Monocyte/Macrophage-Specific Loss of ARNTL Suppresses Chronic Kidney Disease-Associated Cardiac Impairment
<p>Effect of ARNTL on induction of GPR68 expression in RAW264.7 and mouse primary monocytes by 5/6Nx-derived serum. (<b>A</b>) mRNA of <span class="html-italic">Arntl</span> in RAW264.7 incubated with 10% serum from Sham and 5/6Nx mice for 24 h. (<b>B</b>) Transcriptional regulation of <span class="html-italic">Gpr68</span> using serum prepared from Sham or 5/6Nx mice. Number of nucleotide residues indicates distance from transcription start site (+1). RAW264.7 cells were transfected with <span class="html-italic">Gpr68</span> (-1734)-Luc, <span class="html-italic">Gpr68</span> (-1512)-Luc, <span class="html-italic">Gpr68</span> (-1261)-Luc, <span class="html-italic">Gpr68</span> (-27)-Luc, or pGL4.18. Values are expressed as mean ± S.D. (<span class="html-italic">n</span> = 4). (<b>C</b>) Influence of CLOCK/ARNTL on transcriptional activity of mouse <span class="html-italic">GPR68</span>. RAW264.7 cells were transfected with <span class="html-italic">Gpr68</span> (-1734)-Luc in presence or absence of CLOCK and ARNTL-expressing vectors. Relative luciferase activity of pGL4.18-transfected cells in absence of CLOCK/ARNTL was set at 1.0. (<b>D</b>) High-ARNTL-expressing RAW264.7 was created by introducing an ARNTL expression plasmid. ARNTL expression levels were measured using Western blotting. (<b>E</b>) Protein levels of GPR68 in RAW264.7-transfected pcDNA3.1 or ARNTL-expressing vectors. (<b>F</b>) Loss of <span class="html-italic">Arntl</span> caused by CRE-LOXP system resulted in loss of ARNTL protein in monocytes. Monocytes isolated from monocytic <span class="html-italic">ARNTL</span> +/+ mice or monocytic <span class="html-italic">ARNTL</span> −/− mice. (<b>G</b>) Expression of <span class="html-italic">Gpr68</span> mRNA in primary cultured monocytes, which were isolated from monocytic <span class="html-italic">ARNTL</span> +/+ mice or monocytic <span class="html-italic">ARNTL</span> −/− mice. mRNA levels of <span class="html-italic">Gpr68</span> were assessed after treatment with serum from Sham or 5/6Nx WT mice for 24 h. Values are expressed as mean ± S.D. (<span class="html-italic">n</span> = 4–6). *, <span class="html-italic">p</span> < 0.05, **, <span class="html-italic">p</span> < 0.01 indicates significant differences between two groups (two-way ANOVA with Tukey–Kramer post hoc tests or Student’s <span class="html-italic">t</span>-test).</p> "> Figure 2
<p>The effect of monocyte/macrophage-specific transcription factor PU.1 on the induction of GPR68 expression. (<b>A</b>) The 5/6Nx-derived serum did not increase the transcriptional activity upstream of <span class="html-italic">Gpr68</span> in NIH3T3. NIH3T3 was transfected with <span class="html-italic">Gpr68</span> (-1734)-Luc or pGL4.18 and incubated with 10% serum from Sham and 5/6Nx mice for 24 h. (<b>B</b>) Transcription factors binding upstream of <span class="html-italic">Gpr68</span> analyzed by previous transcriptome analyses. The blue waveform shows the sequenced tags in ChIP sequence analysis for each transcription factor. The numbers on the horizontal axis indicate the distance from the transcription start site (kbp). (<b>C</b>) The PU.1 protein in RAW264.7 incubated with 10% serum from Sham and 5/6Nx mice for 24 h. (<b>D</b>) High-PU.1-expressing NIH3T3 was created by introducing a PU.1 expression plasmid. PU.1 expression levels were measured using Western blotting. (<b>E</b>,<b>F</b>) The mRNA levels of <span class="html-italic">Gpr68</span> (<b>E</b>) and <span class="html-italic">Arntl</span> (<b>F</b>) in NIH3T3-transfected pcDNA3.1 or PU.1-expressing vectors were measured after incubation with 10% serum from Sham and 5/6Nx mice for 24 h. (<b>G</b>) A schematic of mouse <span class="html-italic">Gpr68</span>. The numbers indicate the distance from the transcription start site (+1). Black rectangles, E-box. The arrow symbols indicate the location on the gene where the primer sets localize for the analysis of ChIP. (<b>H</b>) The binding of endogenous ARNTL to the <span class="html-italic">Gpr68</span> upstream region in NIH3T3-transfected pcDNA3.1 or PU.1-expressing vectors. Values are expressed as the mean ± S.D. (<span class="html-italic">n</span> = 3–5). **, <span class="html-italic">p</span> < 0.01 indicates significant differences between the two groups (two-way ANOVA with Tukey–Kramer post hoc tests or Student’s <span class="html-italic">t</span>-test).</p> "> Figure 3
<p>The effect of the loss of monocyte-specific ARNTL on the 5/6Nx-induced induction of GPR68 expression. (<b>A</b>) The binding of endogenous ARNTL or CLOCK to the <span class="html-italic">Gpr68</span> upstream region in Ly6G<sup>−</sup>/CD11b<sup>+</sup>/Ly6C<sup>+</sup> cells prepared from <span class="html-italic">ARNTL</span> +/+ or <span class="html-italic">ARNTL</span> −/− Sham and 5/6Nx mice in the blood. The primer sets used are shown in <a href="#ijms-25-13009-f002" class="html-fig">Figure 2</a>G. (<b>B</b>) The expression of <span class="html-italic">Gpr68</span> mRNA in Ly6G<sup>−</sup>/CD11b<sup>+</sup>/Ly6C<sup>+</sup> cells prepared from <span class="html-italic">ARNTL</span> +/+ or <span class="html-italic">ARNTL</span> −/− Sham and 5/6Nx mice in the blood and spleen. (<b>C</b>,<b>D</b>) Flow cytometry analysis was performed to detect high-GPR68-expressing Ly6G<sup>−</sup>/CD11b<sup>+</sup>/Ly6C<sup>+</sup> cells in the blood and spleen. The ratio of high-GPR68-expressing monocytes in the blood and spleen. For all panels, values are expressed as the mean ± S.D. (<span class="html-italic">n</span> = 5–7). **, <span class="html-italic">p</span> < 0.01, ** indicates significant differences between the two groups (two-way ANOVA with Tukey–Kramer post hoc tests).</p> "> Figure 4
<p>The effect of the deficiency of monocyte-specific ARNTL on 5/6Nx-induced cardiac injury. (<b>A</b>) Serum BNP concentrations in <span class="html-italic">ARNTL</span> +/+ or <span class="html-italic">ARNTL</span> −/− Sham and 5/6Nx mice. Values are expressed as the mean ± S.D. (<span class="html-italic">n</span> = 6). (<b>B</b>,<b>C</b>) Mutations in <span class="html-italic">Arntl</span> in monocytes ameliorated CKD-induced cardiac fibrosis. Panel (B) shows Masson’s trichrome staining of tissue fibrosis in blue. Scale bars indicate 1 mm (upper panel) and 50 μm (lower panel). Panel (<b>C</b>) shows the quantification of the fibrosis area under light microscopy. Values are expressed as the mean ± S.D. (<span class="html-italic">n</span> = 5). (<b>D</b>) The total amount of collagen throughout the ventricle. Values were corrected for total protein mass. Values are expressed as the mean ± S.D. (<span class="html-italic">n</span> = 5–6). (<b>E</b>) Cardiac TIMP-1 protein levels in <span class="html-italic">ARNTL</span> +/+ or <span class="html-italic">ARNTL</span> −/− Sham and 5/6Nx mice. Values were corrected for total protein mass. Values are expressed as the mean ± S.D. (<span class="html-italic">n</span> = 5–6). (<b>F</b>) The mRNA levels of <span class="html-italic">Tnf-α</span> and <span class="html-italic">Il-6</span> and fibrosis-related factors (<span class="html-italic">Col1a1</span>, <span class="html-italic">Col1a2</span>, <span class="html-italic">Mmp1a</span>, <span class="html-italic">Timp-1</span>, and <span class="html-italic">αSma</span>) in the cardiac ventricle of <span class="html-italic">ARNTL</span> +/+ or <span class="html-italic">ARNTL</span> −/− Sham and 5/6Nx mice. The mean value of the Sham-operated <span class="html-italic">ARNTL</span> +/+ group was set to 1.0. Values are expressed as the mean ± S.D. (<span class="html-italic">n</span> = 5). *, <span class="html-italic">p</span> < 0.05, **, <span class="html-italic">p</span> < 0.01 indicates significant differences between the two groups (two-way ANOVA with Tukey–Kramer post hoc tests).</p> "> Figure 5
<p>The effect of the loss of monocyte-specific ARNTL on renal function in 5/6Nx mice. (<b>A</b>) Masson’s trichrome staining for the kidneys prepared from <span class="html-italic">ARNTL</span> +/+ or <span class="html-italic">ARNTL</span> −/− Sham and 5/6Nx mice. Scale bars indicate 50 μm. (<b>B</b>) The total amount of collagen throughout the kidney. Values were corrected for total protein mass. Values are expressed as the mean ± S.D. (<span class="html-italic">n</span> = 5–6). (<b>C</b>) Renal TIMP-1 protein levels in <span class="html-italic">ARNTL</span> +/+ or <span class="html-italic">ARNTL</span> −/− Sham and 5/6Nx mice. Values were corrected for total protein mass. Values are expressed as the mean ± S.D. (<span class="html-italic">n</span> = 5–6). (<b>D</b>) The mRNA levels of <span class="html-italic">Tnf-α</span> and <span class="html-italic">Il-6</span> and fibrosis-related factors (<span class="html-italic">Col1a1</span>, <span class="html-italic">Col1a2</span>, <span class="html-italic">Mmp1a</span>, <span class="html-italic">Timp-1</span>, and <span class="html-italic">αSma</span>) in the kidney of <span class="html-italic">ARNTL</span> +/+ or <span class="html-italic">ARNTL</span> −/− Sham and 5/6Nx mice. The mean value of the Sham-operated <span class="html-italic">ARNTL</span> +/+ group was set to 1.0. Values are expressed as the mean ± S.D. (<span class="html-italic">n</span> = 5). (<b>E</b>–<b>H</b>) The serum concentrations of creatinine (<b>E</b>), urea nitrogen (<b>F</b>), angiotensin II (<b>G</b>), and aldosterone (<b>H</b>), in <span class="html-italic">ARNTL</span> +/+ or <span class="html-italic">ARNTL</span> −/− Sham and 5/6Nx mice. (<b>I</b>) The mRNA levels of <span class="html-italic">Tgf-β</span> in the kidney of <span class="html-italic">ARNTL</span> +/+ or <span class="html-italic">ARNTL</span> −/− Sham and 5/6Nx mice. The mean value of the Sham-operated <span class="html-italic">ARNTL</span> +/+ group was set as 1.0. (<b>J</b>) The serum concentrations of retinol in <span class="html-italic">ARNTL</span> +/+ or <span class="html-italic">ARNTL</span> −/− Sham and 5/6Nx mice. In all panels, values are expressed as the mean ± S.D. (<span class="html-italic">n</span> = 4–5). **, <span class="html-italic">p</span> < 0.01; *, <span class="html-italic">p</span> < 0.05 significant difference between the two groups (one-way or two-way ANOVA with Tukey–Kramer post hoc tests).</p> "> Figure 6
<p>The effect of the loss of monocyte-specific ARNTL on the 5/6Nx-induced induction of GPR68 expression. (<b>A</b>,<b>B</b>) The mRNA levels of <span class="html-italic">Vcam1</span> and <span class="html-italic">Sele</span> in the cardiac ventricle or kidney of <span class="html-italic">ARNTL</span> +/+ or <span class="html-italic">ARNTL</span> −/− Sham and 5/6Nx mice. The mean value of the Sham-operated <span class="html-italic">ARNTL</span> +/+ group was set to 1.0. (<b>C</b>,<b>D</b>) The number of cardiac or renal F4/80<sup>+</sup>/Ly6G<sup>−</sup>/CD11b<sup>+</sup>/Ly6C<sup>+</sup> cells (<b>C</b>) and F4/80<sup>+</sup>/Ly6G<sup>−</sup>/CD11b<sup>+</sup>/Ly6C<sup>−</sup> cells (<b>D</b>) in each organ. The mean value of the Sham-operated <span class="html-italic">ARNTL</span> +/+ group in each organ was set as 1.0. (<b>E</b>) The mRNA levels of <span class="html-italic">Gpr68</span> in the cardiac ventricle or kidney of <span class="html-italic">ARNTL</span> +/+ or <span class="html-italic">ARNTL</span> −/− Sham and 5/6Nx mice. The mean value of the Sham-operated <span class="html-italic">ARNTL</span> +/+ group was set to 1.0. (<b>F</b>) The expression of <span class="html-italic">Gpr68</span> mRNA in cardiac F4/80<sup>+</sup>/Ly6G<sup>−</sup>/CD11b<sup>+</sup>/Ly6C<sup>+</sup> and F4/80<sup>+</sup>/Ly6G<sup>−</sup>/CD11b<sup>+</sup>/Ly6C<sup>−</sup> cells prepared from <span class="html-italic">ARNTL</span> +/+ or <span class="html-italic">ARNTL</span> −/− Sham and 5/6Nx mice ventricles. (<b>G</b>) The expression levels in the cardiac F4/80<sup>+</sup>/Ly6G<sup>−</sup>/CD11b<sup>+</sup>/Ly6C<sup>+</sup> and F4/80<sup>+</sup>/Ly6G<sup>−</sup>/CD11b<sup>+</sup>/Ly6C<sup>−</sup> cells of markers indicative of a subset of macrophages. Histograms showing the expression of each marker were obtained by flow cytometric analysis. For all panels, values are expressed as the mean ± S.D. (<span class="html-italic">n</span> = 4–7). *, <span class="html-italic">p</span> < 0.05, **, <span class="html-italic">p</span> < 0.01 indicates significant differences between the two groups (two-way ANOVA with Tukey–Kramer post hoc tests).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Mechanism Underlying GPR68 Upregulation and Cell Specificity in RAW264.7 and Mouse Primary Monocytes
2.2. Effect of Loss of Monocyte-Specific ARNTL on GPR68 Expression in 5/6Nx Monocytes
2.3. Effect of Loss of Monocyte-Specific ARNTL on CKD-Induced Cardiac Pathology Progression
2.4. Effect of Loss of Monocyte-Specific ARNTL on CKD-Induced Renal Pathology Progression
2.5. Effect of Loss of Monocyte-Specific ARNTL on Expression of Membrane Molecules Indicative of Function of Cardiac Macrophages in 5/6Nx Mice
3. Discussion
4. Materials and Methods
4.1. Animals and Treatments
4.2. Cell Culture and Treatment
4.3. Construction of Gpr68 or Arntl Reporter Plasmid-Expressing RAW264.7 Cells
4.4. Construction of RAW264.7 Cells Stably Expressing ARNTL
4.5. Construction of PU.1-Expressing NIH3T3 Cells
4.6. Quantitative RT-PCR
4.7. Western Blotting
4.8. Luciferase Reporter Assay
4.9. Histochemical Staining
4.10. Quantification Blood, Kidney, and Heart Factors
4.11. Flow Cytometry Isolation and Analysis
4.12. ChIP Analysis
4.13. Measurement of Retinol Concentrations
4.14. Data and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barsoum, R.S. Chronic kidney disease in the developing world. N. Engl. J. Med. 2006, 354, 997–999. [Google Scholar] [CrossRef] [PubMed]
- Hedayati, S.S.; Bosworth, H.B.; Briley, L.P.; Sloane, R.J.; Pieper, C.F.; Kimmel, P.L.; Szczech, L.A. Death or hospitalization of patients on chronic hemodialysis is associated with a physician-based diagnosis of depression. Kidney Int. 2008, 74, 930–936. [Google Scholar] [CrossRef] [PubMed]
- Ravid, J.D.; Kamel, M.H.; Chitalia, V.C. Uraemic solutes as therapeutic targets in CKD-associated cardiovascular disease. Nat. Rev. Nephrol. 2021, 17, 402–416. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Tsihlis, G.; Chau, K.; Trinh, K.; Rogers, N.M.; Julovi, S.M. Novel perspectives in chronic kidney disease-specific cardiovascular disease. Int. J. Mol. Sci. 2024, 25, 2658. [Google Scholar] [CrossRef] [PubMed]
- Groothoff, J.W.; Gruppen, M.P.; Offringa, M.; Hutten, J.; Lilien, M.R.; Van de Kar, N.J.; Wolff, E.D.; Davin, J.C.; Heymans, H.S. Mortality and causes of death of end-stage renal disease in children: A Dutch cohort study. Kidney Int. 2002, 61, 621–629. [Google Scholar] [CrossRef]
- Tonelli, M.; Wiebe, N.; Culleton, B.; House, A.; Rabbat, C.; Fok, M.; McAlister, F.; Garg, A.X. Chronic kidney disease and mortality risk: A systematic review. J. Am. Soc. Nephrol. 2006, 17, 2034–2047. [Google Scholar] [CrossRef]
- Arem, R. Hypoglycemia associated with renal failure. Endocrinol. Metab. Clin. N. Am. 1989, 18, 103–121. [Google Scholar] [CrossRef]
- Ham, O.; Jin, W.; Lei, L.; Huang, H.H.; Tsuji, K.; Huang, M.; Roh, J.; Rosenzweig, A.; Lu, H.A.J. Pathological cardiac remodeling occurs early in CKD mice from unilateral urinary obstruction, and is attenuated by enalapril. Sci. Rep. 2018, 8, 16087. [Google Scholar] [CrossRef]
- Vanholder, R.; Fouque, D.; Glorieux, G.; Heine, G.H.; Kanbay, M.; Mallamaci, F.; Massy, Z.A.; Ortiz, A.; Rossignol, P.; Wiecek, A.; et al. Clinical management of the uraemic syndrome in chronic kidney disease. Lancet Diabetes Endocrinol. 2016, 4, 360–373. [Google Scholar] [CrossRef]
- Yoshida, Y.; Matsunaga, N.; Nakao, T.; Hamamura, K.; Kondo, H.; Ide, T.; Tsutsui, H.; Tsuruta, A.; Kurogi, M.; Nakaya, M.; et al. Alteration of circadian machinery in monocytes underlies chronic kidney disease-associated cardiac inflammation and fibrosis. Nat. Commun. 2021, 12, 2783. [Google Scholar] [CrossRef]
- Kato, S.; Chmielewski, M.; Honda, H.; Pecoits-Filho, R.; Matsuo, S.; Yuzawa, Y.; Tranaeus, A.; Stenvinkel, P.; Lindholm, B. Aspects of immune dysfunction in end-stage renal disease. Clin. J. Am. Soc. Nephrol. 2008, 3, 1526–1533. [Google Scholar] [CrossRef] [PubMed]
- Vaziri, N.D.; Pahl, M.V.; Crum, A.; Norris, K. Effect of uremia on structure and function of immune system. J. Ren. Nutr. 2012, 22, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.C.; Reppert, S.M. The circadian clocks of mice and men. Neuron 2001, 29, 555–558. [Google Scholar] [CrossRef] [PubMed]
- Gekakis, N.; Staknis, D.; Nguyen, H.B.; Davis, F.C.; Wilsbacher, L.D.; King, D.P.; Takahashi, J.S.; Weitz, C.J. Role of the CLOCK protein in the mammalian circadian mechanism. Science 1998, 280, 1564–1569. [Google Scholar] [CrossRef]
- Kume, K.; Zylka, M.J.; Sriram, S.; Shearman, L.P.; Weaver, D.R.; Jin, X.; Maywood, E.S.; Hastings, M.H.; Reppert, S.M. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 1999, 98, 193–205. [Google Scholar] [CrossRef]
- Panda, S.; Antoch, M.P.; Miller, B.H.; Su, A.I.; Schook, A.B.; Straume, M.; Schultz, P.G.; Kay, S.A.; Takahashi, J.S.; Hogenesch, J.B. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002, 109, 307–320. [Google Scholar] [CrossRef]
- Bray, M.S.; Shaw, C.A.; Moore, M.W.S.; Garcia, R.A.P.; Zanquetta, M.M.; Durgan, D.J.; Jeong, W.J.; Tsai, J.Y.; Bugger, H.; Zhang, D.; et al. Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. Am. J. Physiol. Heart Circ. Physiol. 2008, 294, H1036–H1047. [Google Scholar] [CrossRef]
- Chilton, R.; Tikkanen, I.; Hehnke, U.; Woerle, H.J.; Johansen, O.E. Impact of empagliflozin on blood pressure in dipper and non-dipper patients with type 2 diabetes mellitus and hypertension. Diabetes Obes. Metab. 2017, 19, 1620–1624. [Google Scholar] [CrossRef]
- Alibhai, F.J.; LaMarre, J.; Reitz, C.J.; Tsimakouridze, E.V.; Kroetsch, J.T.; Bolz, S.S.; Shulman, A.; Steinberg, S.; Burris, T.P.; Oudit, G.Y.; et al. Disrupting the key circadian regulator CLOCK leads to age-dependent cardiovascular disease. J. Mol. Cell. Cardiol. 2017, 105, 24–37. [Google Scholar] [CrossRef]
- Lecacheur, M.; Ammerlaan, D.J.M.; Dierickx, P. Circadian rhythms in cardiovascular (dys)function: Approaches for future therapeutics. npj Cardiovasc. Health 2024, 1, 21. [Google Scholar] [CrossRef]
- Wang, C.; Ma, C.; Gong, L.; Guo, Y.; Fu, K.; Zhang, Y.; Zhou, H.; Li, Y. Macrophage polarization and its role in liver disease. Front. Immunol. 2021, 12, 803037. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.H.; Li, D.Y.; Liang, S.; Yang, C.; Tang, J.X.; Liu, H.F. Macrophage autophagy in macrophage polarization, chronic inflammation and organ fibrosis. Front. Immunol. 2022, 13, 946832. [Google Scholar] [CrossRef] [PubMed]
- Rogacev, K.S.; Seiler, S.; Zawada, A.M.; Reichart, B.; Herath, E.; Roth, D.; Ulrich, C.; Fliser, D.; Heine, G. CD14++CD16+ monocytes and cardiovascular outcome in patients with chronic kidney disease. Eur. Heart J. 2011, 32, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Heine, G.H.; Ortiz, A.; Massy, Z.A.; Lindholm, B.; Wiecek, A.; Martínez-Castelao, A.; Covic, A.; Goldsmith, D.; Süleymanlar, G.; London, G.M.; et al. Monocyte subpopulations and cardiovascular risk in chronic kidney disease. Nat. Rev. Nephrol. 2012, 8, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Fukuoka, K.; Sakugawa, M.; Kurogi, M.; Hamamura, K.; Hamasaki, K.; Tsurusaki, F.; Sotono, K.; Nishi, T.; Fukuda, T.; et al. Inhibition of G protein-coupled receptor 68 using homoharringtonine attenuates chronic kidney disease-associated cardiac impairment. Transl. Res. 2024, 269, 31–46. [Google Scholar] [CrossRef]
- Bunger, M.K.; Wilsbacher, L.D.; Moran, S.M.; Clendenin, C.; Radcliffe, L.A.; Hogenesch, J.B.; Simon, M.C.; Takahashi, J.S.; Bradfield, C.A. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 2000, 103, 1009–1017. [Google Scholar] [CrossRef]
- Alexander, R.K.; Liou, Y.H.; Knudsen, N.H.; Starost, K.A.; Xu, C.; Hyde, A.L.; Liu, S.; Jacobi, D.; Liao, N.S.; Lee, C.H. Bmal1 integrates mitochondrial metabolism and macrophage activation. eLife 2020, 9, e54090. [Google Scholar] [CrossRef]
- Early, J.O.; Menon, D.; Wyse, C.A.; Cervantes-Silva, M.P.; Zaslona, Z.; Carroll, R.G.; Palsson-McDermott, E.M.; Angiari, S.; Ryan, D.G.; Corcoran, S.E.; et al. Circadian clock protein BMAL1 regulates IL-1β in macrophages via NRF2. Proc. Natl. Acad. Sci. USA 2018, 115, E8460–E8468. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, J.; Jiang, T.; Monslow, J.; Tang, S.Y.; Todd, L.; Puré, E.; Chen, L.; FitzGerald, G.A. Bmal1 deletion in myeloid cells attenuates atherosclerotic lesion development and restrains abdominal aortic aneurysm formation in hyperlipidemic mice. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 1523–1532. [Google Scholar] [CrossRef]
- Watanabe, A.; Koike, H.; Kumagami, N.; Shimba, S.; Manabe, I.; Oishi, Y. ARNTL deficiency in myeloid cells reduces neutrophil recruitment and delays skeletal muscle repair. Sci. Rep. 2023, 13, 6747. [Google Scholar] [CrossRef]
- Matsunaga, N.; Ikeda, E.; Kakimoto, K.; Watanabe, M.; Shindo, N.; Tsuruta, A.; Ikeyama, H.; Hamamura, K.; Higashi, K.; Yamashita, T.; et al. Inhibition of G0/G1 switch 2 ameliorates renal inflammation in chronic kidney disease. EBiomedicine 2016, 13, 262–273. [Google Scholar] [CrossRef] [PubMed]
- Fukuoka, K.; Yoshida, Y.; Sotono, K.; Nishikawa, N.; Hamamura, K.; Oyama, K.; Tsuruta, A.; Mayanagi, K.; Koyanagi, S.; Matsunaga, N.; et al. Oral administration of vancomycin alleviates heart failure triggered by chronic kidney disease. Biochem. Biophys. Res. Commun. 2023, 675, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Hamamura, K.; Matsunaga, N.; Ikeda, E.; Kondo, H.; Ikeyama, H.; Tokushige, K.; Itcho, K.; Furuichi, Y.; Yoshida, Y.; Matsuda, M.; et al. Alterations of hepatic metabolism in chronic kidney disease via D-box-binding protein aggravate the renal dysfunction. J. Biol. Chem. 2016, 291, 4913–4927. [Google Scholar] [CrossRef] [PubMed]
- Motohashi, H.; Tahara, Y.; Whittaker, D.S.; Wang, H.B.; Yamaji, T.; Wakui, H.; Haraguchi, A.; Yamazaki, M.; Miyakawa, H.; Hama, K.; et al. The circadian clock is disrupted in mice with adenine-induced tubulointerstitial nephropathy. Kidney Int. 2020, 97, 728–740. [Google Scholar] [CrossRef] [PubMed]
- Balsalobre, A.; Brown, S.A.; Marcacci, L.; Tronche, F.; Kellendonk, C.; Reichardt, H.M.; Schütz, G.; Schibler, U. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 2000, 289, 2344–2347. [Google Scholar] [CrossRef]
- Oishi, Y.; Hayashi, S.; Isagawa, T.; Oshima, M.; Iwama, A.; Shimba, S.; Okamura, H.; Manabe, I. Bmal1 regulates inflammatory responses in macrophages by modulating enhancer RNA transcription. Sci. Rep. 2017, 7, 7086. [Google Scholar] [CrossRef]
- Iwasaki, H.; Somoza, C.; Shigematsu, H.; Duprez, E.A.; Iwasaki-Arai, J.; Mizuno, S.; Arinobu, Y.; Geary, K.; Zhang, P.; Dayaram, T.; et al. Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood 2005, 106, 1590–1600. [Google Scholar] [CrossRef]
- Li, G.; Hao, W.; Hu, W. Transcription factor PU.1 and immune cell differentiation (Review). Int. J. Mol. Med. 2020, 46, 1943–1950. [Google Scholar] [CrossRef]
- Friedman, A.D. C/EBPα induces PU.1 and interacts with AP-1 and NF-κB to regulate myeloid development. Blood Cells Mol. Dis. 2007, 39, 340–343. [Google Scholar] [CrossRef]
- Nguyen, K.D.; Fentress, S.J.; Qiu, Y.; Yun, K.; Cox, J.S.; Chawla, A. Circadian gene Bmal1 regulates diurnal oscillations of Ly6C hi inflammatory monocytes. Science 2013, 341, 1483–1488. [Google Scholar] [CrossRef]
- Huo, M.; Huang, Y.; Qu, D.; Zhang, H.; Wong, W.T.; Chawla, A.; Huang, Y.; Tian, X.Y. Myeloid Bmal1 deletion increases monocyte recruitment and worsens atherosclerosis. FASEB J. 2017, 31, 1097–1106. [Google Scholar] [CrossRef] [PubMed]
- Swirski, F.K.; Nahrendorf, M.; Etzrodt, M.; Wildgruber, M.; Cortez-Retamozo, V.; Panizzi, P.; Figueiredo, J.L.; Kohler, R.H.; Chudnovskiy, A.; Waterman, P.; et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 2009, 325, 612–616. [Google Scholar] [CrossRef] [PubMed]
- Epelman, S.; Lavine, K.J.; Beaudin, A.E.; Sojka, D.K.; Carrero, J.A.; Calderon, B.; Brija, T.; Gautier, E.L.; Ivanov, S.; Satpathy, A.T.; et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 2014, 40, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Passino, C.; Barison, A.; Vergaro, G.; Gabutti, A.; Borrelli, C.; Emdin, M.; Clerico, A. Markers of fibrosis, inflammation, and remodeling pathways in heart failure. Clin. Chim. Acta 2015, 443, 29–38. [Google Scholar] [CrossRef]
- Rai, V.; Sharma, P.; Agrawal, S.; Agrawal, D.K. Relevance of mouse models of cardiac fibrosis and hypertrophy in cardiac research. Mol. Cell Biochem. 2017, 424, 123–145. [Google Scholar] [CrossRef]
- Dick, S.A.; Wong, A.; Hamidzada, H.; Nejat, S.; Nechanitzky, R.; Vohra, S.; Mueller, B.; Zaman, R.; Kantores, C.; Aronoff, L.; et al. Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles. Sci. Immunol. 2022, 7, eabf7777. [Google Scholar] [CrossRef]
- Nahrendorf, M.; Swirski, F.K.; Aikawa, E.; Stangenberg, L.; Wurdinger, T.; Figueiredo, J.L.; Libby, P.; Weissleder, R.; Pittet, M.J. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 2007, 204, 3037–3047. [Google Scholar] [CrossRef]
- Crane, M.J.; Daley, J.M.; Van Houtte, O.; Brancato, S.K.; Henry, W.L.; Albina, J.E. The monocyte to macrophage transition in the murine sterile wound. PLoS ONE 2014, 9, e86660. [Google Scholar] [CrossRef]
- Gordon, S.; Martinez, F.O. Alternative activation of macrophages: Mechanism and functions. Immunity 2010, 32, 593–604. [Google Scholar] [CrossRef]
- Rizzo, G.; Gropper, J.; Piollet, M.; Vafadarnejad, E.; Rizakou, A.; Bandi, S.R.; Arampatzi, P.; Krammer, T.; DiFabion, N.; Dietrich, O.; et al. Dynamics of monocyte-derived macrophage diversity in experimental myocardial infarction. Cardiovasc. Res. 2023, 119, 772–785. [Google Scholar] [CrossRef]
- GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Song, S.; Tien, C.L.; Qi, L.; Graves, A.; Nasiotis, E.; Burris, T.P.; Zhao, Y.; Sun, Z.; Zhang, L. SR9009 improves heart function after pressure overload independent of cardiac REV-ERB. Front. Cardiovasc. Med. 2022, 9, 952114. [Google Scholar] [CrossRef] [PubMed]
- Walker, S.; Fine, A.; Kryger, M.H. Sleep complaints are common in a dialysis unit. Am. J. Kidney Dis. 1995, 26, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Pierratos, A.; Hanly, P.J. Sleep disorders over the full range of chronic kidney disease. Blood Purif. 2011, 31, 146–150. [Google Scholar] [CrossRef]
- Liu, B.; Shalamu, A.; Pei, Z.; Liu, L.; Wei, Z.; Qu, Y.; Song, S.; Luo, W.; Dong, Z.; Weng, X.; et al. A novel mouse model of heart failure with preserved ejection fraction after chronic kidney disease induced by retinol through JAK/STAT pathway. Int. J. Biol. Sci. 2023, 19, 3661–3677. [Google Scholar] [CrossRef]
- Dunlay, S.M.; Roger, V.L.; Redfield, M.M. Epidemiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 2017, 14, 591–602. [Google Scholar] [CrossRef]
- Owan, T.E.; Hodge, D.O.; Herges, R.M.; Jacobsen, S.J.; Roger, V.L.; Redfield, M.M. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N. Engl. J. Med. 2006, 355, 251–259. [Google Scholar] [CrossRef]
- Paulus, W.J.; Tschöpe, C. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 2013, 62, 263–271. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, M.; Lu, S.; Dai, S.; Liu, J. Role of macrophage polarization in heart failure and traditional Chinese medicine treatment. Front. Pharmacol. 2024, 15, 1434654. [Google Scholar] [CrossRef]
- Amdur, R.L.; Feldman, H.I.; Gupta, J.; Yang, W.; Kanetsky, P.; Shlipak, M.; Rahman, M.; Lash, J.P.; Townsend, R.R.; Ojo, A.; et al. Inflammation and progression of CKD: The CRIC study. Clin. J. Am. Soc. Nephrol. 2016, 11, 1546–1556. [Google Scholar] [CrossRef]
- Gupta, J.; Mitra, N.; Kanetsky, P.A.; Devaney, J.; Wing, M.R.; Reilly, M.; Shah, V.O.; Balakrishnan, V.S.; Guzman, N.J.; Girndt, M.; et al. Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC. Clin. J. Am. Soc. Nephrol. 2012, 7, 1938–1946. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, T.; Abe, M.; Kobayashi, H. Iron metabolism and inflammatory mediators in patients with renal dysfunction. Int. J. Mol. Sci. 2024, 25, 3745. [Google Scholar] [CrossRef] [PubMed]
- Venneri, M.A.; Hasenmajer, V.; Fiore, D.; Sbardella, E.; Pofi, R.; Graziadio, C.; Gianfrilli, D.; Pivonello, C.; Negri, M.; Naro, F.; et al. Circadian rhythm of glucocorticoid administration entrains clock genes in immune cells: A DREAM trial ancillary study. J. Clin. Endocrinol. Metab. 2018, 103, 2998–3009. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Singh, L.S.; Zhang, L.; Xu, Y. Role of OGR1 in myeloid-derived cells in prostate cancer. Oncogene 2014, 33, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Mathur, J.; Vessières, E.; Hammack, S.; Nonomura, K.; Favre, J.; Grimaud, L.; Petrus, M.; Francisco, A.; Li, J.; et al. GPR68 senses flow and is essential for vascular physiology. Cell 2018, 173, 762–775.e16. [Google Scholar] [CrossRef]
- Justus, C.R.; Marie, M.A.; Sanderlin, E.J.; Yang, L.V. The roles of proton-sensing g-protein-coupled receptors in inflammation and cancer. Genes 2024, 15, 1151. [Google Scholar] [CrossRef]
- Timmons, G.A.; Carroll, R.G.; O’Siorain, J.R.; Cervantes-Silva, M.P.; Fagan, L.E.; Cox, S.L.; Palsson-McDermott, E.; Finlay, D.K.; Vincent, E.E.; Jones, N.; et al. The circadian clock protein BMAL1 acts as a metabolic sensor in macrophages to control the production of Pro IL-1β. Front. Immunol. 2021, 12, 700431. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, M.; Xu, L.; Cheng, J.; Shen, J.; Yang, T.; Zhang, L. Bmal1 regulates macrophage polarize through glycolytic pathway in alcoholic liver disease. Front. Pharmacol. 2021, 12, 640521. [Google Scholar] [CrossRef]
- Lim, Y.J.; Sidor, N.A.; Tonial, N.C.; Che, A.; Urquhart, B.L. Uremic toxins in the progression of chronic kidney disease and cardiovascular disease: Mechanisms and therapeutic targets. Toxins 2021, 13, 142. [Google Scholar] [CrossRef]
- Bujak, M.; Frangogiannis, N. The role of TGF-β signaling in myocardial infarction and cardiac remodeling. Cardiovasc. Res. 2007, 74, 184–195. [Google Scholar] [CrossRef]
- Ruggiero, S.A.; Huber, J.S.; Murrant, C.L.; Brunt, K.R.; Simpson, J.A. Splenic blood-flow response following myocardial infarction in rat. Can. J. Physiol. Pharmacol. 2018, 96, 1060–1068. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Ortiz, M.; Sayed, R.K.A.; Román-Montoya, Y.; de Lama, M.Á.R.; Fernández-Martínez, J.; Ramírez-Casas, Y.; Florido-Ruiz, J.; Rusanova, I.; Escames, G.; Acuña-Castroviejo, D. Age and chronodisruption in mouse heart: Effect of the NLRP3 inflammasome and melatonin therapy. Int. J. Mol. Sci. 2022, 23, 6846. [Google Scholar] [CrossRef] [PubMed]
- Carriazo, S.; Ramos, A.M.; Sanz, A.B.; Sanchez-Niño, M.D.; Kanbay, M.; Ortiz, A. Chronodisruption: A poorly recognized feature of CKD. Toxins 2020, 12, 151. [Google Scholar] [CrossRef] [PubMed]
- Valdivielso Moré, S.; Vicente Elcano, M.; García Alonso, A.; Pascual Sanchez, S.; Galceran Herrera, I.; Barbosa Puig, F.; Belarte-Tornero, L.C.; Ruiz-Bustillo, S.; Morales Murillo, R.O.; Barrios, C.; et al. Characteristics of patients with heart failure and advanced chronic kidney disease (Stages 4–5) not undergoing renal replacement therapy (ERCA-IC Study). J. Clin. Med. 2023, 12, 2339. [Google Scholar] [CrossRef] [PubMed]
- Sattar, N.; Presslie, C.; Rutter, M.K.; McGuire, D.K. Cardiovascular and kidney risks in individuals with type 2 diabetes: Contemporary understanding with greater emphasis on excess adiposity. Diabetes Care 2024, 47, 531–543. [Google Scholar] [CrossRef]
- Larkins, N.G.; Craig, J.C. Hypertension and cardiovascular risk among children with chronic kidney disease. Curr. Hypertens. Rep. 2024, 26, 389–398. [Google Scholar] [CrossRef]
- van de Wouw, J.; Broekhuizen, M.; Sorop, O.; Joles, J.A.; Verhaar, M.C.; Duncker, D.J.; Danser, A.H.J.; Merkus, D. Chronic kidney Disease as a Risk Factor for Heart Failure With Preserved Ejection Fraction: A Focus on Microcirculatory Factors and Therapeutic targets. Front. Physiol. 2019, 10, 1108. [Google Scholar] [CrossRef]
- Zeng, Y.; Guo, Z.; Wu, M.; Chen, F.; Chen, L. Circadian rhythm regulates the function of immune cells and participates in the development of tumors. Cell Death Discov. 2024, 10, 199. [Google Scholar] [CrossRef]
- Yoshida, Y.; Tanihara, T.; Hamasaki, K.; Tsurusaki, F.; Fukuda, T.; Adachi, S.; Terada, Y.; Otsuki, K.; Nishikawa, N.; Fukuoka, K.; et al. Theranostics targeting macrophage circadian rhythms with microcurrent stimulation to activate cancer immunity through phagocytic defense. Theranostics 2025, 15, 346–361. [Google Scholar] [CrossRef]
- Lin, C.; Xu, L.; Tang, X.; Li, X.; Lu, C.; Cheng, Q.; Jiang, J.; Shen, Y.; Yan, D.; Qian, R.; et al. Clock gene bmal1 disruption in vascular smooth muscle cells worsens carotid atherosclerotic lesions. Arter. Thromb. Vasc. Biol. 2022, 42, 565–579. [Google Scholar] [CrossRef]
- Williams, J.; Yang, N.; Wood, A.; Zindy, E.; Meng, Q.-J.; Streuli, C.H. Epithelial and stromal circadian clocks are inversely regulated by their mechano-matrix environment. J. Cell Sci. 2018, 131, jcs208223. [Google Scholar] [CrossRef] [PubMed]
- Man, A.W.C.; Xia, N.; Li, H. Circadian rhythm in adipose tissue: Novel antioxidant target for metabolic and cardiovascular diseases. Antioxidants 2020, 9, 968. [Google Scholar] [CrossRef] [PubMed]
- Ohdo, S.; Koyanagi, S.; Suyama, H.; Higuchi, S.; Aramaki, H. Changing the dosing schedule minimizes the disruptive effects of interferon on clock function. Nat. Med. 2001, 7, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Koyanagi, S.; Kusunose, N.; Taniguchi, M.; Akamine, T.; Kanado, Y.; Ozono, Y.; Masuda, T.; Kohro, Y.; Matsunaga, N.; Tsuda, M.; et al. Glucocorticoid regulation of ATP release from spinal astrocytes underlies diurnal exacerbation of neuropathic mechanical allodynia. Nat. Commun. 2016, 7, 13102. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshida, Y.; Nishikawa, N.; Fukuoka, K.; Tsuruta, A.; Otsuki, K.; Fukuda, T.; Terada, Y.; Tanihara, T.; Kumamoto, T.; Tsukamoto, R.; et al. Monocyte/Macrophage-Specific Loss of ARNTL Suppresses Chronic Kidney Disease-Associated Cardiac Impairment. Int. J. Mol. Sci. 2024, 25, 13009. https://doi.org/10.3390/ijms252313009
Yoshida Y, Nishikawa N, Fukuoka K, Tsuruta A, Otsuki K, Fukuda T, Terada Y, Tanihara T, Kumamoto T, Tsukamoto R, et al. Monocyte/Macrophage-Specific Loss of ARNTL Suppresses Chronic Kidney Disease-Associated Cardiac Impairment. International Journal of Molecular Sciences. 2024; 25(23):13009. https://doi.org/10.3390/ijms252313009
Chicago/Turabian StyleYoshida, Yuya, Naoki Nishikawa, Kohei Fukuoka, Akito Tsuruta, Kaita Otsuki, Taiki Fukuda, Yuma Terada, Tomohito Tanihara, Taisei Kumamoto, Ryotaro Tsukamoto, and et al. 2024. "Monocyte/Macrophage-Specific Loss of ARNTL Suppresses Chronic Kidney Disease-Associated Cardiac Impairment" International Journal of Molecular Sciences 25, no. 23: 13009. https://doi.org/10.3390/ijms252313009
APA StyleYoshida, Y., Nishikawa, N., Fukuoka, K., Tsuruta, A., Otsuki, K., Fukuda, T., Terada, Y., Tanihara, T., Kumamoto, T., Tsukamoto, R., Nishi, T., Oyama, K., Hamamura, K., Mayanagi, K., Koyanagi, S., Ohdo, S., & Matsunaga, N. (2024). Monocyte/Macrophage-Specific Loss of ARNTL Suppresses Chronic Kidney Disease-Associated Cardiac Impairment. International Journal of Molecular Sciences, 25(23), 13009. https://doi.org/10.3390/ijms252313009