MiRNA-34a, miRNA-145, and miRNA-222 Expression, Matrix Metalloproteinases, TNF-α and VEGF in Patients with Different Phenotypes of Coronary Artery Disease
<p>The design of the study. CAD—coronary artery disease; INOCA/ANOCA—ischemia/angina with non-obstructive coronary arteries; qPCR—quantitative polymerase chain reaction; MRI—magnetic resonance imaging; MSCT—multi-detector computed tomography.</p> "> Figure 2
<p>MiRNAs expression in plasma of CAD patients and healthy volunteers (control). All values are presented as the median and CI. Statistically significant—<span class="html-italic">p</span> < 0.05; CAD—coronary artery disease, INOCA/ANOCA—ischemia/angina with non-obstructive coronary arteries.</p> "> Figure 3
<p>Diagnostic value analysis of the model by ROC curve.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Basic Clinical Characteristics
2.2. Concentration of MMPs, TNF-α and VEGF in Plasma
2.3. MiRNA Expression in Plasma
2.4. Correlations of VEGF, TNF-α and MMPs with Circulating miRNAs
3. Discussion
4. Materials and Methods
4.1. Patient Population
4.2. Collection of Blood Samples and ELISA
4.3. RNA Extraction and Reverse-Transcription–Polymerase Chain Reaction (RT-PCR) Assay
4.4. Statistical Analysis
4.4.1. Clinical Data Analyses
4.4.2. Multiple Logistic Regression
4.5. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ralapanawa, U.; Sivakanesan, R. Epidemiology and the Magnitude of Coronary Artery Disease and Acute Coronary Syndrome: A Narrative Review. J. Epidemiol. Glob. Health 2021, 11, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Fatumo, S.; Nitsch, D. Mendelian Randomization Studies on Coronary Artery Disease: A Systematic Review and Meta-Analysis. Syst. Rev. 2024, 13, 29. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, H.R.; Diaz, A.; Cyr, D.D.; Shaw, L.J.; Mancini, G.B.J.; Leipsic, J.; Budoff, M.J.; Min, J.K.; Hague, C.J.; Berman, D.S.; et al. Ischemia With Nonobstructive Coronary Arteries: Insights From the ISCHEMIA Trial. JACC Cardiovasc. Imaging 2023, 16, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Pepine, C.J.; Ferdinand, K.C.; Shaw, L.J.; Light-McGroary, K.A.; Shah, R.U.; Gulati, M.; Duvernoy, C.; Walsh, M.N.; Bairey Merz, C.N. Emergence of Nonobstructive Coronary Artery Disease: A Woman’s Problem and Need for Change in Definition on Angiography. J. Am. Coll. Cardiol. 2015, 66, 1918–1933. [Google Scholar] [CrossRef]
- Mileva, N.; Nagumo, S.; Mizukami, T.; Sonck, J.; Berry, C.; Gallinoro, E.; Monizzi, G.; Candreva, A.; Munhoz, D.; Vassilev, D.; et al. Prevalence of Coronary Microvascular Disease and Coronary Vasospasm in Patients with Nonobstructive Coronary Artery Disease: Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2022, 11, e023207. [Google Scholar] [CrossRef]
- Chang, A.; Kang, N.; Chung, J.; Gupta, A.R.; Parwani, P. Evaluation of Ischemia with No Obstructive Coronary Arteries (INOCA) and Contemporary Applications of Cardiac Magnetic Resonance (CMR). Medicina 2023, 59, 1570. [Google Scholar] [CrossRef]
- Jespersen, L.; Hvelplund, A.; Abildstrøm, S.Z.; Pedersen, F.; Galatius, S.; Madsen, J.K.; Jørgensen, E.; Kelbæk, H.; Prescott, E. Stable Angina Pectoris with No Obstructive Coronary Artery Disease Is Associated with Increased Risks of Major Adverse Cardiovascular Events. Eur. Heart J. 2012, 33, 734–744. [Google Scholar] [CrossRef]
- Karakayali, M.; Altunova, M.; Yakisan, T.; Aslan, S.; Omar, T.; Artac, I.; Ilis, D.; Arslan, A.; Cagin, Z.; Karabag, Y.; et al. The Relationship between the Systemic Immune-Inflammation Index and Ischemia with Non-Obstructive Coronary Arteries in Patients Undergoing Coronary Angiography. Arq. Bras. Cardiol. 2024, 121, e20230540. [Google Scholar] [CrossRef]
- Chen, Y.-D.; Wen, Z.-G.; Long, J.-J.; Wang, Y. Association Between Systemic Inflammation Response Index and Slow Coronary Flow Phenomenon in Patients with Ischemia and No Obstructive Coronary Arteries. Int. J. Gen. Med. 2024, 17, 4045–4053. [Google Scholar] [CrossRef]
- Beatty, C.; Richardson, K.P.; Tran, P.M.H.; Satter, K.B.; Hopkins, D.; Gardiner, M.; Sharma, A.; Purohit, S. Multiplex Analysis of Inflammatory Proteins Associated with Risk of Coronary Artery Disease in Type-1 Diabetes Patients. Clin. Cardiol. 2024, 47, e24143. [Google Scholar] [CrossRef]
- Hu, Q.; Ecker, M. Overview of MMP-13 as a Promising Target for the Treatment of Osteoarthritis. Int. J. Mol. Sci. 2021, 22, 1742. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Carracedo, R.; Hernández, I.; Moreno-Gómez-Toledano, R.; Díez-Mata, J.; Tesoro, L.; González-Cucharero, C.; Jiménez-Guirado, B.; Alcharani, N.; Botana, L.; Saura, M.; et al. NOS3 Prevents MMP-9, and MMP-13 Induced Extracellular Matrix Proteolytic Degradation through Specific MicroRNA-Targeted Expression of Extracellular Matrix Metalloproteinase Inducer in Hypertension-Related Atherosclerosis. J. Hypertens. 2024, 42, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Parks, W.C.; Shapiro, S.D. Matrix Metalloproteinases in Lung Biology. Respir. Res. 2001, 2, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Hey, S.; Linder, S. Matrix Metalloproteinases at a Glance. J. Cell Sci. 2024, 137, jcs261898. [Google Scholar] [CrossRef]
- Ramirez-Carracedo, R.; Tesoro, L.; Hernandez, I.; Diez-Mata, J.; Filice, M.; Toro, R.; Rodriguez-Piñero, M.; Zamorano, J.L.; Saura, M.; Zaragoza, C. Non-Invasive Detection of Extracellular Matrix Metalloproteinase Inducer EMMPRIN, a New Therapeutic Target against Atherosclerosis, Inhibited by Endothelial Nitric Oxide. Int. J. Mol. Sci. 2018, 19, 3248. [Google Scholar] [CrossRef]
- Maitrias, P.; Metzinger-Le Meuth, V.; Nader, J.; Reix, T.; Caus, T.; Metzinger, L. The Involvement of MiRNA in Carotid-Related Stroke. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1608–1617. [Google Scholar] [CrossRef]
- Buchler, A.; Munch, M.; Farber, G.; Zhao, X.; Al-Haddad, R.; Farber, E.; Rotstein, B.H. Selective Imaging of Matrix Metalloproteinase-13 to Detect Extracellular Matrix Remodeling in Atherosclerotic Lesions. Mol. Imaging Biol. 2022, 24, 93–103. [Google Scholar] [CrossRef]
- Lehrke, M.; Greif, M.; Broedl, U.C.; Lebherz, C.; Laubender, R.P.; Becker, A.; von Ziegler, F.; Tittus, J.; Reiser, M.; Becker, C.; et al. MMP-1 Serum Levels Predict Coronary Atherosclerosis in Humans. Cardiovasc. Diabetol. 2009, 8, 50. [Google Scholar] [CrossRef]
- Reddy, S.; Hu, D.-Q.; Zhao, M.; Ichimura, S.; Barnes, E.A.; Cornfield, D.N.; Alejandre Alcázar, M.A.; Spiekerkoetter, E.; Fajardo, G.; Bernstein, D. MicroRNA-34a-Dependent Attenuation of Angiogenesis in Right Ventricular Failure. J. Am. Heart Assoc. 2024, 13, e029427. [Google Scholar] [CrossRef]
- Li, Q.; Kim, Y.-R.; Vikram, A.; Kumar, S.; Kassan, M.; Gabani, M.; Lee, S.K.; Jacobs, J.S.; Irani, K. P66Shc-Induced MicroRNA-34a Causes Diabetic Endothelial Dysfunction by Downregulating Sirtuin1. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 2394–2403. [Google Scholar] [CrossRef]
- Wu, J.; Liang, W.; Tian, Y.; Ma, F.; Huang, W.; Jia, Y.; Jiang, Z.; Wu, H. Inhibition of P53/MiR-34a Improves Diabetic Endothelial Dysfunction via Activation of SIRT1. J. Cell Mol. Med. 2019, 23, 3538–3548. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Sun, H.; Sun, B. MicroRNA-145 Is Involved in Endothelial Cell Dysfunction and Acts as a Promising Biomarker of Acute Coronary Syndrome. Eur. J. Med. Res. 2020, 25, 2. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.; Cao, Y.; Yang, H.; Xiao, B.; Lu, Z. MicroRNA-221/222 Regulate Ox-LDL-Induced Endothelial Apoptosis via Ets-1/P21 Inhibition. Mol. Cell Biochem. 2015, 405, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Iusupova, A.O.; Pakhtusov, N.N.; Slepova, O.A.; Belenkov, Y.N.; Privalova, E.V.; Bure, I.V.; Vetchinkina, E.A.; Nemtsova, M.V. MiRNA-21a, MiRNA-145, and MiRNA-221 Expression and Their Correlations with WNT Proteins in Patients with Obstructive and Non-Obstructive Coronary Artery Disease. Int. J. Mol. Sci. 2023, 24, 7613. [Google Scholar] [CrossRef] [PubMed]
- Couffinhal, T.; Kearney, M.; Witzenbichler, B.; Chen, D.; Murohara, T.; Losordo, D.W.; Symes, J.; Isner, J.M. Vascular Endothelial Growth Factor/Vascular Permeability Factor (VEGF/VPF) in Normal and Atherosclerotic Human Arteries. Am. J. Pathol. 1997, 150, 1673–1685. [Google Scholar]
- Mao, Y.; Liu, X.Q.; Song, Y.; Zhai, C.G.; Xu, X.L.; Zhang, L.; Zhang, Y. Fibroblast Growth Factor-2/Platelet-Derived Growth Factor Enhances Atherosclerotic Plaque Stability. J. Cell Mol. Med. 2020, 24, 1128–1140. [Google Scholar] [CrossRef]
- Bartkowiak, K.; Bartkowiak, M.; Jankowska-Steifer, E.; Ratajska, A.; Kujawa, M.; Aniołek, O.; Niderla-Bielińska, J. Metabolic Syndrome and Cardiac Vessel Remodeling Associated with Vessel Rarefaction: A Possible Underlying Mechanism May Result from a Poor Angiogenic Response to Altered VEGF Signaling Pathways. J. Vasc. Res. 2024, 61, 151–159. [Google Scholar] [CrossRef]
- Zhao, Q.; Egashira, K.; Inoue, S.; Usui, M.; Kitamoto, S.; Ni, W.; Ishibashi, M.; Hiasa Ki, K.; Ichiki, T.; Shibuya, M.; et al. Vascular Endothelial Growth Factor Is Necessary in the Development of Arteriosclerosis by Recruiting/Activating Monocytes in a Rat Model of Long-Term Inhibition of Nitric Oxide Synthesis. Circulation 2002, 105, 1110–1115. [Google Scholar] [CrossRef]
- Bonanni, A.; d’Aiello, A.; Pedicino, D.; Di Sario, M.; Vinci, R.; Ponzo, M.; Ciampi, P.; Lo Curto, D.; Conte, C.; Cribari, F.; et al. Molecular Hallmarks of Ischemia with Non-Obstructive Coronary Arteries: The “INOCA versus Obstructive CCS” Challenge. J. Clin. Med. 2022, 11, 1711. [Google Scholar] [CrossRef]
- Pufe, T.; Harde, V.; Petersen, W.; Goldring, M.B.; Tillmann, B.; Mentlein, R. Vascular Endothelial Growth Factor (VEGF) Induces Matrix Metalloproteinase Expression in Immortalized Chondrocytes. J. Pathol. 2004, 202, 367–374. [Google Scholar] [CrossRef]
- Quillard, T.; Tesmenitsky, Y.; Croce, K.; Travers, R.; Shvartz, E.; Koskinas, K.C.; Sukhova, G.K.; Aikawa, E.; Aikawa, M.; Libby, P. Selective Inhibition of Matrix Metalloproteinase-13 Increases Collagen Content of Established Mouse Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 2464–2472. [Google Scholar] [CrossRef] [PubMed]
- Gaubatz, J.W.; Ballantyne, C.M.; Wasserman, B.A.; He, M.; Chambless, L.E.; Boerwinkle, E.; Hoogeveen, R.C. Association of Circulating Matrix Metalloproteinases with Carotid Artery Characteristics: The Atherosclerosis Risk in Communities Carotid MRI Study. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 1034–1042. [Google Scholar] [CrossRef] [PubMed]
- Polonskaya, Y.V.; Kashtanova, E.V.; Murashov, I.S.; Striukova, E.V.; Kurguzov, A.V.; Stakhneva, E.M.; Shramko, V.S.; Maslatsov, N.A.; Chernyavsky, A.M.; Ragino, Y.I. Association of Matrix Metalloproteinases with Coronary Artery Calcification in Patients with CHD. J. Pers. Med. 2021, 11, 506. [Google Scholar] [CrossRef] [PubMed]
- Tarín, C.; Gomez, M.; Calvo, E.; López, J.A.; Zaragoza, C. Endothelial Nitric Oxide Deficiency Reduces MMP-13-Mediated Cleavage of ICAM-1 in Vascular Endothelium: A Role in Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Deguchi, J.-O.; Aikawa, E.; Libby, P.; Vachon, J.R.; Inada, M.; Krane, S.M.; Whittaker, P.; Aikawa, M. Matrix Metalloproteinase-13/Collagenase-3 Deletion Promotes Collagen Accumulation and Organization in Mouse Atherosclerotic Plaques. Circulation 2005, 112, 2708–2715. [Google Scholar] [CrossRef]
- Melin, E.O.; Dereke, J.; Hillman, M. Galectin-3, Metalloproteinase-2 and Cardiovascular Disease Were Independently Associated with Metalloproteinase-14 in Patients with Type 1 Diabetes: A Cross Sectional Study. Diabetol. Metab. Syndr. 2021, 13, 118. [Google Scholar] [CrossRef]
- Johnson, J.L.; Jenkins, N.P.; Huang, W.-C.; Di Gregoli, K.; Sala-Newby, G.B.; Scholtes, V.P.W.; Moll, F.L.; Pasterkamp, G.; Newby, A.C. Relationship of MMP-14 and TIMP-3 Expression with Macrophage Activation and Human Atherosclerotic Plaque Vulnerability. Mediators Inflamm. 2014, 2014, 276457. [Google Scholar] [CrossRef]
- Lu, Y.; Thavarajah, T.; Gu, W.; Cai, J.; Xu, Q. Impact of MiRNA in Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2018, 38, e159–e170. [Google Scholar] [CrossRef]
- Yuan, M.; Zhang, L.; You, F.; Zhou, J.; Ma, Y.; Yang, F.; Tao, L. MiR-145-5p Regulates Hypoxia-Induced Inflammatory Response and Apoptosis in Cardiomyocytes by Targeting CD40. Mol. Cell Biochem. 2017, 431, 123–131. [Google Scholar] [CrossRef]
- Zhang, X.; Zai, L.; Tao, Z.; Wu, D.; Lin, M.; Wan, J. MiR-145-5p Affects Autophagy by Targeting CaMKIIδ in Atherosclerosis. Int. J. Cardiol. 2022, 360, 68–75. [Google Scholar] [CrossRef]
- Kumar, A.; Priyadarshini, G.; Parameswaran, S.; Ramesh, A.; Rajappa, M. Evaluation of MicroRNA 145 and MicroRNA 155 as Markers of Cardiovascular Risk in Chronic Kidney Disease. Cureus 2024, 16, e66494. [Google Scholar] [CrossRef] [PubMed]
- Gatsiou, A.; Georgiopoulos, G.; Vlachogiannis, N.I.; Pfisterer, L.; Fischer, A.; Sachse, M.; Laina, A.; Bonini, F.; Delialis, D.; Tual-Chalot, S.; et al. Additive Contribution of MicroRNA-34a/b/c to Human Arterial Ageing and Atherosclerosis. Atherosclerosis 2021, 327, 49–58. [Google Scholar] [CrossRef]
- Raitoharju, E.; Lyytikäinen, L.-P.; Levula, M.; Oksala, N.; Mennander, A.; Tarkka, M.; Klopp, N.; Illig, T.; Kähönen, M.; Karhunen, P.J.; et al. MiR-21, MiR-210, MiR-34a, and MiR-146a/b Are up-Regulated in Human Atherosclerotic Plaques in the Tampere Vascular Study. Atherosclerosis 2011, 219, 211–217. [Google Scholar] [CrossRef]
- Han, H.; Qu, G.; Han, C.; Wang, Y.; Sun, T.; Li, F.; Wang, J.; Luo, S. MiR-34a, MiR-21 and MiR-23a as Potential Biomarkers for Coronary Artery Disease: A Pilot Microarray Study and Confirmation in a 32 Patient Cohort. Exp. Mol. Med. 2015, 47, e138. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Zhang, D.; Chen, S.; Liu, X.; Lin, L.; Huang, X.; Guo, Z.; Liu, J.; Wang, Y.; Yuan, W.; et al. Endothelial Enriched MicroRNAs Regulate Angiotensin II-Induced Endothelial Inflammation and Migration. Atherosclerosis 2011, 215, 286–293. [Google Scholar] [CrossRef]
- Xue, Y.; Wei, Z.; Ding, H.; Wang, Q.; Zhou, Z.; Zheng, S.; Zhang, Y.; Hou, D.; Liu, Y.; Zen, K.; et al. MicroRNA-19b/221/222 Induces Endothelial Cell Dysfunction via Suppression of PGC-1α in the Progression of Atherosclerosis. Atherosclerosis 2015, 241, 671–681. [Google Scholar] [CrossRef]
- Laffont, B.; Rayner, K.J. MicroRNAs in the Pathobiology and Therapy of Atherosclerosis. Can. J. Cardiol. 2017, 33, 313–324. [Google Scholar] [CrossRef]
- Karere, G.M.; Glenn, J.P.; Li, G.; Konar, A.; VandeBerg, J.L.; Cox, L.A. Potential MiRNA Biomarkers and Therapeutic Targets for Early Atherosclerotic Lesions. Sci. Rep. 2023, 13, 3467. [Google Scholar] [CrossRef]
- Faccini, J.; Ruidavets, J.-B.; Cordelier, P.; Martins, F.; Maoret, J.-J.; Bongard, V.; Ferrières, J.; Roncalli, J.; Elbaz, M.; Vindis, C. Circulating MiR-155, MiR-145 and Let-7c as Diagnostic Biomarkers of the Coronary Artery Disease. Sci. Rep. 2017, 7, 42916. [Google Scholar] [CrossRef]
- John, F.O.; Neylon, A.; McGorrian, C.; Blake, G.J. MiRNA-93-5p and Other MiRNAs as Predictors of Coronary Artery Disease and STEMI. Int. J. Cardiol. 2016, 224, 310–316. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Y.; Xue, S.; Ding, H.; Wang, Y.; Qi, H.; Wang, Y.; Zhu, W.; Li, P. Clinical Significance of Circulating MicroRNAs as Diagnostic Biomarkers for Coronary Artery Disease. J. Cell Mol. Med. 2020, 24, 1146–1150. [Google Scholar] [CrossRef] [PubMed]
- Saavedra, N.; Rojas, G.; Herrera, J.; Rebolledo, C.; Ruedlinger, J.; Bustos, L.; Bobadilla, B.; Pérez, L.; Saavedra, K.; Zambrano, T.; et al. Circulating MiRNA-23b and MiRNA-143 Are Potential Biomarkers for In-Stent Restenosis. Biomed. Res. Int. 2020, 2020, 2509039. [Google Scholar] [CrossRef] [PubMed]
- Gholipour, A.; Zahedmehr, A.; Arabian, M.; Shakerian, F.; Maleki, M.; Oveisee, M.; Malakootian, M. MiR-6721-5p as a Natural Regulator of Meta-VCL Is Upregulated in the Serum of Patients with Coronary Artery Disease. Noncoding RNA Res. 2025, 10, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Busk, P.K. A Tool for Design of Primers for MicroRNA-Specific Quantitative RT-QPCR. BMC Bioinform. 2014, 15, 29. [Google Scholar] [CrossRef]
All CAD (n = 127) | INOCA/ANOCA (n = 51) | Obstructive CAD (n = 76) | Control (n = 30) | p-Value | |
---|---|---|---|---|---|
Men (%) | 71 (57.4) | 20 (39.2) | 51 (67.1) | 10 (33.3) | 0.001 * pINOCA/ANOCA–obstructive CAD = 0.004 pobstructive CAD–Control = 0.003 |
Women (%) | 56 (42.6) | 31 (60.8) | 25 (32.9) | 20 (66.7) | |
Age (year) | 64 [57; 71] | 64 [59; 70.5] | 63 [56; 71] | 28.5 [26; 39.2] | <0.001 * p control–INOCA/ANOCA < 0.001 p control–obstructive CAD < 0.001 |
BMI (kg/m2) | 27.4 [25; 30.2] | 26.20 [25.67; 30.40] | 27.4 [24.77; 29.75] | 21.95 [20.75; 25.23] | <0.001 * p control–INOCA/ANOCA < 0.001 p control–obstructive CAD < 0.001 |
Smoking (%) | 9 (7.8) | 3 (7.7) | 6 (7.9) | - | 0.953 |
Hemoglobin (g/L) | 144 [135; 155] | 142 [134; 151] | 144 [133; 152] | 136 [129; 152] | 0.459 |
Glucose (mmol/L) | 5.45 ± 0.54 | 5.53 [5.25; 5.81] | 5.43 [5.31; 5.54] | 4.9 [4.67; 5.35] | 0.005 * pINOCA/ANOCA–Control = 0.011 pobstructive CAD–Control = 0.007 |
Creatinine (µmol/L) | 89 [77.5; 99.15] | 80.45 [72.08; 91.67] | 91.5 [81; 101.32] | 82 [77.7; 87] | 0.009 * pINOCA/ANOCA–obstructive CAD = 0.023 |
Total cholesterol (mmol/L) | 4.05 [3.45; 5.21] | 4.45 [3.49; 5.36] | 3.79 [3.25; 4.36] | 4.94 [4.39; 5.52] | <0.001 * pINOCA/ANOCA–obstructive CAD = 0.015 pobstructive CAD–Control < 0.001 |
LDL (mmol/L) | 2.35 [1.81; 2.99] | 2.72 [2.03; 3.2] | 2.16 [1.58; 2.55] | 2.54 [2.28; 3.21] | 0.006 * pobstructive CAD–INOCA/ANOCA = 0.016 pcontrol – obstructive CAD = 0.044 |
HDL (mmol/L) | 1.24 ± 0.47 | 1.31 [1.03; 1.46] | 1.08 [1.08; 1.32] | 1.62 [1.35; 1.9] | <0.001 * pcontrol–INOCA/ANOCA = 0.021 pcontrol–obstructive CAD < 0.001 |
Proteins | Groups | Concentration (Me [Q1–Q3]) | p-Value |
---|---|---|---|
VEGF, ng/mL | INOCA/ANOCA | 41.66 [36.23–47.58] | 0.043 * pINOCA/ANOCA–control = 0.036 |
Obstructive CAD | 36.4 [13.12–66.05] | ||
Control | 35.03 [10.50–41.62] | ||
TNF-α, ng/mL | INOCA/ANOCA | 28.33 [13.97–29.74] | <0.004 * pcontrol–obstructive CAD = 0.037 pINOCA/ANOCA– obstructive CAD = 0.03 |
Obstructive CAD | 13.85 [10.76–25.30] | ||
Control | 28.23 [14.17–28.73] | ||
MMP-1, ng/mL | INOCA/ANOCA | 0.21 [0.17–0.29] | 0.161 |
Obstructive CAD | 0.23 [0.21–0.23] | ||
Control | 0.24 [0.22–0.32] | ||
MMP-9 ng/mL | INOCA/ANOCA | 3.58 [1.98–6.18] | <0.001 * pobstructive CAD–INOCA/ANOCA < 0.001 |
Obstructive CAD | 7.2 [4.25–10.68] | ||
Control | 5.45 [4.02–6.81] | ||
MMP-13, ng/mL | INOCA/ANOCA | 123.95 [68.85–285.43] | 0.055 |
Obstructive CAD | 91.57 [49.77–339.51] | ||
Control | 67.5 [47.79–111.30] | ||
MMP-14, ng/mL | INOCA/ANOCA | 0.71 [0.29–1.04] | <0.001 * pobstructive CAD–control < 0.001 pcontrol–INOCA = 0.02 |
Obstructive CAD | 0.45 [0.26–0.78] | ||
Control | 1.00 [0.75–1.31] |
Factor/Predictor | B | Exp (B) [95%CI] | p | Pseudo R-squ |
---|---|---|---|---|
Gender (male/female) | −1.409 | 0.244 [0.094, 0.636] | p = 0.004 * | 0.080 |
Smoking (n) | 0.063 | 1.064 [0.244, 4.641] | p = 0.933 | 0.000 |
Hypertension (n) | 0.138 | 1.147 [0.210, 6.28] | p = 0.874 | 0.000 |
Dyslipidemia (n) | 0.323 | 1.381 [0.138, 13.85] | p = 0.784 | 0.001 |
Angina pain (n) | 0.642 | 1.899 [0.629, 5.736] | p = 0.255 | 0.012 |
Fasting glucose (mmol/L) | 0.018 | 1.018 [1.004, 1.033] | p = 0.014 * | 0.053 |
Myocardial infarction (n) | −1.488 | 0.226 [0.077, 0.662] | p = 0.007 * | 0.073 |
ACE inhibitors | −1.082 | 0.339 [0.138, 0.831] | p = 0.018 * | 0.049 |
ARB II | 0.799 | 2.222 [0.876, 5.637] | p = 0.093 | 0.024 |
Beta blockers | 0.386 | 1.471 [0.432, 5.01] | p = 0.536 | 0.003 |
Calcium channel blocker | 0.669 | 1.952 [0.813, 4.691] | p = 0.135 | 0.019 |
Antiaggregants | −1.157 | 0.314 [0.066, 1.505] | p = 0.148 | 0.018 |
Statins | −0.776 | 0.460 [0.028, 7.619] | p = 0.588 | 0.002 |
Age (years) | 0.004 | 1.004 [0.953, 1.058] | p = 0.871 | 0.000 |
BMI (kg/m2) | 0.007 | 1.006 [0.903, 1.122] | p = 0.905 | 0.000 |
VEGF (ng/mL) | 0.000 | 1.000 [0.998, 1.001] | p = 0.691 | 0.001 |
TNF-α (ng/mL) | −0.002 | 0.998 [0.992, 1.004] | p = 0.433 | 0.006 |
MMP-1 (ng/mL) | −0.046 | 0.955 [0.587, 1.553] | p = 0.853 | 0.000 |
MMP-9 (ng/mL) | −0.044 | 0.957 [0.906, 1.011] | p = 0.118 | 0.029 |
MMP-13 (ng/mL) | 0.000 | 1.000 [1.000, 1.0] | p = 0.972 | 0.000 |
MMP-14 (ng/mL) | −0.025 | 0.975 [0.890, 1.07] | p = 0.600 | 0.003 |
miR-34a REU | −0.050 | 0.951 [0.869, 1.041] | p = 0.274 | 0.010 |
miR-145 REU | 0.444 | 1.558 [1.066, 2.277] | p = 0.022 * | 0.042 |
miR-222 REU | 0.458 | 1.581 [0.422, 5.93] | p = 0.497 | 0.003 |
Variables | Coef (B) | Exp (B) | p |
---|---|---|---|
miR-145 REU | 0.921 | 2.512 [1.294, 4.875] | p = 0.006 * |
Gender (male/female) | −1.116 | 0.328 [0.121, 0.889] | p = 0.029 * |
INOCA/ANOCA | Obstructive CAD | p-Value | |
---|---|---|---|
ACE inhibitors | 18 (35.3) | 47 (61.8) | 0.027 * |
ARB II | 17(33.3) | 20 (26.7) | 0.123 |
Beta blockers | 26 (86.7) | 53 (81.5) | 0.535 |
Calcium channel blockers | 16 (53.3) | 24 (36.9) | 0.33 |
Antiaggregants | 26 (66.7) | 62 (81.5) | 0.202 |
Anticoagulants | 4 (10.2) | 7 (9.2) | 0.738 |
Antiarrhythmic drugs | 3 (7.7) | 8 (10.5) | 1.000 |
HMG-CoA reductase inhibitors | 29 (74.4) | 63 (82.9) | 0.539 |
miRNA | Primer Sequence |
---|---|
miR-34a | 5′-TGGCAGTGTCTTAGCTGGTTGT-3′ |
miR-145 | 5′-TCCAGTTTTCCCAGGAATCCCT-3′ |
miR-222 | 5′-CTCAGTAGCCAGTGTAGATCCT-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iusupova, A.O.; Pakhtusov, N.N.; Slepova, O.A.; Khabarova, N.V.; Privalova, E.V.; Bure, I.V.; Nemtsova, M.V.; Belenkov, Y.N. MiRNA-34a, miRNA-145, and miRNA-222 Expression, Matrix Metalloproteinases, TNF-α and VEGF in Patients with Different Phenotypes of Coronary Artery Disease. Int. J. Mol. Sci. 2024, 25, 12978. https://doi.org/10.3390/ijms252312978
Iusupova AO, Pakhtusov NN, Slepova OA, Khabarova NV, Privalova EV, Bure IV, Nemtsova MV, Belenkov YN. MiRNA-34a, miRNA-145, and miRNA-222 Expression, Matrix Metalloproteinases, TNF-α and VEGF in Patients with Different Phenotypes of Coronary Artery Disease. International Journal of Molecular Sciences. 2024; 25(23):12978. https://doi.org/10.3390/ijms252312978
Chicago/Turabian StyleIusupova, Alfiya Oskarovna, Nikolay Nikolaevich Pakhtusov, Olga Alexandrovna Slepova, Natalia Vladimirovna Khabarova, Elena Vitalievna Privalova, Irina Vladimirovna Bure, Marina Vyacheslavovna Nemtsova, and Yuri Nikitich Belenkov. 2024. "MiRNA-34a, miRNA-145, and miRNA-222 Expression, Matrix Metalloproteinases, TNF-α and VEGF in Patients with Different Phenotypes of Coronary Artery Disease" International Journal of Molecular Sciences 25, no. 23: 12978. https://doi.org/10.3390/ijms252312978
APA StyleIusupova, A. O., Pakhtusov, N. N., Slepova, O. A., Khabarova, N. V., Privalova, E. V., Bure, I. V., Nemtsova, M. V., & Belenkov, Y. N. (2024). MiRNA-34a, miRNA-145, and miRNA-222 Expression, Matrix Metalloproteinases, TNF-α and VEGF in Patients with Different Phenotypes of Coronary Artery Disease. International Journal of Molecular Sciences, 25(23), 12978. https://doi.org/10.3390/ijms252312978