Brown and Beige Adipose Tissue: One or Different Targets for Treatment of Obesity and Obesity-Related Metabolic Disorders?
Abstract
:1. Introduction
2. Types and Value of Brown Adipose Tissue in a Human Body
2.1. The Role of BAT in Counteracting Obesity and Metabolic Syndrome
2.2. The Role of BAT as a Therapeutic Target
2.3. BAT Activity Estimation
2.4. Factors Influencing on BAT Activation
3. Inducers and Drugs Based on Them
3.1. Thyroid Hormones
3.1.1. Basic Mechanism
3.1.2. Experimental Studies
3.1.3. Clinical Trials
3.2. Catecholamines
3.3. Sibutramine
3.3.1. Basic Mechanism
3.3.2. Experimental Studies
3.3.3. Clinical Trials
3.4. Beta3-Adrenoreceptor Agonists
3.4.1. The Basic Mechanism
3.4.2. Experimental Studies
3.4.3. Clinical Trials
3.5. Resveratrol
3.5.1. Basic Mechanism
3.5.2. Experimental Studies
3.5.3. Clinical Trials
3.6. Metformin
3.6.1. Basic Mechanisms
3.6.2. Experimental Studies
3.6.3. Clinical Trails
3.7. Thiazolidinediones
3.7.1. Basic Mechanisms
3.7.2. Experimental Studies
3.7.3. Clinical Trials
3.8. PPAR Alpha-Agonists
3.8.1. Basic Mechanism
3.8.2. Experimental Studies
3.9. Selective PPAR Gamma-Modulator, Imatinib
3.9.1. Basic Mechanisms
3.9.2. Experimental Studies
3.10. Erythropoietin
3.10.1. Basic Mechanisms
3.10.2. Experimental Studies
3.11. Angiotensin 1-7
3.11.1. Basic Mechanism
3.11.2. Experimental Studies
3.12. Nuclear Receptors and Ligands: Agonists of Intestinal Farnesoid X Receptor (FXR) (Fexaramine)
3.12.1. Basic Mechanism
3.12.2. Experimental Studies
3.12.3. Clinical Trials
3.13. Glucagon-like Peptide-1 Receptor Agonist
3.13.1. Experimental Studies
3.13.2. Clinical Trials
3.14. Miglitol
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
18F-FDG | 18F-fluorodeoxyglucose; |
FGF21 | Fibroblast growth factor 21; |
beta3-AR | Beta-3 adrenergic receptor; |
beta3-ARa | Beta3 adrenoreceptor agonists; |
AMPK | AMP-activated protein kinase; |
Ang | Angiotensin; |
ATP | Adenosine triphosphate; |
ATF2 | Activating transcription factor 2; |
ATGL | Adipose triglyceride lipase; |
AT | Adipose tissue; |
BAT | Brown adipose tissue; |
BM | Body mass; |
BMI | Body mass index; |
BP | Blood pressure; |
BSP | Bone sialoprotein; |
C/EBP alpha | CCAAT/enhancer-binding protein alpha; |
C/EBP beta | CCAAT/enhancer-binding protein beta; |
SERCA2b | Sarco/endoplasmic reticulum; |
Ca2+ ATPase 2b | Calcium 2+ adenosine triphosphatease isoform 2b; |
CA | Catecholamine; |
cAMP | Cyclic adenosine monophosphate; |
cBAT | Classic brown adipose tissue; |
CD34 | Cluster of differentiation 34; |
Cd137 | tumor necrosis factor receptor superfamily, member 9; |
CDK5 | Cyclin-dependent kinase 5; |
CIDEA | Cell death-inducing DFFA-like effector A; |
CREB | Cyclic adenosine monophosphate response element binding protein; |
COX-5b | Cytochrome c oxidase subunit 5b; |
COX7a1 | Cytochrome c oxidase subunit 7A1; |
CT | Computed tomography; |
CVD | Cardiovascular disease; |
DIO2 | Type 2 iodothyronine deiodinase; |
DIO mice | Diet-induced obese mice; |
DM | Diabetes mellitus; |
EBP | Enhancer binding protein; |
EHMT1 | Euchromatic histone-lysine; |
Elovl3 | Elongation of very long-chain fatty acids protein 3; |
EPO | Erythropoietin; |
Epsti1 | Epithelial stromal interaction 1; |
EVA1 | Epithelial V-like antigen 1; |
F2RX5 | F2R-like receptor 5; |
FA | Fatty acid; |
FABP4 | Fatty acid-binding protein 4; |
FGF | Fibroblast growth factor; |
Fex | Fexaramine; |
FNDC5 | Fibronectin type III domain-containing 5; |
FXR | Farnesoid X receptor; |
GLP | Glucagon-like peptide; |
GLP-1RA | Glucagon-like peptide-1 receptor agonists; |
HSL | Hormone-sensitive lipase; |
IGFBP-3 | Insulin-like growth factor-binding protein 3; |
IL-6 | Interleukin-6; |
IS | Insulin sensitivity; |
LDL | Low-density lipoprotein; |
LHX8 | LIM homeobox 8; |
MTOR | Mechanistic target of rapamycin; |
MCP-1 | Monocyte chemoattractant protein-1; |
Mef2c | myocyte enhancer factor 2c; |
MH | Metabolic health; |
MYH | Myosin; |
MRI | Magnetic resonance imaging; |
NA | Noradrenaline; |
NRF1 | Nuclear respiratory factor 1; |
OCA | Obeticholic acid; |
PAT2 | Perilipin-like protein; |
PDGFR alpha | Platelet-derived growth factor receptor alpha; |
PET/CT | Positron emission tomography/computed tomography; |
p38MAPK | p38 mitogen-activated protein kinase; |
PGC1 | Peroxisome proliferator-activated receptor gamma coactivator 1; |
PKA | Protein kinase A; |
PRDM16 | PR domain containing 16; |
PPAR | Peroxisome proliferator-activated receptor; |
rBAT | Recruitable brown AT; |
SAT | Subcutaneous adipose tissue; |
SCA1 | Stem cell antigen-1; |
SERCA2b | Sarco/endoplasmic reticulum Ca2+-ATPase 2b; |
SIRT | Sirtuin; |
SNS | Sympathetic nervous system; |
Tbx1 | T-box transcription factor 1; |
TMEM26 | Transmembrane protein 26; |
TNF alpha | Tumor necrosis factor alpha; |
T2DM | Type 2 diabetes mellitus; |
T3 | Triiodothyronine; |
T4 | Thyroxine; |
TG | Triglyceride; |
TR | Thyroid hormone receptor; |
TRH | Thyrotropin-releasing hormone; |
TrH | Thyroid hormones; |
TZDs | Thiazolidinediones; |
UCP1 | Uncoupling protein 1; |
VAT | Visceral adipose tissue; |
WAT | White adipose tissue; |
Zic1 | Zic family member; |
ZFP423 | Zinc finger protein 423. |
References
- Harb, E.; Kheder, O.; Poopalasingam, G.; Rashid, R.; Srinivasan, A.; Izzi-Engbeaya, C. Brown adipose tissue and regulation of human body weight. Diabetes Metab. Res. Rev. 2023, 39, e3594. [Google Scholar] [CrossRef] [PubMed]
- Pilkington, A.C.; Paz, H.A.; Wankhade, U.D. Beige Adipose Tissue Identification. Front. Endocrinol. 2021, 12, 599134. [Google Scholar] [CrossRef]
- Ghesmati, Z.; Rashid, M.; Fayezi, S.; Gieseler, F.; Alizadeh, E.; Darabi, M. An update on the secretory functions of brown, white, and beige adipose tissue: Towards therapeutic applications. Rev. Endocr. Metab. Disord. 2024, 25, 279–308. [Google Scholar] [CrossRef] [PubMed]
- Ziqubu, K.; Dludla, P.; Mabhida, S.; Jack, B.U.; Keipert, S.; Jastroch, M.; Mazibuko-Mbeje, S.E. Brown adipose tissue-derived metabolites and their role in regulating metabolism. Metabolism 2024, 150, 155709. [Google Scholar] [CrossRef]
- Fernandes-da-Silva, A.; Rangel-Azevedo, C.; Santana-Olivera, D.A. Endoplasmic reticulum stress as the basis of obesity and metabolic diseases: Focus on adipose tissue, liver, and pancreas. J. Nutr. Biochem. 2022, 105, 109002. [Google Scholar] [CrossRef]
- Scheele, C.; Wolfrum, C. Brown Adipose Crosstalk in Tissue Plasticity and Human Metabolism. Endocr. Rev. 2020, 41, 53–65. [Google Scholar] [CrossRef] [PubMed]
- McNeill, B.T.; Suchacki, K.J.; Stimson, R.H. Mechanism in endocrinology: Human brown adipose tissue as a therapeutic target: Warming up or cooling down? Eur. J. Endocrinol. 2021, 184, R243–R259. [Google Scholar] [CrossRef]
- Markina, N.O.; Matveev, G.A.; Zasypkin, G.G.; Golikova, T.I.; Ryzhkova, D.V.; Kononova, Y.A.; Danilov, S.D.; Babenko, A.Y. Role of Brown Adipose Tissue in MetabolicHealth and Efficacy of Drug Treatment for Obesity. J. Clin. Med. 2024, 13, 4151. [Google Scholar] [CrossRef]
- Ikeda, K.; Kang, Q.; Yoneshiro, T.; Camporez, J.P.; Maki, H.; Homma, M.; Shinoda, K.; Chen, Y.; Lu, X.; Maretich, P.; et al. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat. Med. 2017, 23, 1454–1465. [Google Scholar] [CrossRef]
- Chen, Y.C.; Cypess, A.M.; Palmer, M.; Kolodny, G.; Kahn, C.R.; Kwong, K.K. Measurement of human brown adipose tissue volume and activity using anatomic MR imaging and functional MR imaging. J. Nucl. Med. 2013, 54, 1584–1587. [Google Scholar] [CrossRef]
- Hu, H.H.; Chung, S.A.; Nayak, K.S.; Jackson, H.A.; Gilsanz, V. Differential computed tomographic attenuation of metabolically active and inactive adipose tissues: Preliminary findings. J. Comput. Assist. Tomogr. 2011, 35, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Hao, G.; Shao, M.; Nham, K.; An, Y.; Wang, Q.; Zhu, Y.; Kusminski, C.M.; Hassan, G.; Gupta, R.K.; et al. An Adipose Tissue Atlas: An Image-Guided Identification of Human-like BAT and Beige Depots in Rodents. Cell Metab. 2018, 27, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Motiani, P.; Virtanen, K.A.; Motiani, K.K.; Eskelinen, J.J.; Middelbeek, R.J.; Goodyear, L.J.; Savolainen, A.M.; Kemppainen, J.; Jensen, J.; Din, M.U.; et al. Decreased insulin-stimulated brown adipose tissue glucose uptake after short-term exercise training in healthy middle-aged men. Diabetes Obes. Metab. 2017, 19, 1379–1388. [Google Scholar] [CrossRef] [PubMed]
- Singhal, V.; Maffazioli, G.D.; Ackerman, K.E.; Lee, H.; Elia, E.F.; Woolley, R.; Kolodny, G.; Cypess, A.M.; Misra, M. Effect of chronic athletic activity on brown fat in young women. PLoS ONE 2016, 11, e0160129. [Google Scholar] [CrossRef]
- Pan, R.; Liu, J.; Chen, Y. Treatment of obesity-related diabetes: Significance of thermogenic adipose tissue and targetable receptors. Front. Pharmacol. 2023, 14, 1144918. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sheng, C.; Feng, W.; Sun, F.; Zhang, J.; Chen, Y.; Su, L.; Liu, J.; Du, L.; Jia, X.; et al. A multi-center study on glucometabolic response to bariatric surgery for different subtypes of obesity. Front. Endocrinol. 2022, 13, 989202. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.Y.; Cypess, A.M.; Laughlin, M.R.; Haft, C.R.; Hu, H.H.; Bredella, M.A.; Enerbäck, S.; Kinahan, P.E.; Lichtenbelt, W.v.M.; Lin, F.I.; et al. Brown Adipose Reporting Criteria in Imaging STudies (BARCIST 1.0): Recommendations for Standardized FDG-PET/CT Experiments in Humans. Cell Metab. 2016, 24, 210–222. [Google Scholar] [CrossRef]
- Finlin, B.S.; Memetimin, H.; Confides, A.L.; Kasza, I.; Zhu, B.; Vekaria, H.J.; Harfmann, B.; Jones, K.A.; Johnson, Z.R.; Westgate, P.M.; et al. Human adipose beiging in response to cold and mirabegron. JCI Insight 2018, 3, e121510. [Google Scholar] [CrossRef]
- Lee, P.; Smith, S.; Linderman, J.; Courville, A.B.; Brychta, R.J.; Dieckmann, W.; Werner, C.D.; Chen, K.Y.; Celi, F.S. Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans. Diabetes 2014, 63, 3686–3698. [Google Scholar] [CrossRef]
- Yoneshiro, T.; Aita, S.; Matsushita, M.; Kayahara, T.; Kameya, T.; Kawai, Y.; Iwanaga, T.; Saito, M. Recruited brown adipose tissue as an antiobesity agent in humans. J. Clin. Investig. 2013, 123, 3404–3408. [Google Scholar] [CrossRef]
- Chimen, M.; Kennedy, A.; Nirantharakumar, K.; Pang, T.T.; Andrews, R.; Narendran, P. What are the health benefits of physical activity in type 1 diabetes mellitus? A literature review. Diabetologia 2012, 55, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Bai, A.; Tao, L.; Huang, J.; Tao, J.; Liu, J. Effects of physical activity on cognitive function among patients with diabetes in China: A nationally longitudinal study. BMC Public Health 2021, 21, 481. [Google Scholar] [CrossRef] [PubMed]
- Handschin, C.; Spiegelman, B.M. The role of exercise and PGC1α in inflammation and chronic disease. Nature 2008, 454, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Boström, P.; Wu, J.; Jedrychowski, M.P.; Korde, A.; Ye, L.; Lo, J.C.; Rasbach, K.A.; Boström, E.A.; Choi, J.H.; Long, J.Z.; et al. A PGC1α-dependent myokine that drives browning of white fat and thermogenesis. Nature 2012, 481, 463–468. [Google Scholar] [CrossRef]
- Vosselman, M.J.; Hoeks, J.; Brans, B.; Pallubinsky, H.; Nascimento, E.B.; van der Lans, A.A.; Broeders, E.P.; Mottaghy, F.M.; Schrauwen, P.; van Marken Lichtenbelt, W.D. Low brown adipose tissue activity in endurance-trained compared with lean sedentary men. Int. J. Obes. 2015, 39, 1696–1702. [Google Scholar] [CrossRef]
- Nakhuda, A.; Josse, A.R.; Gburcik, V.; Crossland, H.; Raymond, F.; Metairon, S.; Good, L.; Atherton, P.J.; Phillips, S.M.; Timmons, J.A. Biomarkers of browning of white adipose tissue and their regulation during exercise- and diet-induced weight loss. Am. J. Clin. Nutr. 2016, 104, 557–565. [Google Scholar] [CrossRef]
- Abbasi, M.; Fan, Z.; Dawson, J.A.; Wang, S. Transdermal Delivery of Metformin Using Dissolving Microneedles and Iontophoresis Patches for Browning Subcutaneous Adipose Tissue. Pharmaceutics 2022, 14, 879. [Google Scholar] [CrossRef]
- Hiradate, R.; Khalil, I.A.; Matsuda, A.; Sasaki, M.; Hida, K.; Harashima, H. A novel dual-targeted rosiglitazone-loaded nanoparticle for the prevention of diet-induced obesity via the browning of white adipose tissue. J. Control. Release 2021, 10, 665–675. [Google Scholar] [CrossRef]
- Than, A.; Liang, K.; Xu, S.; Sun, L.; Duan, H.; Xi, F.; Xu, C.; Chen, P. Transdermal Delivery of Anti-Obesity Compounds to Subcutaneous Adipose Tissue with Polymeric Microneedle Patches. Small Methods 2017, 1, 1700269. [Google Scholar] [CrossRef]
- Sentis, S.C.; Oelkrug, R.; Mittag, J. Thyroid hormones in the regulation of brown adipose tissue thermogenesis. Endocr. Connect. 2021, 10, R106–R115. [Google Scholar] [CrossRef]
- Johann, K.; Cremer, A.L.; Fischer, A.W.; Heine, M.; Pensado, E.R.; Resch, J.; Nock, S.; Virtue, S.; Harder, L.; Oelkrug, R.; et al. Thyroid-Hormone-Induced Browning of White Adipose Tissue Does Not Contribute to Thermogenesis and Glucose Consumption. Cell Rep. 2019, 27, 3385–3400. [Google Scholar] [CrossRef]
- Winifred, W.; Brijesh, K.; Lesmana, R.; Zhou, J.; Sinha, R.A.; Wong, K.A. Thyroid hormone (T3) stimulates brown adipose tissue activation via mitochondrial biogenesis and mTOR-mediated mitophagy. Autophagy 2019, 15, 131–150. [Google Scholar] [CrossRef]
- De Oliveira, M.; Mathias, L.S.; Rodrigues, B.M.; Mariani, B.G.; Graceli, J.B.; De Sibio, M.T.; Olimpio, R.M.C.; Moretto, F.C.F.; Deprá, I.C.; Nogueira, C.R. The roles of triiodothyronine and irisin in improving the lipid profile and directing the browning of human adipose subcutaneous cells. Mol. Cell. Endocrinol. 2020, 506, 110744. [Google Scholar] [CrossRef]
- Guerra, C.; Roncero, C.; Porras, A.; Fernandez, M.; Benito, M. Triiodothyronine induces the transcription of the uncoupling protein gene and stabilizes its mRNA in fetal rat brown adipocyte primary cultures. J. Biol. Chem. 1996, 271, 2076–2081. [Google Scholar] [CrossRef]
- López, M.; Varela, L.; Vázquez, M.J.; Rodríguez-Cuenca, S.; González, C.R.; Velagapudi, R.; Morgan, D.A.; Schoenmakers, E.; Agassandian, K.; Lage, R.; et al. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat. Med. 2010, 16, 1001–1008. [Google Scholar] [CrossRef]
- Obregon, J.M. Adipose tissues and thyroid hormones. Front. Physiol. 2014, 11, 479. [Google Scholar] [CrossRef]
- Liu, S.; Shen, S.; Yan, Y.; Sun, C.; Lu, Z.; Feng, H.; Ma, Y.; Tang, Z.; Yu, J.; Wu, Y.; et al. Triiodothyronine (T3) promotes brown fat hyperplasia via thyroid hormone receptor α mediated adipocyte progenitor cell proliferation. Nat. Commun. 2022, 13, 3394. [Google Scholar] [CrossRef]
- Weiner, J.; Hankir, M.; Heiker, J.T.; Fenske, W.; Krause, K. Thyroid hormones and browning of adipose tissue. Mol. Cell. Endocrinol. 2017, 15, 156–159. [Google Scholar] [CrossRef]
- Skarulis, M.C.; Celi, F.S.; Mueller, E.; Zemskova, M.; Malek, R.; Hugendubler, L.; Cochran, C.; Solomon, J.; Chen, C.; Gorden, P. Thyroid hormone induced brown adipose tissue and amelioration of diabetes in a patient with extreme insulin resistance. J. Clin. Endocrinol. Metab. 2010, 95, 256–262. [Google Scholar] [CrossRef]
- Broeders, E.P.M.; Vijgen, G.H.E.J.; Havekes, B.; Bouvy, N.D.; Mottaghy, F.M.; Kars, M.; Schaper, N.C.; Schrauwen, P.; Brans, B.; Lichtenbelt, W.D.v.M. Thyroid hormone activates brown adipose tissue and increases non-shivering thermogenesis—A cohort study in a group of thyroid carcinoma patients. PLoS ONE 2016, 11, e0145049. [Google Scholar] [CrossRef]
- Heinen, C.A.; Zhang, Z.; Klieverik, L.P.; de Wit, T.C.; Poel, E.; Yaqub, M.; Boelen, A.; Kalsbeek, A.; Bisschop, P.H.; van Trotsenburg, A.S.P.; et al. Effects of intravenous thyrotropin-releasing hormone on 18F-fluorodeoxyglucose uptake in human brown adipose tissue: A randomized controlled trial. Eur. J. Endocrinol. 2018, 179, 31–38. [Google Scholar] [CrossRef]
- Martínez-Sánchez, N.; Moreno-Navarrete, J.M.; Contreras, C.; Rial-Pensado, E.; Ferno, J.; Nogueiras, R.; Diéguez, C.; Fernández-Real, J.-M.; López, M. Thyroid hormones induce browning of white fat. J. Endocrinol. 2017, 232, 351–362. [Google Scholar] [CrossRef]
- Wang, X.Y.; You, L.H.; Cui, X.W.; Li, Y.; Wang, X.; Xu, P.F.; Zhu, L.J.; Wen, J.; Pang, L.X.; Guo, X.R.; et al. Evaluation and optimization of differentiation conditions for human primary brown adipocytes. Sci. Rep. 2018, 8, 5304. [Google Scholar] [CrossRef]
- Hollingsworth, D.R.; Amatruda, T.T.; Scheig, R. Quantitative and qualitative effects of L-triiodothyronine in massive obesity. Metabolism 1970, 19, 934–945. [Google Scholar] [CrossRef]
- Biondi, B.; Kahaly, G.J. Cardiovascular involvement in patients with different causes of hyperthyroidism. Nat. Rev. Endocrinol. 2010, 6, 431–443. [Google Scholar] [CrossRef]
- Babenko, A.Y.; Bairamov, A.; Grineva, E.; Ulupova, E. Thyreotoxic Cardiomyopathy. In Cardiomyopathies; InTech: Moscow, Russia, 2011; Chapter 25; pp. 553–580. [Google Scholar]
- Aldiss, P.; Betts, J.; Sale, C.; Pope, M.; Budge, H.; Symonds, M.E. Exercise-induced ‘browning’ of adipose tissues. Metabolism 2018, 81, 63–70. [Google Scholar] [CrossRef]
- Cao, W.; Medvedev, A.V.; Daniel, K.W.; Collins, S. beta-Adrenergic activation of p38 MAP kinase in adipocytes: cAMP induction of the uncoupling protein 1 (UCP1) gene requires p38 MAP kinase. J. Biol. Chem. 2001, 276, 27077–27082. [Google Scholar] [CrossRef]
- Y-Hassan, S.; Falhammar, H. Cardiovascular Manifestations and Complications of Pheochromocytomas and Paragangliomas. J. Clin. Med. 2020, 9, 2435. [Google Scholar] [CrossRef]
- Andrade, J.M.; Frade, A.C.; Guimarães, J.B.; Freitas, K.M.; Lopes, M.T.P.; Guimarães, A.L.S.; de Paula, A.M.B.; Coimbra, C.C.; Santos, S.H.S. Resveratrol increases brown adipose tissue thermogenesis markers by increasing SIRT1 and energy expenditure and decreasing fat accumulation in adipose tissue of mice fed a standard diet. Eur. J. Nutr. 2014, 53, 1503–1510. [Google Scholar] [CrossRef]
- Rotstein, A.; Inbar, O.; Vaisman, N. The effect of sibutramine intake on resting and exercise physiological responses. Ann. Nutr. Metab. 2008, 52, 17–23. [Google Scholar] [CrossRef]
- Hansen, D.L.; Toubro, S.; Stock, M.J.; Macdonald, I.A.; Astrup, A. Thermogenic effects of sibutramine in humans. Am. J. Clin. Nutr. 1998, 68, 1180–1186. [Google Scholar] [CrossRef]
- Saraç, F.; Pehlivan, M.; Çelebi, G.; Saygili, F.; Yilmaz, C.; Kabalak, T. Effects of sibutramine on thermogenesis in obese patients assessed via immersion calorimetry. Adv. Ther. 2006, 23, 1016–1029. [Google Scholar] [CrossRef]
- Matveev, G.A.; Khromova, N.V.; Zasypkin, G.G.; Kononova, Y.A.; Vasilyeva, E.Y.; Babenko, A.Y.; Shlyakhto, E.V. Tissue and Circulating MicroRNAs 378 and 142 as Biomarkers of Obesity and ItsTreatment Response. Int. J. Mol. Sci. 2023, 24, 13426. [Google Scholar] [CrossRef]
- Hao, L.; Scott, S.; Abbasi, M.; Zu, Y.; Khan, S.H.; Yang, Y.; Wu, D.; Zhao, L.; Wang, S. Beneficial metabolic effects of mirabegron in vitro and in high-fat diet-induced obese mice. J. Pharmacol. Exp. Ther. 2019, 369, 419–427. [Google Scholar] [CrossRef]
- Finlin, B.S.; Memetimin, H.; Zhu, B.; Confides, A.L.; Vekaria, H.J.; Khouli, R.H.E.; Johnson, Z.R.; Westgate, P.M.; Chen, J.; Morris, A.J.; et al. The β3-adrenergic receptor agonist mirabegron improves glucose homeostasis in obese humans. J. Clin. Investig. 2020, 130, 2319–2331. [Google Scholar] [CrossRef]
- Cypess, A.M.; Weiner, L.S.; Roberts-Toler, C.; Elía, E.F.; Kessler, S.H.; Kahn, P.A.; English, J.; Chatman, K.; Trauger, S.A.; Doria, A.; et al. Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab. 2015, 21, 33–38. [Google Scholar] [CrossRef]
- O’Mara, A.E.; Johnson, J.W.; Linderman, J.D.; Brychta, R.J.; McGehee, S.; Fletcher, L.A.; Fink, Y.A.; Kapuria, D.; Cassimatis, T.M.; Kelsey, N.; et al. Chronic mirabegron treatment increases human brown fat, HDL cholesterol, and insulin sensitivity. J. Clin. Investig. 2020, 130, 2209–2219. [Google Scholar] [CrossRef]
- Xie, Y.; Shao, R.; Lin, Y.; Wang, C.; Tan, Y.; Xie, W.; Sun, S. Improved Therapeutic Efficiency against Obesity through Transdermal Drug Delivery Using a Microneedle Arrays. Pharmaceutics 2021, 13, 827. [Google Scholar] [CrossRef]
- Flori, L.; Piragine, E.; Spezzini, J.; Citi, V.; Calderone, V.; Martelli, A. Influence of Polyphenols on Adipose Tissue: Sirtuins as Pivotal Players in the Browning Process. Int. J. Mol. Sci. 2023, 24, 9276. [Google Scholar] [CrossRef]
- Chen, J.; Lou, R.; Zhou, F.; Li, D.; Peng, C.; Lin, L. Sirtuins: Key players in obesity-associated adipose tissue remodeling. Front. Immunol. 2022, 13, 1068986. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Dang, L.; Wang, S.; Sun, C. The SIRT5-Mediated Upregulation of C/EBPβ Promotes White Adipose Tissue Browning by Enhancing UCP1 Signaling. Int. J. Mol. Sci. 2024, 29, 10514. [Google Scholar] [CrossRef]
- Shuai, L.; Zhang, L.N.; Li, B.H.; Tang, C.L.; Wu, L.Y.; Li, J.; Li, J.Y. SIRT5 Regulates Brown Adipocyte Differentiation and Browning of Subcutaneous White Adipose Tissue. Diabetes 2019, 68, 1449–1461. [Google Scholar] [CrossRef]
- Price, N.L.; Gomes, A.P.; Ling, A.J.; Duarte, F.V.; Martin-Montalvo, A.; North, B.J.; Agarwal, B.; Ye, L.; Ramadori, G.; Teodoro, J.S.; et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012, 15, 675–690. [Google Scholar] [CrossRef]
- Zu, Y.; Overby, H.; Ren, G.; Fan, Z.; Zhao, L.; Wang, S. Resveratrol liposomes and lipid nanocarriers: Comparison of characteristics and inducing browning of white adipocytes. Colloids Surf. B Biointerfaces 2018, 164, 414–423. [Google Scholar] [CrossRef]
- Yoshino, J.; Conte, C.; Fontana, L.; Mittendorfer, B.; Imai, S.; Schechtman, K.B.; Gu, C.; Kunz, I.; Fanelli, F.R.; Patterson, B.W.; et al. Resveratrol supplementation does not improve metabolic function in nonobese women with normal glucose tolerance. Cell Metab. 2012, 16, 658–664. [Google Scholar] [CrossRef]
- Gospin, R.; Sandu, O.; Gambina, K.; Tiwari, A.; Bonkowski, M.; Hawkins, M. Resveratrol improves insulin resistance with anti-inflammatory and ‘browning’ effects in adipose tissue of overweight humans. J. Investig. Med. 2016, 3, 814–815. [Google Scholar] [CrossRef]
- Kim, E.K.; Lee, S.H.; Jhun, J.Y.; Byun, J.K.; Jeong, J.H.; Lee, S.-Y.; Kim, J.K.; Choi, J.Y.; Cho, M.-L. Metformin Prevents Fatty Liver and Improves Balance of White/Brown Adipose in an Obesity Mouse Model by Inducing FGF21. Mediat. Inflamm. 2016, 2016, 5813030. [Google Scholar] [CrossRef]
- Carrière, A.; Jeanson, Y.; Berger-Müller, S.; André, M.; Chenouard, V.; Arnaud, E.; Barreau, C.; Walther, R.; Galinier, A.; Wdziekonski, B.; et al. Browning of white adipose cells by intermediate metabolites: An adaptive mechanism to alleviate redox pressure. Diabetes 2014, 63, 3253–3265. [Google Scholar] [CrossRef]
- Kononova, Y.A.; Likhonosov, N.P.; Babenko, A.Y. Metformin: Expanding the Scope of Application—Starting Earlier than Yesterday, Canceling Later. Int. J. Mol. Sci. 2022, 23, 2363. [Google Scholar] [CrossRef]
- Palacios, T.; Vitetta, L.; Coulson, S.; Madigan, C.D.; Lam, Y.Y.; Manuel, R.; Briskey, D.; Hendy, C.; Kim, J.-N.; Ishoey, T.; et al. Targeting the Intestinal Microbiota to Prevent Type 2 Diabetes and Enhance the Effect of Metformin on Glycaemia: A Randomised Controlled Pilot Study. Nutrients 2020, 12, 2041. [Google Scholar] [CrossRef]
- Cruciani, S.; Garroni, G.; Pala, R.; Coradduzza, D.; Cossu, M.L.; Ginesu, G.C.; Capobianco, G.; Dessole, S.; Ventura, C.; Maioli, M. Metformin and vitamin D modulate adipose-derived stem cell differentiation towards the beige phenotype. Adipocyte 2022, 11, 356–365. [Google Scholar] [CrossRef]
- Oliveira, F.R.; Mamede, M.; Bizzi, M.F.; Rocha, A.L.L.; Cláudia, F.N.; Gomes, K.B.; Cândido, A.L.; Reis, F.M. Effects of Short Term Metformin Treatment on Brown Adipose Tissue Activity and Plasma Irisin Levels in Women with Polycystic Ovary Syndrome: A Randomized Controlled Trial. Horm. Metab. Res. 2020, 52, 718–723. [Google Scholar] [CrossRef]
- Ning, H.-H.; Le, J.; Qin, S.-L. Reply to “Methodological issues in meta-analysis of the metformin effects on simple obesity”. Endocrine 2018, 62, 528–534. [Google Scholar] [CrossRef]
- Grant, P.J. The effects of high- and medium-dose metformin therapy on cardiovascular risk factors in patients with type II diabetes. Diabetes Care 1996, 19, 64–66. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Goodman, A.M. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The Multicenter Metformin Study Group. N. Engl. J. Med. 1995, 333, 541–549. [Google Scholar] [CrossRef]
- Fitch, K.; Abbara, S.; Lee, H.; Stavrou, E.; Sacks, R.; Michel, T.; Hemphill, L.; Torriani, M.; Grinspoon, S. Effects of lifestyle modification and metformin on atherosclerotic indices among HIV-infected patients with the metabolic syndrome. AIDS 2012, 26, 587–597. [Google Scholar] [CrossRef]
- Kaur, G.; Grewal, J.; Jyoti, K.; Jain, U.K.; Chandra, R.; Madan, J. Oral controlled and sustained drug delivery systems: Concepts, advances, preclinical, and clinical status. In Drug Targeting and Stimuli Sensitive Drug Delivery Systems; Grumezescu, A.M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2018; Chapter 15; pp. 567–626. [Google Scholar]
- Kim, H.; Park, H.; Lee, S.J. Effective method for drug injection into subcutaneous tissue. Sci. Rep. 2017, 7, 9613. [Google Scholar] [CrossRef]
- Kinaan, M.; Ding, H.; Triggle, C.R. Metformin: An Old Drug for the Treatment of Diabetes but a New Drug for the Protection of the Endothelium. Med. Princ. Pract. 2015, 24, 401–415. [Google Scholar] [CrossRef]
- Karise, I.; Bargut, T.C.; Sol, M.D.; Aguila, M.B.; Mandarim-de-Lacerda, C.A. Metformin enhances mitochondrial biogenesis and thermogenesis in brown adipocytes of mice. Biomed. Pharmacother. 2019, 111, 1156–1165. [Google Scholar] [CrossRef]
- Yuan, T.; Li, J.; Zhao, W.-G.; Sun, W.; Liu, S.-N.; Liu, Q.; Fu, Y.; Shen, Z.-F. Effects of metformin on metabolism of white and brown adipose tissue in obese C57BL/6J mice. Diabetol. Metab. Syndr. 2019, 27, 96. [Google Scholar] [CrossRef]
- Fayyad, A.M.; Khan, A.A.; Abdallah, S.H.; Alomran, S.S.; Bajou, K.; Khattak, M.N.K. Rosiglitazone enhances browning adipocytes in association with MAPK and PI3-K pathways during the differentiation of telomerase-transformed mesenchymal stromal cells into adipocytes. Int. J. Mol. Sci. 2019, 20, 1618. [Google Scholar] [CrossRef] [PubMed]
- Kroon, T.; Harms, M.; Maurer, S.; Bonnet, L.; Alexandersson, I.; Lindblom, A.; Ahnmark, A.; Nilsson, D.; Gennemark, P.; O’Mahony, G.; et al. PPARγ and PPARα synergize to induce robust browning of white fat in vivo. Mol. Metab. 2020, 36, 100964. [Google Scholar] [CrossRef]
- MacDonald, J.A.; Storey, K.B. cAMP-dependent protein kinase from brown adipose tissue: Temperature effects on kinetic properties and enzyme role in hibernating ground squirrels. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 1998, 168, 513–525. [Google Scholar] [CrossRef]
- Imai, T.; Takakuwa, R.; Marchand, S.; Dentz, E.; Bornert, J.-M.; Messaddeq, N.; Wendling, O.; Mark, M.; Desvergne, B.; Wahli, W.; et al. Peroxisome proliferator-activated receptor γ is required in mature white and brown adipocytes for their survival in the mouse. Proc. Natl. Acad. Sci. USA 2004, 101, 4543–4547. [Google Scholar] [CrossRef]
- Giordano, A.; Centemeri, C.; Zingaretti, M.C.; Cinti, S. Sibutramine-dependent brown fat activation in rats: An immunohistochemical study. Int. J. Obes. 2002, 26, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Ohno, H.; Shinoda, K.; Spiegelman, B.M.; Kajimura, S. PPARγ agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metabol. 2012, 15, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jicheng, Y.; Wen, D.; Chen, G.; Gu, Z. The potential of a microneedle patch for reducing obesity. Expert Opin. Drug Deliv. 2018, 15, 431–433. [Google Scholar] [CrossRef]
- Loh, R.K.C.; Formosa, M.F.; Eikelis, N.; Bertovic, B.A.; Anderson, M.; Barwood, S.A.; Nanayakkara, S.; Cohen, N.D.; La Gerche, A.; Reutens, A.T.; et al. Pioglitazone reduces cold-induced brown fat glucose uptake despite induction of browning in cultured human adipocytes:a randomised, controlled trial in humans. Diabetologia 2018, 61, 220–230. [Google Scholar] [CrossRef]
- Rachid, T.L.; Penna-de-Carvalho, A.; Bringhenti, I.; Aguila, M.B.; Mandarim-de-Lacerda, C.A.; Souza-Mello, V. Fenofibrate (PPARalpha agonist) induces beige cell formation in subcutaneous white adipose tissue from diet-induced male obese mice. Mol. Cell. Endocrinol. 2015, 402, 86–94. [Google Scholar] [CrossRef]
- Rachid, T.L.; Silva-Veiga, F.M.; Graus-Nunes, F.; Bringhenti, I.; Mandarim-de-Lacerda, C.A.; Souza-Mello, V. Differential actions of PPAR-α and PPAR-β/δ on beige adipocyte formation: A study in the subcutaneous white adipose tissue of obese male mice. PLoS ONE 2018, 13, e0191365. [Google Scholar] [CrossRef]
- Lin, J.; Handschin, C.; Spiegelman, B.M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005, 1, 361–370. [Google Scholar] [CrossRef]
- Badman, M.K.; Pissios, P.; Kennedy, A.R.; Koukos, G.; Flier, J.S.; Maratos-Flier, E. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 2007, 5, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Lundåsen, T.; Hunt, M.C.; Nilsson, L.M.; Sanyal, S.; Angelin, B.; Alexson, S.E.N.; Rudling, M. PPARα is a key regulator of hepatic FGF21. Biochem. Biophys. Res. Commun. 2007, 2, 437–440. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-S.; Kim, E.-S.; Jung, J.-E.; Marciano, D.P.; Jo, A.; Koo, J.Y.; Choi, S.Y.; Yang, Y.R.; Jang, H.-J.; Kim, E.-K.; et al. PPARγ Antagonist Gleevec Improves Insulin Sensitivity and Promotes the Browning of White Adipose Tissue. Diabetes 2016, 65, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Rajvanshi, P.K.; Rogers, H.M.; Yoshida, T.; Kopp, J.B.; An, X.; Gassmann, M.; Noguchi, C.T. Erythropoietin regulates energy metabolism through the EPO-EpoR-RUNX1 axis. Nat. Commun. 2024, 16, 8114. [Google Scholar] [CrossRef]
- Kodo, K.; Sugimoto, S.; Nakajima, H.; Mori, J.; Itoh, I.; Fukuhara, S.; Shigehara, K.; Nishikawa, T.; Kosaka, K.; Hosoi, H. Erythropoietin (EPO) ameliorates obesity and glucose homeostasis by promoting thermogenesis and endocrine function of classical brown adipose tissue (BAT) in diet-induced obese mice. PLoS ONE 2017, 13, e0173661. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, L.; Ge, J.M.; Ma, G.S.; Cai, J.Y. Effect of EPO on PRDM16, FGF21 expression and STAT phosphorylation of brown adipose tissue in HFD mice. Zhongguo Ying Yong Sheng Li Xue Za Zhi 2018, 8, 294–298. [Google Scholar] [CrossRef]
- Lee, J.; Walter, M.F.; Korach, K.S.; Noguchi, C.T. Erythropoietin reduces fat mass in female mice lacking estrogen receptor alpha. Mol. Metab. 2021, 45, 101142. [Google Scholar] [CrossRef]
- Morimoto, H.; Mori, J.; Nakajima, H.; Kawabe, Y.; Tsuma, Y. Angiotensin 1–7 stimulates brown adipose tissue and reduces diet-induced obesity. Am. J. Physiol. Endocrinol. Metab. 2018, 314, E131–E138. [Google Scholar] [CrossRef]
- Evangelista, F.S.; Bartness, T.J. Central angiotensin 1–7 triggers brown fat thermogenesis. Physiol. Rep. 2023, 11, e15621. [Google Scholar] [CrossRef]
- Fang, S.; Suh, J.M.; Reilly, S.M.; Yu, E.; Osborn, O.; Lackey, D.; Yoshihara, E.; Perino, A.; Jacinto, S.; Lukasheva, Y.; et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat. Med. 2015, 21, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Zhang, H.; Xiao, D.; Wei, H.; Chen, Y. Farnesoid X receptor (FXR): Structures and ligands. Comput. Struct. Biotechnol. J. 2021, 19, 2148–2159. [Google Scholar] [CrossRef] [PubMed]
- Morón-Ros, S.; Uriarte, I.; Berasain, C.; Avila, M.A.; Sabater-Masdeu, M.; Moreno-Navarrete, J.M.; Fernández-Real, J.M.; Giralt, M.; Villarroya, F.; Gavaldà-Navarro, A. FGF15/19 is required for adipose tissue plasticity in response to thermogenic adaptations. Mol. Metab. 2021, 43, 101113. [Google Scholar] [CrossRef]
- Beiroa, D.; Imbernon, M.; Gallego, R.; Senra, A.; Herranz, D.; Villarroya, F.; Serrano, M.; Fernø, J.; Salvador, J.; Escalada, J.; et al. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 2014, 63, 3346–3358. [Google Scholar] [CrossRef]
- Gutierrez, A.D.; Gao, Z.; Hamidi, V.; Zhu, L.; Andre, K.B.S.; Riggs, K.; Ruscheinsky, M.; Wang, H.; Yu, Y.; Miller, C.; et al. Anti-diabetic effects of GLP1 analogs are mediated by thermogenic interleukin-6 signaling in adipocytes. Cell Rep. Med. 2022, 3, 100813. [Google Scholar] [CrossRef]
- Ma, X.; Wang, D.; Zhao, W.; Xu, L. Deciphering the Roles of PPARγ in Adipocytes via Dynamic Change of Transcription Complex. Front. Endocrinol. 2018, 9, 473. [Google Scholar] [CrossRef]
- Rajakumari, S.; Wu, J.; Ishibashi, J.; Lim, H.W.; Giang, A.H.; Won, K.J.; Reed, R.R.; Seale, P. EBF2 determines and maintains brown adipocyte identity. Cell Metab. 2013, 17, 562–574. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Lin, B.; Zheng, X.; Chen, Z.; Cao, H.; Xu, H.; Liang, H.; Weng, J. GLP-1 receptor agonist promotes brown remodelling in mouse white adipose tissue through SIRT1. Diabetologia 2016, 59, 1059–1069. [Google Scholar] [CrossRef] [PubMed]
- Janssen, L.G.; Nahon, K.J.; Bracké, K.F.; Broek, D.V.D.; Smit, R.; Mishre, A.S.S.; Koorneef, L.L.; Martinez-Tellez, B.; Burakiewicz, J.; Kan, H.E.; et al. Twelve weeks of exenatide treatment increases [18F]fluorodeoxyglucose uptake by brown adipose tissue without affecting oxidative resting energy expenditure in nondiabetic males. Metabolism 2020, 106, 154167. [Google Scholar] [CrossRef]
- van Eyk, H.J.; Paiman, E.; Bizino, M.B.; Ijzermans, S.L.; Kleiburg, F.; Boers, T.G.; Rappel, E.J.; Burakiewicz, J.; Kan, H.E.; Smit, J.W.; et al. Liraglutide decreases energy expenditure and does not affect the fat fraction of supraclavicular brown adipose tissue in patients with type 2 diabetes. Nutr. Metab. Cardiovasc. Dis. 2019, 30, 616–624. [Google Scholar] [CrossRef]
- Stafeev, M.; Agareva, S.; Michurina, A.; Tomilova, E.; Shestakova, E.; Zubkova, E.; Sineokaya, M.; Ratner, E.; Menshikov, M.; Parfyonova, Y.; et al. Semaglutide 6-months therapy of type 2 diabetes mellitus restores adipose progenitors potential to develop metabolically active adipocytes. Eur. J. Pharmacol. 2024, 970, 176476. [Google Scholar] [CrossRef] [PubMed]
- Spezani, R.; Marcondes-de-Castro, I.A.; Marinho, T.S.; Reis-Barbosa, P.H.; Cardoso, L.E.M.; Aguila, M.B.; Mandarim-de-Lacerda, C.A. Cotadutide improves brown adipose tissue thermogenesis in obese mice. Biochem. Pharmacol. 2023, 217, 115852. [Google Scholar] [CrossRef]
- Hamada, Y.; Nagasaki, H.; Fuchigami, M.; Furuta, S.; Seino, Y.; Nakamura, J.; Oiso, Y. The alpha-glucosidase inhibitor miglitol affects bile acid metabolism and ameliorates obesity and insulin resistance in diabetic mice. Metabolism 2013, 62, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, S.; Nakajima, H.; Kosaka, K.; Hosoi, H. Review: Miglitol has potential as a therapeutic drug against obesity. Nutr. Metab. 2015, 12, 1–7. [Google Scholar] [CrossRef]
- Ahmad, B.; Vohra, M.S.; Saleemi, M.A.; Serpell, C.J.; Fong, I.L.; Wong, E.H. Brown/Beige adipose tissues and the emerging role of their secretory factors in improving metabolic health: The batokines. Biochimie 2021, 184, 26–39. [Google Scholar] [CrossRef]
- Hu, Y.; Huang, Y.; Jiang, Y.; Weng, L.; Cai, Z.; He, B. The Different Shades of Thermogenic Adipose Tissue. Curr. Obes. Rep. 2024, 13, 440–460. [Google Scholar] [CrossRef]
- Rui, L. Brown and Beige Adipose Tissues in Health and Disease. Compr. Physiol. 2017, 12, 1281–1306. [Google Scholar] [CrossRef]
- Giroud, M.; Jodeleit, H.; Prentice, K.J.; Bartel, A. Adipocyte function and the development of cardiometabolic disease. J. Physiol. 2022, 5, 1189–1208. [Google Scholar] [CrossRef]
- Sharp, L.Z.; Shinoda, K.; Ohno, H.; Scheel, D.W.; Tomoda, E.; Ruiz, L.; Hu, H.; Wang, L.; Pavlova, Z.; Gilsanz, V.; et al. Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS ONE 2012, 11, e49452. [Google Scholar] [CrossRef]
- Bonfante, I.L.P.; Monfort-Pires, M.; Duft, R.G.; da Silva Mateus, K.C.; de Lima Júnior, J.C.; Dos Santos Trombeta, J.C.; Finardi, E.A.R.; Brunelli, D.T.; Morari, J.; de Lima, J.A.B.; et al. Combined training increases thermogenic fat activity in patients with overweight and type 2 diabetes. Int. J. Obes. 2022, 46, 1145–1154. [Google Scholar] [CrossRef]
- Horii, T.; Kozawa, J.; Fujita, Y.; Kawata, S.; Ozawa, H.; Ishibashi, C.; Yoneda, S.; Nammo, T.; Miyagawa, J.-I.; Eguchi, H.; et al. Lipid droplet accumulation in beta cells in patients with type 2 diabetes is associated with insulin resistance, hyperglycemia and beta cell dysfunction involving decreased insulin granules. Front. Endocrinol. 2022, 13, 996716. [Google Scholar] [CrossRef] [PubMed]
- Qiang, L.; Wang, L.; Kon, N.; Zhao, W.; Lee, S.; Zhang, Y.; Rosenbaum, M.; Zhao, Y.; Gu, W.; Farmer, S.R.; et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma. Cell 2012, 150, 620–632. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, C.J.; Vergnes, L.; Wang, J.; Drew, B.G.; Hong, C.; Tu, Y.; Hu, Y.; Peng, X.; Xu, F.; Saez, E.; et al. Adipose subtype-selective recruitment of TLE3 or Prdm16 by PPARgamma specifies lipid storage versus thermogenic gene programs. Cell Metab. 2013, 17, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Mori, M.; Nakagami, H.; Rodriguez-Araujo, G.; Nimura, K.; Kaneda, Y. Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. PLoS Biol. 2012, 10, e1001314. [Google Scholar] [CrossRef]
- Chen, Y.; Siegel, F.; Kipschull, S.; Haas, B.; Frohlich, H.; Meister, G.; Pfeifer, A. MiR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nat. Commun. 2013, 4, 1769. [Google Scholar] [CrossRef]
Parameters | BAT | cBAT | rBAT |
---|---|---|---|
Specific expression of genes | UCP1 PRDM16 PPARGC1A ELOVL3 CIDEA LHX8 PPARG/A EPSTIi1 DIO2 COX8b SIRT1 | DMP7, EBF2 and 3, EVA1, MYF5, PDK4, PREX1, ZIC1, HSPB7, miR-206, miR-133b, OPLAH, ACOT2, FBXO31, PPARGC1A | |
Precursor cells | Myf5+ positive myoblast-like cells differentiate into brown preadipocytes under the influence of PRDM16, BMP7, CIDEA, and Ebf2, and into brown adipocytes under the action of transcriptional regulators PRDM16, BMP7, CIDEA, PGC1-α, PPARg and C/EBPβ. | Myf5- negative precursor cells, under cold and β3-AR stimulation, can directly differentiate into beige adipocytes, or under the influence of cold exposure, adrenergic signaling, β3-AR agonists, PPAR agonists, FGF21, irisin, and natriuretic peptides, transdifferentiate from white adipocytes. | |
Activating microRNAs | MiR-30, MiR-32, MiR-455 | MiR-365, MiR-193b, MiR-182, MiR-203, MiR-328, MiR-129, MiR-378 | MiR-196a, MiR-let-7, MiR-26. |
Inhibiting microRNAs | MiR-34a, MiR-155, MiR-133, MiR-27 | MiR-106b, MiR-93 | MiR-378, MiR-125 |
The main thermogene | UCP1-dependent | UCP1-independent—via sarco/endoplasmic reticulum Ca2+-ATPase 2b (SERCA2b) and ryanodine receptor 2, creatine cycle |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kononova, Y.A.; Tuchina, T.P.; Babenko, A.Y. Brown and Beige Adipose Tissue: One or Different Targets for Treatment of Obesity and Obesity-Related Metabolic Disorders? Int. J. Mol. Sci. 2024, 25, 13295. https://doi.org/10.3390/ijms252413295
Kononova YA, Tuchina TP, Babenko AY. Brown and Beige Adipose Tissue: One or Different Targets for Treatment of Obesity and Obesity-Related Metabolic Disorders? International Journal of Molecular Sciences. 2024; 25(24):13295. https://doi.org/10.3390/ijms252413295
Chicago/Turabian StyleKononova, Yulia A., Taisiia P. Tuchina, and Alina Yu. Babenko. 2024. "Brown and Beige Adipose Tissue: One or Different Targets for Treatment of Obesity and Obesity-Related Metabolic Disorders?" International Journal of Molecular Sciences 25, no. 24: 13295. https://doi.org/10.3390/ijms252413295
APA StyleKononova, Y. A., Tuchina, T. P., & Babenko, A. Y. (2024). Brown and Beige Adipose Tissue: One or Different Targets for Treatment of Obesity and Obesity-Related Metabolic Disorders? International Journal of Molecular Sciences, 25(24), 13295. https://doi.org/10.3390/ijms252413295