Effect of Liquid Blood Concentrates on Cell Proliferation and Cell Cycle- and Apoptosis-Related Gene Expressions in Nonmelanoma Skin Cancer Cells: A Comparative In Vitro Study
<p>Cell viability of PRF-treated BCC and SCC compared to untreated cells. The cell viability of BCC and SCC treated with high and low RCF PRF or without PRF treatment as a control was assessed by the MTS assay at 2 days (<b>A</b>), 4 days (<b>B</b>), and 7 days (<b>C</b>). The line graphs (<b>D</b>,<b>E</b>) show the trend of the PRF effect on BCC and SCC cells over time. The relative cell viability percentage was calculated by comparing the cell viability of PRF-treated cells with that of untreated cells in the control group (=100%; n = 9). The bars represent the mean values and the corresponding standard deviations (SDs). Significance: ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, and **** <span class="html-italic">p</span> < 0.0001.</p> "> Figure 2
<p>Analysis of immunofluorescence staining images of Ki67. Representative merged images of immunofluorescence staining of Ki67 from BCC (<b>A</b>) and from SCC (<b>B</b>) on day 2, treated with high and low RCF PRF, and without PRF treatment (control). Scale bars: upper row = 50 μm; lower row = 25 μm. The relative percentage of Ki67-positive cells in BCC (<b>C</b>) and SCC (<b>D</b>) was calculated by comparing the percentage of Ki67-positive cells of PRF-treated cells to that of untreated cells in the control group (n = 9). The bars represent the mean values and the corresponding standard deviations (SDs). Significance: * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 3
<p>Relative gene expression of caspase 8. The relative gene expression of caspase 8 was assessed using quantitative real-time PCR. The expression levels of the caspase 8 gene in BCC (<b>A</b>–<b>C</b>) and SCC (<b>D</b>–<b>F</b>) in response to PRF treatment for 2, 4, and 7 days were compared with untreated cells in the control group (n = 9). None of the differences could be evaluated as statistically significant different. The results are presented as fold changes in gene expression relative to RPL37A.</p> "> Figure 4
<p>Relative gene expression of caspase 9. The relative gene expression of caspase 9 was assessed using quantitative real-time PCR. Caspase 9 gene expression levels in BCC (<b>A</b>–<b>C</b>) and SCC (<b>D</b>–<b>F</b>) treated with PRF for 2, 4, and 7 days were compared with untreated control cells (n = 9). The results are presented as fold changes in gene expression relative to RPL37A. Significance: * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, and **** <span class="html-italic">p</span> < 0.0001.</p> "> Figure 5
<p>Relative gene expression of CCND1. The relative gene expression of CCND1 was assessed by quantitative real-time PCR. CCND1 gene expression levels in BCC (<b>A</b>–<b>C</b>) and SCC (<b>D</b>–<b>F</b>) treated with PRF for 2, 4, and 7 days were compared with untreated control cells (n = 9). The results are presented as fold changes in gene expression relative to RPL37A. Significance: * <span class="html-italic">p</span> < 0.05.</p> "> Figure 6
<p>Relative gene expression of p21. Relative gene expression was assessed by quantitative real-time PCR. p21 gene expression levels in BCC (<b>A</b>–<b>C</b>) and SCC (<b>D</b>–<b>F</b>) treated with PRF for 2, 4, and 7 days were compared with untreated control cells (n = 9). The results are presented as fold changes in gene expression relative to RPL37A. Significance: * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 7
<p>Relative gene expression of p53. Relative gene expression was assessed by quantitative real-time PCR. P53 gene expression levels in BCC (<b>A</b>–<b>C</b>) and SCC (<b>D</b>–<b>F</b>) treated with PRF for 2, 4, and 7 days were compared with untreated control cells (n = 9). The results are presented as fold changes in gene expression relative to RPL37A. * <span class="html-italic">p</span> < 0.05, **** <span class="html-italic">p</span> < 0.0001.</p> ">
Abstract
:1. Introduction
2. Results
2.1. PRF-Mediated Decrease in BCC and SCC Cell Viability
2.2. PRF Treatment of BCC and SCC Results in Decrease in Ki67-Positive Cells
2.3. Effect of High and Low RCF PRF Treatment on Cell Cycle- and Apoptosis-Related Gene Expressions in BCC and SCC
3. Discussion
4. Materials and Methods
4.1. Ethical Statement
4.2. Cell Lines
4.3. Preparation of PRF
4.4. PRF Treatment of BCC and SCC
4.5. Cell Viability Assay (MTS)
4.6. Immunofluorescence Staining and Quantification of Ki67 Positive Cells
4.7. Gene Expression Analyses
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Surdu, S. Non-melanoma skin cancer: Occupational risk from UV light and arsenic exposure. Rev. Environ. Health 2014, 29, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Berwick, M.; Garcia, A. Solar UV Exposure and Mortality from Skin Tumors: An Update. Adv. Exp. Med. Biol. 2020, 1268, 143–154. [Google Scholar]
- Bonilla, X.; Parmentier, L.; King, B.; Bezrukov, F.; Kaya, G.; Zoete, V.; Seplyarskiy, V.B.; Sharpe, H.J.; McKee, T.; Letourneau, A.; et al. Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nat. Genet. 2016, 48, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Madan, V.; Lear, J.T.; Szeimies, R.M. Non-melanoma skin cancer. Lancet 2010, 375, 673–685. [Google Scholar] [CrossRef]
- Li, Y.Y.; Hanna, G.J.; Laga, A.C.; Haddad, R.I.; Lorch, J.H.; Hammerman, P.S. Genomic analysis of metastatic cutaneous squamous cell carcinoma. Clin. Cancer Res. 2015, 21, 1447–1456. [Google Scholar] [CrossRef]
- D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV radiation and the skin. Int. J. Mol. Sci. 2013, 14, 12222–12248. [Google Scholar] [CrossRef]
- Tanese, K.; Nakamura, Y.; Hirai, I.; Funakoshi, T. Updates on the Systemic Treatment of Advanced Non-melanoma Skin Cancer. Front. Med. 2019, 6, 160. [Google Scholar] [CrossRef]
- Souto, E.B.; da Ana, R.; Vieira, V.; Fangueiro, J.F.; Dias-Ferreira, J.; Cano, A.; Zielińska, A.; Silva, A.M.; Staszewski, R.; Karczewski, J. Non-melanoma skin cancers: Physio-pathology and role of lipid delivery systems in new chemotherapeutic treatments. Neoplasia 2022, 30, 100810. [Google Scholar] [CrossRef]
- Kim, S.; Day, C.M.; Song, Y.; Holmes, A.; Garg, S. Innovative Topical Patches for Non-Melanoma Skin Cancer: Current Challenges and Key Formulation Considerations. Pharmaceutics 2023, 15, 2577. [Google Scholar] [CrossRef]
- Veness, M.J. The important role of radiotherapy in patients with non-melanoma skin cancer and other cutaneous entities. J. Med. Imaging Radiat. Oncol. 2008, 52, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Braathen, L.R.; Szeimies, R.M.; Basset-Seguin, N.; Bissonnette, R.; Foley, P.; Pariser, D.; Roelandts, R.; Wennberg, A.M.; Morton, C.A. Guidelines on the use of photodynamic therapy for nonmelanoma skin cancer: An international consensus. International Society for Photodynamic Therapy in Dermatology, 2005. J. Am. Acad. Dermatol. 2007, 56, 125–143. [Google Scholar] [CrossRef] [PubMed]
- Miron, R.J.; Fujioka-Kobayashi, M.; Bishara, M.; Zhang, Y.F.; Hernandez, M.; Choukroun, J. Platelet-Rich Fibrin and Soft Tissue Wound Healing: A Systematic Review. Tissue Eng. Part B Rev. 2017, 23, 83–99. [Google Scholar] [CrossRef]
- Ghanaati, S.; Śmieszek-Wilczewska, J.; Al-Maawi, S.; Neff, P.; Zadeh, H.H.; Sader, R.; Heselich, A.; Rutkowski, J.L. Solid PRF Serves as Basis for Guided Open Wound Healing of the Ridge after Tooth Extraction by Accelerating the Wound Healing Time Course-A Prospective Parallel Arm Randomized Controlled Single Blind Trial. Bioengineering 2022, 9, 661. [Google Scholar] [CrossRef]
- Miron, R.J.; Zucchelli, G.; Pikos, M.A.; Salama, M.; Lee, S.; Guillemette, V.; Fujioka-Kobayashi, M.; Bishara, M.; Zhang, Y.; Wang, H.L.; et al. Use of platelet-rich fibrin in regenerative dentistry: A systematic review. Clin. Oral Investig. 2017, 21, 1913–1927. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Z.; Zhang, Y.F.; Choukroun, J.; Ghanaati, S.; Miron, R.J. Behavior of Gingival Fibroblasts on Titanium Implant Surfaces in Combination with either Injectable-PRF or PRP. Int. J. Mol. Sci. 2017, 18, 331. [Google Scholar] [CrossRef]
- Pixley, J.N.; Cook, M.K.; Singh, R.; Larrondo, J.; McMichael, A.J. A comprehensive review of platelet-rich plasma for the treatment of dermatologic disorders. J. Dermatol. Treat. 2023, 34, 2142035. [Google Scholar] [CrossRef]
- Davies, C.; Miron, R.J. Autolougous platelet concentrates in esthetic medicine. Periodontol. 2000, 2024; Early View. [Google Scholar] [CrossRef]
- Litvinov, R.I.; Weisel, J.W. What Is the Biological and Clinical Relevance of Fibrin? Semin. Thromb. Hemost. 2016, 42, 333–343. [Google Scholar] [CrossRef]
- Dohle, E.; El Bagdadi, K.; Sader, R.; Choukroun, J.; James Kirkpatrick, C.; Ghanaati, S. Platelet-rich fibrin-based matrices to improve angiogenesis in an in vitro co-culture model for bone tissue engineering. J. Tissue Eng. Regen. Med. 2018, 12, 598–610. [Google Scholar] [CrossRef]
- Dohle, E.; Parkhoo, K.; Bennardo, F.; Schmeinck, L.; Sader, R.; Ghanaati, S. Immunomodulation of Cancer Cells Using Autologous Blood Concentrates as a Patient-Specific Cell Culture System: A Comparative Study on Osteosarcoma and Fibrosarcoma Cell Lines. Bioengineering 2024, 11, 303. [Google Scholar] [CrossRef]
- Trakatelli, M.; Ulrich, C.; del Marmol, V.; Euvrard, S.; Stockfleth, E.; Abeni, D. Epidemiology of nonmelanoma skin cancer (NMSC) in Europe: Accurate and comparable data are needed for effective public health monitoring and interventions. Br. J. Dermatol. 2007, 156 (Suppl. S3), 1–7. [Google Scholar] [CrossRef] [PubMed]
- Diffey, B.L.; Langtry, J.A. Skin cancer incidence and the ageing population. Br. J. Dermatol. 2005, 153, 679–680. [Google Scholar] [CrossRef]
- Gross, K.; Kircik, L.; Kricorian, G. 5% 5-Fluorouracil cream for the treatment of small superficial Basal cell carcinoma: Efficacy, tolerability, cosmetic outcome, and patient satisfaction. Dermatol. Surg. 2007, 33, 433–439. [Google Scholar] [CrossRef]
- Kokdere, N.N.; Baykul, T.; Findik, Y. The use of platelet-rich fibrin (PRF) and PRF-mixed particulated autogenous bone graft in the treatment of bone defects: An experimental and histomorphometrical study. Dent. Res. J. 2015, 12, 418–424. [Google Scholar]
- Temmerman, A.; Vandessel, J.; Castro, A.; Jacobs, R.; Teughels, W.; Pinto, N.; Quirynen, M. The use of leucocyte and platelet-rich fibrin in socket management and ridge preservation: A split-mouth, randomized, controlled clinical trial. J. Clin. Periodontol. 2016, 43, 990–999. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.M.; Thomas, R.; Mehta, D.S. An Update on the Protocols and Biologic Actions of Platelet Rich Fibrin in Dentistry. Eur. J. Prosthodont. Restor. Dent. 2017, 25, 64–72. [Google Scholar] [PubMed]
- Miron, R.J.; Fujioka-Kobayashi, M.; Hernandez, M.; Kandalam, U.; Zhang, Y.; Ghanaati, S.; Choukroun, J. Injectable platelet rich fibrin (i-PRF): Opportunities in regenerative dentistry? Clin. Oral Investig. 2017, 21, 2619–2627. [Google Scholar] [CrossRef] [PubMed]
- Dohan Ehrenfest, D.M.; Diss, A.; Odin, G.; Doglioli, P.; Hippolyte, M.P.; Charrier, J.B. In vitro effects of Choukroun’s PRF (platelet-rich fibrin) on human gingival fibroblasts, dermal prekeratinocytes, preadipocytes, and maxillofacial osteoblasts in primary cultures. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2009, 108, 341–352. [Google Scholar] [CrossRef]
- Dohan, D.M.; Choukroun, J.; Diss, A.; Dohan, S.L.; Dohan, A.J.; Mouhyi, J.; Gogly, B. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part II: Platelet-related biologic features. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2006, 101, e45–e50. [Google Scholar] [CrossRef]
- Gerrard, T.L.; Cohen, D.J.; Kaplan, A.M. Human neutrophil-mediated cytotoxicity to tumor cells. J. Natl. Cancer Inst. 1981, 66, 483–488. [Google Scholar]
- Ghanaati, S.; Booms, P.; Orlowska, A.; Kubesch, A.; Lorenz, J.; Rutkowski, J.; Landes, C.; Sader, R.; Kirkpatrick, C.J.; Choukroun, J. Advanced Platelet-Rich Fibrin: A New Concept for Cell-Based Tissue Engineering by Means of Inflammatory Cells. J. Oral Implantol. 2014, 40, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Assinger, A.; Laky, M.; Schabbauer, G.; Hirschl, A.M.; Buchberger, E.; Binder, B.R.; Volf, I. Efficient phagocytosis of periodontopathogens by neutrophils requires plasma factors, platelets and TLR2. J. Thromb. Haemost. 2011, 9, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.J.; Dixon, G.; Kotowicz, K.T.; Hatch, D.J.; Heyderman, R.S.; Klein, N.J. Circulating platelet-neutrophil complexes represent a subpopulation of activated neutrophils primed for adhesion, phagocytosis and intracellular killing. Br. J. Haematol. 1999, 106, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Ibele, G.M.; Kay, N.E.; Johnson, G.J.; Jacob, H.S. Human platelets exert cytotoxic effects on tumor cells. Blood 1985, 65, 1252–1255. [Google Scholar] [CrossRef] [PubMed]
- Bykovskaya, S.N.; Bolvacheva, A.V.; Kiselevsky, M.V.; Khaylenko, V.A.; Bykovsky, A.F. Platelet-mediated cytotoxicity and its enhancement by platelet activating factor. Biomed. Pharmacother. 1991, 45, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Ciancio, N.; Galasso, M.G.; Campisi, R.; Bivona, L.; Migliore, M.; Di Maria, G.U. Prognostic value of p53 and Ki67 expression in fiberoptic bronchial biopsies of patients with non small cell lung cancer. Multidiscip. Respir. Med. 2012, 7, 29. [Google Scholar] [CrossRef]
- Da Silva, T.A.; Coelho, G.; Lorenzetti Bocca, A.; Figueiredo Cavalcante Neto, F. Expression of apoptotic, cell proliferation regulatory, and structural proteins in actinic keratosis and their association with dermal elastosis. J. Cutan. Pathol. 2007, 34, 315–323. [Google Scholar] [CrossRef]
- Khodaeiani, E.; Fakhrjou, A.; Amirnia, M.; Babaei-Nezhad, S.; Taghvamanesh, F.; Razzagh-Karimi, E.; Alikhah, H. Immunohistochemical evaluation of p53 and Ki67 expression in skin epithelial tumors. Indian J. Dermatol. 2013, 58, 181–187. [Google Scholar]
- King, K.L.; Cidlowski, J.A. Cell cycle regulation and apoptosis. Annu. Rev. Physiol. 1998, 60, 601–617. [Google Scholar] [CrossRef]
- Nazari, M.; Javandoost, E.; Talebi, M.; Movassaghpour, A.; Soleimani, M. Platelet Microparticle Controversial Role in Cancer. Adv. Pharm. Bull. 2021, 11, 39–55. [Google Scholar] [CrossRef]
- Yaftian, M.; Yari, F.; Ghasemzadeh, M.; Fallah Azad, V.; Haghighi, M. Induction of Apoptosis in Cancer Cells of pre-B ALL Patients after Exposure to Platelets, Platelet-Derived Microparticles and Soluble CD40 Ligand. Cell J. 2018, 20, 120–126. [Google Scholar] [PubMed]
- Schleicher, R.I.; Reichenbach, F.; Kraft, P.; Kumar, A.; Lescan, M.; Todt, F.; Göbel, K.; Hilgendorf, I.; Geisler, T.; Bauer, A.; et al. Platelets induce apoptosis via membrane-bound FasL. Blood 2015, 126, 1483–1493. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Menezes, J.; Knafo, L.; Ahmad, A. Activated human platelets express Fas-L and induce apoptosis in Fas-positive tumor cells. J. Leukoc. Biol. 2001, 69, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.G.; Kuo, K.Y.; Li, S.; Bailey, I.; Aasi, S.; Chang, A.L.S.; Oro, A.E.; Tang, J.Y.; Sarin, K.Y. Frequent Basal Cell Cancer Development Is a Clinical Marker for Inherited Cancer Susceptibility. JCI Insight 2018, 3, 122744. [Google Scholar] [CrossRef]
- Zambrano-Román, M.; Padilla-Gutiérrez, J.R.; Valle, Y.; Muñoz-Valle, J.F.; Valdés-Alvarado, E. Non-melanoma skin cancer: A genetic update and future perspectives. Cancers 2022, 14, 2371. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, J.; Wu, Q.; Shu, P. Systemic immune-inflammation index values are associated with non-melanoma skin cancers: Evidence from the National Health and Nutrition Examination Survey 2010–2018. Arch. Med. Sci. 2024, 20, 1128–1137. [Google Scholar] [CrossRef]
- Karampinis, E.; Nechalioti, P.M.; Georgopoulou, K.E.; Goniotakis, G.; Roussaki Schulze, A.V.; Zafiriou, E.; Kouretas, D. Systemic Oxidative Stress Parameters in Skin Cancer Patients and Patients with Benign Lesions. Stresses 2023, 3, 785–812. [Google Scholar] [CrossRef]
- Chiang, L.C.; Chiang, W.; Yu, H.S.; Sheu, H.M.; Chen, H.Y. Establishment and characterization of a continuous human basal cell carcinoma cell line from facial skin (I) cytological behavior of early passages. Gaoxiong Yi Xue Ke Xue Za Zhi 1994, 10, 170–176. [Google Scholar]
Primer | Primer Assay Name | Sequence/Cat. Number |
---|---|---|
RPL13A | 5′-TGT GGT TCC TGC ATG AAG ACA-3′ 5′-GTG ACA GCG GAA GTG GTA TTG TAC-3′ | |
Caspase 8 | Hs_CARD8_va.1_SG_QuantiTectPrimerAssay | Qiagen/QT02407188 |
Caspase 9 | Hs_CASP9_1_SG_QuantiTectPrimerAssay | Qiagen/QT00036267 |
Cyclin D1 | Hs_CCND1_1_SG_QuantiTectPrimerAssay | Qiagen/QT00495285 |
p21 | 5′-AAT GCG CAG GAA TAA GGA AG-3′ 5′-CGA GCT GTT TAC GTT TGA CG-3′ | |
p53 | Hs_CDIP1_1_SG_QuantiTectPrimerAssay | Qiagen/QT00003094 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dohle, E.; Zhu, L.; Sader, R.; Ghanaati, S. Effect of Liquid Blood Concentrates on Cell Proliferation and Cell Cycle- and Apoptosis-Related Gene Expressions in Nonmelanoma Skin Cancer Cells: A Comparative In Vitro Study. Int. J. Mol. Sci. 2024, 25, 12983. https://doi.org/10.3390/ijms252312983
Dohle E, Zhu L, Sader R, Ghanaati S. Effect of Liquid Blood Concentrates on Cell Proliferation and Cell Cycle- and Apoptosis-Related Gene Expressions in Nonmelanoma Skin Cancer Cells: A Comparative In Vitro Study. International Journal of Molecular Sciences. 2024; 25(23):12983. https://doi.org/10.3390/ijms252312983
Chicago/Turabian StyleDohle, Eva, Lianna Zhu, Robert Sader, and Shahram Ghanaati. 2024. "Effect of Liquid Blood Concentrates on Cell Proliferation and Cell Cycle- and Apoptosis-Related Gene Expressions in Nonmelanoma Skin Cancer Cells: A Comparative In Vitro Study" International Journal of Molecular Sciences 25, no. 23: 12983. https://doi.org/10.3390/ijms252312983
APA StyleDohle, E., Zhu, L., Sader, R., & Ghanaati, S. (2024). Effect of Liquid Blood Concentrates on Cell Proliferation and Cell Cycle- and Apoptosis-Related Gene Expressions in Nonmelanoma Skin Cancer Cells: A Comparative In Vitro Study. International Journal of Molecular Sciences, 25(23), 12983. https://doi.org/10.3390/ijms252312983