R.V.; Jaakola, L. MYBA and MYBPA transcription factors co-regulate anthocyanin biosynthesis in blue-coloured berries. New Phytol. 2021, 232, 1350–1367. [Google Scholar] [CrossRef]
- Plunkett, B.J.; Espley, R.V.; Dare, A.P.; Warren, B.A.W.; Grierson, E.R.P.; Cordiner, S.; Turner, J.L.; Allan, A.C.; Albert, N.W.; Davies, K.M.; et al. MYBA From Blueberry (Vaccinium Section Cyanococcus) Is a Subgroup 6 Type R2R3MYB Transcription Factor That Activates Anthocyanin Production. Front. Plant Sci. 2018, 9, 1300. [Google Scholar] [CrossRef]
- Paolocci, F.; Robbins, M.P.; Passeri, V.; Hauck, B.; Morris, P.; Rubini, A.; Arcioni, S.; Damiani, F. The strawberry transcription factor FaMYB1 inhibits the biosynthesis of proanthocyanidins in Lotus corniculatus leaves. J. Exp. Bot. 2011, 62, 1189–1200. [Google Scholar] [CrossRef]
- Jin, H.; Cominelli, E.; Bailey, P.; Parr, A.; Mehrtens, F.; Jones, J.; Tonelli, C.; Weisshaar, B.; Martin, C. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J. 2000, 19, 6150–6161. [Google Scholar] [CrossRef]
- Tohge, T.; Kusano, M.; Fukushima, A.; Saito, K.; Fernie, A.R. Transcriptional and metabolic programs following exposure of plants to UV-B irradiation. Plant Signal. Behav. 2011, 6, 1987–1992. [Google Scholar] [CrossRef]
- Meng, X.; Lv, Y.; Mujahid, H.; Edelmann, M.J.; Zhao, H.; Peng, X.; Peng, Z. Proteome-wide lysine acetylation identification in developing rice (Oryza sativa) seeds and protein co-modification by acetylation, succinylation, ubiquitination, and phosphorylation. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2018, 1866, 451–463. [Google Scholar] [CrossRef]
- Li, B.; Li, D.; Cai, L.; Zhou, Q.; Liu, C.; Lin, J.; Li, Y.; Zhao, X.; Li, L.; Liu, X.; et al. Transcriptome-wide profiling of RNA N4-cytidine acetylation in Arabidopsis thaliana and Oryza sativa. Mol. Plant 2023, 16, 1082–1098. [Google Scholar] [CrossRef]
- Gong, F.; Yu, W.; Cao, K.; Xu, H.; Zhou, X. RcTRP5 Transcription Factor Mediates the Molecular Mechanism of Lignin Biosynthesis Regulation in R. chrysanthum against UV-B Stress. Int. J. Mol. Sci. 2024, 25, 9205. [Google Scholar] [CrossRef] [PubMed]
- Sekhar, K.M.; Sreeharsha, R.V.; Reddy, A.R. Differential responses in photosynthesis, growth and biomass yields in two mulberry genotypes grown under elevated CO2 atmosphere. J. Photochem. Photobiol. B Biol. 2015, 151, 172–179. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Yoo, G.; Ryu, Y. Evaluation of effective quantum yields of photosystem II for CO2 leakage monitoring in carbon capture and storage sites. PeerJ 2021, 9, e10652. [Google Scholar] [CrossRef] [PubMed]
- Zait, Y.; Shemer, O.E.; Cochavi, A. Dynamic responses of chlorophyll fluorescence parameters to drought across diverse plant families. Physiol. Plant. 2024, 176, e14527. [Google Scholar] [CrossRef]
- O’Hara, A.; Headland, L.R.; Díaz-Ramos, L.A.; Morales, L.O.; Strid, Å.; Jenkins, G.I. Regulation of Arabidopsis gene expression by low fluence rate UV-B independently of UVR8 and stress signaling. Photochem. Photobiol. Sci. 2019, 18, 1675–1684. [Google Scholar] [CrossRef]
- Podolec, R.; Demarsy, E.; Ulm, R. Perception and Signaling of Ultraviolet-B Radiation in Plants. Annu. Rev. Plant Biol. 2021, 72, 793–822. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, X.; Jang, Z.; Chen, Z.; Ruo, X.; Jin, W.; Wu, Y.; Shi, X.; Xu, M. UV RESISTANCE LOCUS 8 From Chrysanthemum morifolium Ramat (CmUVR8) Plays Important Roles in UV-B Signal Transduction and UV-B-Induced Accumulation of Flavonoids. Front. Plant Sci. 2018, 9, 955. [Google Scholar] [CrossRef]
- Mittler, R.; Zandalinas, S.I.; Fichman, Y.; Van Breusegem, F. Reactive oxygen species signalling in plant stress responses. Nat. Rev. Mol. Cell Biol. 2022, 23, 663–679. [Google Scholar] [CrossRef]
- Huang, H.; Ullah, F.; Zhou, D.-X.; Yi, M.; Zhao, Y. Mechanisms of ROS Regulation of Plant Development and Stress Responses. Front. Plant Sci. 2019, 10, 800. [Google Scholar] [CrossRef]
- Roach, T.; Neuner, G.; Kranner, I.; Buchner, O. Heat Acclimation under Drought Stress Induces Antioxidant Enzyme Activity in the Alpine Plant Primula minima. Antioxidants 2023, 12, 1093. [Google Scholar] [CrossRef]
- Schekaleva, O.; Luneva, O.; Klimenko, E.; Shaliukhina, S.; Breygina, M. Dynamics of ROS production, SOD, POD and CAT activity during stigma maturation and pollination in Nicotiana tabacum and Lilium longiflorum. Plant Biol. 2024, 26, 1240–1246. [Google Scholar] [CrossRef] [PubMed]
- Kataria, S.; Jajoo, A.; Guruprasad, K.N. Impact of increasing Ultraviolet-B (UV-B) radiation on photosynthetic processes. J. Photochem. Photobiol. B Biol. 2014, 137, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Fang, S.; Liu, C.; Zhao, L.; Cong, B.; Zhang, Z. Transcriptomics Integrated With Metabolomics Reveal the Effects of Ultraviolet-B Radiation on Flavonoid Biosynthesis in Antarctic Moss. Front. Plant Sci. 2021, 12, 788377. [Google Scholar] [CrossRef] [PubMed]
- Thitz, P.; Hagerman, A.E.; Randriamanana, T.R.; Virjamo, V.; Kosonen, M.; Lännenpää, M.; Nyman, T.; Mehtätalo, L.; Kontunen-Soppela, S.; Julkunen-Tiitto, R. Genetic modification of the flavonoid pathway alters growth and reveals flexible responses to enhanced UVB—Role of foliar condensed tannins. Plant-Environ. Interact. 2021, 2, 1–15. [Google Scholar] [CrossRef]
- Heinze, M.; Hanschen, F.S.; Wiesner-Reinhold, M.; Baldermann, S.; Gräfe, J.; Schreiner, M.; Neugart, S. Effects of Developmental Stages and Reduced UVB and Low UV Conditions on Plant Secondary Metabolite Profiles in Pak Choi (Brassica rapa subsp. chinensis). J. Agric. Food Chem. 2018, 66, 1678–1692. [Google Scholar] [CrossRef]
- Ma, D.; Constabel, C.P. MYB Repressors as Regulators of Phenylpropanoid Metabolism in Plants. Trends Plant Sci. 2019, 24, 275–289. [Google Scholar] [CrossRef]
- Yang, A.; Dai, X.; Zhang, W.-H. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J. Exp. Bot. 2012, 63, 2541–2556. [Google Scholar] [CrossRef]
- Amiard, S.; Feit, L.; Vanrobays, E.; Simon, L.; Le Goff, S.; Loizeau, L.; Wolff, L.; Butter, F.; Bourbousse, C.; Barneche, F.; et al. The TELOMERE REPEAT BINDING proteins TRB4 and TRB5 function as transcriptional activators of PRC2-controlled genes to regulate plant development. Plant Commun. 2024, 5, 100890. [Google Scholar] [CrossRef]
- Byun, M.Y.; Cui, L.H.; Lee, H.; Kim, W.T. Telomere association of Oryza sativa telomere repeat-binding factor like 1 and its roles in telomere maintenance and development in rice, Oryza sativa L. BMB Rep. 2018, 51, 578–583. [Google Scholar] [CrossRef]
- Waki, T.; Mameda, R.; Nakano, T.; Yamada, S.; Terashita, M.; Ito, K.; Tenma, N.; Li, Y.; Fujino, N.; Uno, K.; et al. A conserved strategy of chalcone isomerase-like protein to rectify promiscuous chalcone synthase specificity. Nat. Commun. 2020, 11, 870. [Google Scholar] [CrossRef]
- Reddy, A.M.; Reddy, V.S.; Scheffler, B.E.; Wienand, U.; Reddy, A.R. Novel transgenic rice overexpressing anthocyanidin synthase accumulates a mixture of flavonoids leading to an increased antioxidant potential. Metab. Eng. 2007, 9, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhu, J.; Gong, Z.; Zhu, J.-K. Abiotic stress responses in plants. Nat. Rev. Genet. 2022, 23, 104–119. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Qu, X.; Li, T.; Gao, Y.; Du, H.; Zheng, L.; Ji, M.; Zhang, P.; Zhang, Y.; Hu, J.; et al. HY5-HDA9 orchestrates the transcription of HsfA2 to modulate salt stress response in Arabidopsis. J. Integr. Plant Biol. 2023, 65, 45–63. [Google Scholar] [CrossRef] [PubMed]
- Procházková Schrumpfová, P.; Vychodilová, I.; Dvořáčková, M.; Majerská, J.; Dokládal, L.; Schořová, Š.; Fajkus, J. Telomere repeat binding proteins are functional components of Arabidopsis telomeres and interact with telomerase. Plant J. 2014, 77, 770–781. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, F.; Meng, J.; Xu, H.; Zhou, X. The Molecular Mechanism Regulating Flavonoid Production in Rhododendron chrysanthum Pall. Against UV-B Damage Is Mediated by RcTRP5. Int. J. Mol. Sci. 2024, 25, 13383. https://doi.org/10.3390/ijms252413383
Gong F, Meng J, Xu H, Zhou X. The Molecular Mechanism Regulating Flavonoid Production in Rhododendron chrysanthum Pall. Against UV-B Damage Is Mediated by RcTRP5. International Journal of Molecular Sciences. 2024; 25(24):13383. https://doi.org/10.3390/ijms252413383
Chicago/Turabian StyleGong, Fushuai, Jinhao Meng, Hongwei Xu, and Xiaofu Zhou. 2024. "The Molecular Mechanism Regulating Flavonoid Production in Rhododendron chrysanthum Pall. Against UV-B Damage Is Mediated by RcTRP5" International Journal of Molecular Sciences 25, no. 24: 13383. https://doi.org/10.3390/ijms252413383
APA StyleGong, F., Meng, J., Xu, H., & Zhou, X. (2024). The Molecular Mechanism Regulating Flavonoid Production in Rhododendron chrysanthum Pall. Against UV-B Damage Is Mediated by RcTRP5. International Journal of Molecular Sciences, 25(24), 13383. https://doi.org/10.3390/ijms252413383