Efficient Genome Editing Using ‘NanoMEDIC’ AsCas12a-VLPs Produced with Pol II-Transcribed crRNA
<p>Selection of guide RNAs (gRNA). (<b>A</b>) Scheme of gRNA target sites for SpCas9 and AsCas12a in the selected loci: <span class="html-italic">Venus</span>, <span class="html-italic">CXCR4</span>, and <span class="html-italic">CCR5</span>; (<b>B</b>) <span class="html-italic">Venus</span> knockout level was measured by flow cytometry in 293-Venus clone #8 on day 6 after transfection; (<b>C</b>) <span class="html-italic">CXCR4</span> and (<b>D</b>) <span class="html-italic">CCR5</span> knockout levels were measured in CEM/CCR5 and CEM/CCR5 clone #8, respectively, stained with the corresponding antibodies on day 5 after electroporation [<a href="#B24-ijms-25-12768" class="html-bibr">24</a>,<a href="#B26-ijms-25-12768" class="html-bibr">26</a>,<a href="#B27-ijms-25-12768" class="html-bibr">27</a>,<a href="#B28-ijms-25-12768" class="html-bibr">28</a>,<a href="#B29-ijms-25-12768" class="html-bibr">29</a>,<a href="#B30-ijms-25-12768" class="html-bibr">30</a>,<a href="#B31-ijms-25-12768" class="html-bibr">31</a>,<a href="#B32-ijms-25-12768" class="html-bibr">32</a>].</p> "> Figure 2
<p>Generation of AsCas12acontaining virus-like particles (VLPs). (<b>A</b>) Scheme of plasmids encoding AsCas12a and its FRB fusion variants. (<b>B</b>) Representative Western blot evaluating the level of AsCas12a and its FRB fusion variants in transfected 293T cells. (<b>C</b>) Flow cytometry analysis of the <span class="html-italic">CXCR4</span> knockout level in CEM/CCR5 induced by AsCas12a and its FRB fusion variants. (<b>D</b>) Workflow of VLP production. Original plasmids used by Gee et al. to produce ‘NanoMEDIC’ particles are highlighted in green, plasmids generated and used in this study are highlighted in red. (<b>E</b>) Representative Western blot evaluating the nuclease content in lysates of 293T producer cells and VLPs targeting <span class="html-italic">Venus</span>. (<b>F</b>) Flow cytometry analysis of the <span class="html-italic">Venus</span> knockout in 293-Venus clone #8 cells mediated by VLPs with AsCas12a or SpCas9. Shaded bars correspond to target cells preliminary transfected with the plasmid encoding the corresponding gRNA, dashed bars depict target cells transfected with the plasmid coding for control gRNA. Results from three independent experiments are shown as individual data points and as mean ± standard deviation; different symbols correspond to independent experiments. Mean values were compared by (<b>C</b>) one-sample <span class="html-italic">t</span>-test with Bonferroni correction (*) <span class="html-italic">p</span> < 0.025 or (<b>F</b>) three-way ANOVA (with VLP dose, presence of crRNA in target cells, and nuclease type as factors) with subsequent Sidak’s multiple comparison test (**) <span class="html-italic">p</span> < 0.01.</p> "> Figure 3
<p>Expression of AsCas12a crRNA under the control of the RNA polymerase II (Pol II) promoter allows efficient genome editing. (<b>A</b>) Scheme of plasmids encoding crRNA under the control of the U6 or CMV promoter. (<b>B</b>) Flow cytometry analysis of the <span class="html-italic">CXCR4</span> knockout level in CEM/CCR5 cells mediated by AsCas12a or AsCas12a H800A in combination with one of the crRNA plasmids shown in (<b>A</b>). (<b>C</b>) Flow cytometry analysis of the <span class="html-italic">CXCR4</span> knockout level in CEM/CCR5 cells mediated by AsCas12a and increasing amounts of the pCMV-mClover-trpl-DR-cr1X4-DR plasmid. (<b>D</b>,<b>E</b>) Flow cytometry analysis of the <span class="html-italic">CCR5</span> (<b>D</b>) or <span class="html-italic">Venus</span> (<b>E</b>) knockout levels in 293T/CD4/CCR5 clone #19 or 293-Venus clone #8 cells, respectively, induced by AsCas12a and crRNA expressed under the control of the U6 or CMV promoter. (<b>F</b>) Scheme of plasmids encoding crRNA (AsCas12a) or sgRNA (SpCas9) under the control of the U6 or CMV promoter. (<b>G</b>) Flow cytometry analysis of the <span class="html-italic">CXCR4</span> knockout level in CEM/CCR5 cells mediated by AsCas12a in combination with one of the crRNA/sgRNA plasmids shown in (<b>F</b>). Results from 3–5 independent experiments are shown as individual data points and as mean ± standard deviation; different symbols correspond to independent experiments. Mean values were compared by one-way ANOVA for independent samples with subsequent Tukey’s test for multiple comparisons. (*) <span class="html-italic">p</span> < 0.05, (**) <span class="html-italic">p</span> < 0.01, (***) <span class="html-italic">p</span> < 0.001, (****) <span class="html-italic">p</span> < 0.0001, (ns)—not significant.</p> "> Figure 4
<p>AsCas12a and crRNA can be expressed from a single Pol II-driven transcript that is compatible with the ‘NanoMEDIC’ system. (<b>A</b>) Scheme of single plasmids encoding AsCas12a and crRNA. (<b>B</b>) Flow cytometry analysis of the <span class="html-italic">CXCR4</span> knockout level in CEM/CCR5 cells electroporated with one of the plasmid variants shown in (<b>A</b>). (<b>C</b>) Schematic of separate and single plasmids encoding AsCas12a with or without the FRB domain. (<b>D</b>) Flow cytometry analysis of the <span class="html-italic">CXCR4</span> knockout level in CEM/CCR5 cells electroporated with one of the plasmid variants shown in (<b>C</b>) by AsCas12a and increasing amounts of the pCMV-mClover-trpl-DR-crRNA-DR plasmid. Results from three independent experiments are shown as individual data points and as mean ± standard deviation; different symbols correspond to independent experiments. Mean values were compared by one-way ANOVA for independent samples with subsequent Tukey’s test for multiple comparisons. (*) <span class="html-italic">p</span> < 0.05, (**) <span class="html-italic">p</span> < 0.01.</p> "> Figure 5
<p>Pol II-driven crRNA is compatible with multiplex genome editing. (<b>A</b>) Scheme of plasmids encoding crRNAs. (<b>B</b>,<b>C</b>) Flow cytometry analysis of the <span class="html-italic">CXCR4</span> (<b>B</b>) and <span class="html-italic">CCR5</span> (<b>C</b>) knockout levels in CEM/CCR5 clone #8 cells electroporated with the AsCas12a plasmid together with one of the plasmids shown in (<b>A</b>). The following amounts of crRNA plasmids were used: 0.48 pmol for pKS-U6-crRNA and 0.96 pmol for pCMV-based plasmids. Results from three independent experiments are shown as individual data points as mean ± standard deviation. Mean values were compared by one-way ANOVA for independent samples with subsequent Tukey’s test for multiple comparisons. (*) <span class="html-italic">p</span> < 0.05, (**) <span class="html-italic">p</span> < 0.01 (<b>B</b>).</p> "> Figure 6
<p>Generation of AsCas12a-VLPs with CMV promoter-driven crRNA. (<b>A</b>) Scheme of plasmids encoding AsCas12a and crRNA used for VLP production. (<b>B</b>,<b>D</b>) Flow cytometry analysis of <span class="html-italic">Venus</span> (<b>B</b>) and <span class="html-italic">CCR5</span> (<b>D</b>) knockout levels in 293-Venus clone #8 and 293T/CD4/CCR5 clone #19 cells, respectively, transduced with VLP preparations #1–4. Results from three independent experiments are shown as individual data points and as mean ± standard deviation; different symbols correspond to independent experiments. Mean values were compared by two-way ANOVA (with VLP dose and VLP type as factors) with subsequent Tukey’s multiple comparison test. (*) <span class="html-italic">p</span> < 0.05, (**) <span class="html-italic">p</span> < 0.01, (****) <span class="html-italic">p</span> < 0.0001, (ns)—not significant (shown only for a 50 µL dose). (<b>C</b>,<b>E</b>) Representative Western blot evaluating the nuclease content in lysates of 293T producer cells and VLPs targeting <span class="html-italic">Venus</span> (<b>C</b>) or <span class="html-italic">CCR5</span> (<b>E</b>).</p> "> Figure 7
<p>AsCas12a-VLPs produced with CMV-driven crRNA allow efficient genome editing in Jurkat T lymphocytes. (<b>A</b>) Scheme of plasmids encoding AsCas12a and crRNA used for VLP production. (<b>B</b>) Flow cytometry analysis of the <span class="html-italic">CXCR4</span> knockout levels in Jurkat T cells transduced with VLPs #1–4. (<b>C</b>) Flow cytometry analysis of the <span class="html-italic">CXCR4</span> knockout levels in Jurkat T cells electroporated with SpCas9 or AsCas12a RNPs. (<b>D</b>–<b>F</b>) Flow cytometry analysis of the <span class="html-italic">CXCR4</span> knockout levels in Jurkat T cells that were transduced with VLPs #3 produced with 1.66 µg or 4.98 µg of the crRNA plasmid (<b>D</b>), VLPs #3 produced with 1.66 µg of the crRNA plasmid or the plasmid coding for 3 or 6 identical spacers (<b>E</b>), and VLPs #3 coated with VSVG or VSVG+BaEVRless (data points related to independent experiments are shown by different shapes) (<b>F</b>).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Guide RNA Selection for Target Loci
2.2. Generation of AsCas12a-VLPs
2.3. Genome Editing with AsCas12a and Pol II Promoter-Driven crRNA
2.4. AsCas12a and crRNA Can Be Expressed from a Single Pol II-Driven Transcript That Is Compatible with the ‘NanoMEDIC’ VLP System
2.5. Generation of AsCas12a-VLPs with a CMV Promoter-Driven crRNA
2.6. AsCas12a-VLPs Produced with Pol II-Driven crRNA Allow Efficient Genome Editing in Jurkat T Lymphocytes
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Generation of 293-Venus Reporter Cell Line
4.3. Plasmid Construction
4.3.1. Plasmids for the Generation of the 293-Venus Reporter Cell Line
4.3.2. AsCas12a Vector Cloning
4.3.3. Guide RNA Cloning for U6-Driven Expression
4.3.4. Guide RNA Cloning for CMV-Driven Expression
4.3.5. Cloning of Single Constructs for AsCas12a and crRNA Expression
4.4. Electroporation
4.5. RNP Production
4.6. Transfection
4.7. VLP Production
4.8. VLP Transduction
4.9. Flow Cytometry
4.10. Western Blotting
4.11. Luciferase Assay
4.12. Data Analysis and Visualization
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.Y.; Doudna, J.A. CRISPR technology: A decade of genome editing is only the beginning. Science 2023, 379, eadd8643. [Google Scholar] [CrossRef] [PubMed]
- FDA Approves First Gene Therapies to Treat Patients with Sickle Cell Disease|FDA. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-gene-therapies-treat-patients-sickle-cell-disease (accessed on 4 September 2024).
- Kim, S.; Kim, D.; Cho, S.W.; Kim, J.; Kim, J.S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 2014, 24, 1012–1019. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, F.; Begum, A.A.; Dai, C.C.; Toth, I.; Moyle, P.M. Recent advances in the delivery and applications of nonviral CRISPR/Cas9 gene editing. Drug Deliv. Transl. Res. 2023, 13, 1500–1519. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Liu, Y.; Hu, J.; Peng, X.; Liu, Z. CRISPR/Cas9 systems: Delivery technologies and biomedical applications. Asian J. Pharm. Sci. 2023, 18, 100854. [Google Scholar] [CrossRef] [PubMed]
- Stadtmauer, E.A.; Fraietta, J.A.; Davis, M.M.; Cohen, A.D.; Weber, K.L.; Lancaster, E.; Mangan, P.A.; Kulikovskaya, I.; Gupta, M.; Chen, F.; et al. CRISPR-engineered T cells in patients with refractory cancer. Science 2020, 367, eaba7365. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Y.; Yang, J.; Li, W.; Zhang, M.; Wang, Q.; Zhang, L.; Wei, G.; Tian, Y.; Zhao, K.; et al. Non-viral, specifically targeted CAR-T cells achieve high safety and efficacy in B-NHL. Nature 2022, 609, 369–374. [Google Scholar] [CrossRef]
- Mazurov, D.; Ramadan, L.; Kruglova, N. Packaging and Uncoating of CRISPR/Cas Ribonucleoproteins for Efficient Gene Editing with Viral and Non-Viral Extracellular Nanoparticles. Viruses 2023, 15, 690. [Google Scholar] [CrossRef]
- Mangeot, P.E.; Risson, V.; Fusil, F.; Marnef, A.; Laurent, E.; Blin, J.; Mournetas, V.; Massouridès, E.; Sohier, T.J.M.; Corbin, A.; et al. Genome editing in primary cells and in vivo using viral-derived Nanoblades loaded with Cas9-sgRNA ribonucleoproteins. Nat. Commun. 2019, 10, 45. [Google Scholar] [CrossRef]
- Hamilton, J.R.; Tsuchida, C.A.; Nguyen, D.N.; Shy, B.R.; McGarrigle, E.R.; Sandoval Espinoza, C.R.; Carr, D.; Blaeschke, F.; Marson, A.; Doudna, J.A. Targeted delivery of CRISPR-Cas9 and transgenes enables complex immune cell engineering. Cell Rep. 2021, 35, 109207. [Google Scholar] [CrossRef]
- Gee, P.; Lung, M.S.Y.; Okuzaki, Y.; Sasakawa, N.; Iguchi, T.; Makita, Y.; Hozumi, H.; Miura, Y.; Yang, L.F.; Iwasaki, M.; et al. Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping. Nat. Commun. 2020, 11, 1334. [Google Scholar] [CrossRef]
- Banskota, S.; Raguram, A.; Suh, S.; Du, S.W.; Davis, J.R.; Choi, E.H.; Wang, X.; Nielsen, S.C.; Newby, G.A.; Randolph, P.B.; et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell 2022, 185, 250–265.e16. [Google Scholar] [CrossRef] [PubMed]
- An, M.; Raguram, A.; Du, S.W.; Banskota, S.; Davis, J.R.; Newby, G.A.; Chen, P.Z.; Palczewski, K.; Liu, D.R. Engineered virus-like particles for transient delivery of prime editor ribonucleoprotein complexes in vivo. Nat. Biotechnol. 2024, 42, 1526–1537. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, J.R.; Chen, E.; Perez, B.S.; Sandoval Espinoza, C.R.; Kang, M.H.; Trinidad, M.; Ngo, W.; Doudna, J.A. In vivo human T cell engineering with enveloped delivery vehicles. Nat. Biotechnol. 2024, 42, 1684–1692. [Google Scholar] [CrossRef] [PubMed]
- Lyu, P.; Javidi-Parsijani, P.; Atala, A.; Lu, B. Delivering Cas9/sgRNA ribonucleoprotein (RNP) by lentiviral capsid-based bionanoparticles for efficient ‘hit-and-run’ genome editing. Nucleic Acids Res. 2019, 47, e99. [Google Scholar] [CrossRef] [PubMed]
- Nissim, L.; Perli, S.D.; Fridkin, A.; Perez-Pinera, P.; Lu, T.K. Multiplexed and Programmable Regulation of Gene Networks with an Integrated RNA and CRISPR/Cas Toolkit in Human Cells. Mol. Cell 2014, 54, 698–710. [Google Scholar] [CrossRef] [PubMed]
- Knapp, D.J.H.F.; Michaels, Y.S.; Jamilly, M.; Ferry, Q.R.V.; Barbosa, H.; Milne, T.A.; Fulga, T.A. Decoupling tRNA promoter and processing activities enables specific Pol-II Cas9 guide RNA expression. Nat. Commun. 2019, 10, 1490. [Google Scholar] [CrossRef]
- Zetsche, B.; Gootenberg, J.S.; Abudayyeh, O.O.; Slaymaker, I.M.; Makarova, K.S.; Essletzbichler, P.; Volz, S.E.; Joung, J.; van der Oost, J.; Regev, A.; et al. Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell 2015, 163, 759–771. [Google Scholar] [CrossRef]
- Zetsche, B.; Heidenreich, M.; Mohanraju, P.; Fedorova, I.; Kneppers, J.; Degennaro, E.M.; Winblad, N.; Choudhury, S.R.; Abudayyeh, O.O.; Gootenberg, J.S.; et al. Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array. Nat. Biotechnol. 2016, 35, 31–34. [Google Scholar] [CrossRef]
- Safari, F.; Zare, K.; Negahdaripour, M.; Barekati-Mowahed, M.; Ghasemi, Y. CRISPR Cpf1 proteins: Structure, function and implications for genome editing. Cell Biosci. 2019, 9, 36. [Google Scholar] [CrossRef]
- Jiang, F.; Doudna, J.A. CRISPR–Cas9 Structures and Mechanisms. Annu. Rev. Biophys. 2017, 46, 505–529. [Google Scholar] [CrossRef]
- Kleinstiver, B.P.; Tsai, S.Q.; Prew, M.S.; Nguyen, N.T.; Welch, M.M.; Lopez, J.M.; McCaw, Z.R.; Aryee, M.J.; Joung, J.K. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat. Biotechnol. 2016, 34, 869–874. [Google Scholar] [CrossRef] [PubMed]
- Campa, C.C.; Weisbach, N.R.; Santinha, A.J.; Incarnato, D.; Platt, R.J. Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts. Nat. Methods 2019, 16, 887–893. [Google Scholar] [CrossRef] [PubMed]
- Maslennikova, A.; Kruglova, N.; Kalinichenko, S.; Komkov, D.; Shepelev, M.; Golubev, D.; Siniavin, A.; Vzorov, A.; Filatov, A.; Mazurov, D. Engineering T-Cell Resistance to HIV-1 Infection via Knock-In of Peptides from the Heptad Repeat 2 Domain of gp41. mBio 2022, 13, e0358921. [Google Scholar] [CrossRef] [PubMed]
- Chu, V.T.; Weber, T.; Wefers, B.; Wurst, W.; Sander, S.; Rajewsky, K.; Kühn, R. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 2015, 33, 543–548. [Google Scholar] [CrossRef]
- Chen, P.; Zhou, J.; Wan, Y.; Liu, H.; Li, Y.; Liu, Z.; Wang, H.; Lei, J.; Zhao, K.; Zhang, Y.; et al. A Cas12a ortholog with stringent PAM recognition followed by low off-target editing rates for genome editing. Genome Biol. 2020, 21, 78. [Google Scholar] [CrossRef]
- Liu, Z.; Liang, J.; Chen, S.; Wang, K.; Liu, X.; Liu, B.; Xia, Y.; Guo, M.; Zhang, X.; Sun, G.; et al. Genome editing of CCR5 by AsCpf1 renders CD4+T cells resistance to HIV-1 infection. Cell Biosci. 2020, 10, 85. [Google Scholar] [CrossRef]
- Kempton, H.R.; Goudy, L.E.; Love, K.S.; Qi, L.S. Multiple Input Sensing and Signal Integration Using a Split Cas12a System. Mol. Cell 2020, 78, 184–191.e3. [Google Scholar] [CrossRef]
- Gao, Z.; Herrera-Carrillo, E.; Berkhout, B. Improvement of the CRISPR-Cpf1 system with ribozyme-processed crRNA. RNA Biol. 2018, 15, 1458–1467. [Google Scholar] [CrossRef]
- Kim, S.; Koo, T.; Jee, H.-G.; Cho, H.-Y.; Lee, G.; Lim, D.-G.; Shin, H.S.; Kim, J.-S. CRISPR RNAs trigger innate immune responses in human cells. Genome Res. 2018, 28, 367–373. [Google Scholar] [CrossRef]
- Cho, S.W.; Kim, S.; Kim, J.M.; Kim, J.-S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 2013, 31, 230–232. [Google Scholar] [CrossRef]
- Xin, C.; Yin, J.; Yuan, S.; Ou, L.; Liu, M.; Zhang, W.; Hu, J. Comprehensive assessment of miniature CRISPR-Cas12f nucleases for gene disruption. Nat. Commun. 2022, 13, 5623. [Google Scholar] [CrossRef] [PubMed]
- Kleinstiver, B.P.; Sousa, A.A.; Walton, R.T.; Tak, Y.E.; Hsu, J.Y.; Clement, K.; Welch, M.M.; Horng, J.E.; Malagon-Lopez, J.; Scarfò, I.; et al. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat. Biotechnol. 2019, 37, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, J.P.; Rios, A.R.; Wu, L.; Qi, L.S. Enhanced Cas12a multi-gene regulation using a CRISPR array separator. eLife 2021, 10, e66406. [Google Scholar] [CrossRef] [PubMed]
- Wilusz, J.E.; JnBaptiste, C.K.; Lu, L.Y.; Kuhn, C.-D.; Joshua-Tor, L.; Sharp, P.A. A triple helix stabilizes the 3′ ends of long noncoding RNAs that lack poly(A) tails. Genes Dev. 2012, 26, 2392–2407. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Guerrero, A.; Abrey Recalde, M.J.; Mangeot, P.E.; Costa, C.; Bernadin, O.; Périan, S.; Fusil, F.; Froment, G.; Martinez-Turtos, A.; Krug, A.; et al. Baboon Envelope Pseudotyped “Nanoblades” Carrying Cas9/gRNA Complexes Allow Efficient Genome Editing in Human T, B, and CD34+ Cells and Knock-in of AAV6-Encoded Donor DNA in CD34+ Cells. Front. Genome Ed. 2021, 3, 604371. [Google Scholar] [CrossRef]
- Teng, F.; Li, J.; Cui, T.; Xu, K.; Guo, L.; Gao, Q.; Feng, G.; Chen, C.; Han, D.; Zhou, Q.; et al. Enhanced mammalian genome editing by new Cas12a orthologs with optimized crRNA scaffolds. Genome Biol. 2019, 20, 15. [Google Scholar] [CrossRef]
- DeWeirdt, P.C.; Sanson, K.R.; Sangree, A.K.; Hegde, M.; Hanna, R.E.; Feeley, M.N.; Griffith, A.L.; Teng, T.; Borys, S.M.; Strand, C.; et al. Optimization of AsCas12a for combinatorial genetic screens in human cells. Nat. Biotechnol. 2020, 39, 94–104. [Google Scholar] [CrossRef]
- Chey, Y.C.J.; Gierus, L.; Lushington, C.; Arudkumar, J.C.; Geiger, A.; Staker, L.G.; Robertson, L.J.; Pfitzner, C.; Kennedy, J.G.; Lee, R.H.B.; et al. Enhancing gRNA Transcript levels by Reducing the Scaffold Poly-T Tract for Optimal SpCas9- and SaCas9-mediated Gene Editing. bioRxiv 2024, 604224. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Macaluso, N.C.; Rakestraw, N.R.; Carman, D.R.; Pizzano, B.L.M.; Hautamaki, R.C.; Rananaware, S.R.; Roberts, I.E.; Jain, P.K. Harnessing noncanonical crRNAs to improve functionality of Cas12a orthologs. Cell Rep. 2024, 43, 113777. [Google Scholar] [CrossRef]
- Scott, T.; Urak, R.; Soemardy, C.; Morris, K. V Improved Cas9 activity by specific modifications of the tracrRNA. Sci. Rep. 2019, 9, 16104. [Google Scholar] [CrossRef]
- Knipping, F.; Newby, G.A.; Eide, C.R.; McElroy, A.N.; Nielsen, S.C.; Smith, K.; Fang, Y.; Cornu, T.I.; Costa, C.; Gutierrez-Guerrero, A.; et al. Disruption of HIV-1 co-receptors CCR5 and CXCR4 in primary human T cells and hematopoietic stem and progenitor cells using base editing. Mol. Ther. 2022, 30, 130–144. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Yao, Y.; Xiao, H.; Li, J.; Liu, Q.; Yang, Y.; Adah, D.; Lu, J.; Zhao, S.; Qin, L.; et al. Simultaneous Knockout of CXCR4 and CCR5 Genes in CD4+ T Cells via CRISPR/Cas9 Confers Resistance to Both X4- and R5-Tropic Human Immunodeficiency Virus Type 1 Infection. Hum. Gene Ther. 2018, 29, 51–67. [Google Scholar] [CrossRef] [PubMed]
- Sather, B.D.; Ibarra, G.S.R.; Sommer, K.; Curinga, G.; Hale, M.; Khan, I.F.; Singh, S.; Song, Y.; Gwiazda, K.; Sahni, J.; et al. Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template. Sci. Transl. Med. 2015, 7, 307ra156. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, S.; Xiao, Q.; Liu, Z.; Liu, S.; Hou, P.; Zhou, L.; Hou, W.; Ho, W.; Li, C.; et al. Genome modification of CXCR4 by Staphylococcus aureus Cas9 renders cells resistance to HIV-1 infection. Retrovirology 2017, 14, 51. [Google Scholar] [CrossRef]
- Zetsche, B.; Strecker, J.; Abudayyeh, O.O.; Gootenberg, J.S.; Scott, D.A.; Zhang, F. A Survey of Genome Editing Activity for 16 Cas12a Orthologs. Keio J. Med. 2020, 69, 59–65. [Google Scholar] [CrossRef]
- Tóth, E.; Varga, É.; Kulcsár, P.I.; Kocsis-Jutka, V.; Krausz, S.L.; Nyeste, A.; Welker, Z.; Huszár, K.; Ligeti, Z.; Tálas, A.; et al. Improved LbCas12a variants with altered PAM specificities further broaden the genome targeting range of Cas12a nucleases. Nucleic Acids Res. 2020, 48, 3722–3733. [Google Scholar] [CrossRef]
- Zhang, L.; Zuris, J.A.; Viswanathan, R.; Edelstein, J.N.; Turk, R.; Thommandru, B.; Rube, H.T.; Glenn, S.E.; Collingwood, M.A.; Bode, N.M.; et al. AsCas12a ultra nuclease facilitates the rapid generation of therapeutic cell medicines. Nat. Commun. 2021, 12, 3908. [Google Scholar] [CrossRef]
- Liang, R.; He, Z.; Zhao, K.T.; Zhu, H.; Hu, J.; Liu, G.; Gao, Q.; Liu, M.; Zhang, R.; Qiu, J.-L.; et al. Prime editing using CRISPR-Cas12a and circular RNAs in human cells. Nat. Biotechnol. 2024. [Google Scholar] [CrossRef]
- Wang, X.; Ding, C.; Yu, W.; Wang, Y.; He, S.; Yang, B.; Xiong, Y.-C.; Wei, J.; Li, J.; Liang, J.; et al. Cas12a Base Editors Induce Efficient and Specific Editing with Low DNA Damage Response. Cell Rep. 2020, 31, 107723. [Google Scholar] [CrossRef]
- Ran, F.A.; Hsu, P.D.; Lin, C.-Y.; Gootenberg, J.S.; Konermann, S.; Trevino, A.E.; Scott, D.A.; Inoue, A.; Matoba, S.; Zhang, Y.; et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 2013, 154, 1380–1389. [Google Scholar] [CrossRef]
- Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339, 819–823. [Google Scholar] [CrossRef] [PubMed]
- Scior, A.; Preissler, S.; Koch, M.; Deuerling, E. Directed PCR-free engineering of highly repetitive DNA sequences. BMC Biotechnol. 2011, 11, 87. [Google Scholar] [CrossRef] [PubMed]
- Mali, P.; Yang, L.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-Guided Human Genome Engineering via Cas9. Science 2013, 339, 823–826. [Google Scholar] [CrossRef]
- Stewart, S.A.; Dykxhoorn, D.M.; Palliser, D.; Mizuno, H.; Yu, E.Y.; An, D.S.; Sabatini, D.M.; Chen, I.S.Y.; Hahn, W.C.; Sharp, P.A.; et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 2003, 9, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Girard-Gagnepain, A.; Amirache, F.; Costa, C.; Lévy, C.; Frecha, C.; Fusil, F.; Nègre, D.; Lavillette, D.; Cosset, F.-L.; Verhoeyen, E. Baboon envelope pseudotyped LVs outperform VSV-G-LVs for gene transfer into early-cytokine-stimulated and resting HSCs. Blood 2014, 124, 1221–1231. [Google Scholar] [CrossRef]
- Mazurov, D.; Ilinskaya, A.; Heidecker, G.; Lloyd, P.; Derse, D. Quantitative Comparison of HTLV-1 and HIV-1 Cell-to-Cell Infection with New Replication Dependent Vectors. PLoS Pathog. 2010, 6, e1000788. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borovikova, S.E.; Shepelev, M.V.; Mazurov, D.V.; Kruglova, N.A. Efficient Genome Editing Using ‘NanoMEDIC’ AsCas12a-VLPs Produced with Pol II-Transcribed crRNA. Int. J. Mol. Sci. 2024, 25, 12768. https://doi.org/10.3390/ijms252312768
Borovikova SE, Shepelev MV, Mazurov DV, Kruglova NA. Efficient Genome Editing Using ‘NanoMEDIC’ AsCas12a-VLPs Produced with Pol II-Transcribed crRNA. International Journal of Molecular Sciences. 2024; 25(23):12768. https://doi.org/10.3390/ijms252312768
Chicago/Turabian StyleBorovikova, Sofiia E., Mikhail V. Shepelev, Dmitriy V. Mazurov, and Natalia A. Kruglova. 2024. "Efficient Genome Editing Using ‘NanoMEDIC’ AsCas12a-VLPs Produced with Pol II-Transcribed crRNA" International Journal of Molecular Sciences 25, no. 23: 12768. https://doi.org/10.3390/ijms252312768
APA StyleBorovikova, S. E., Shepelev, M. V., Mazurov, D. V., & Kruglova, N. A. (2024). Efficient Genome Editing Using ‘NanoMEDIC’ AsCas12a-VLPs Produced with Pol II-Transcribed crRNA. International Journal of Molecular Sciences, 25(23), 12768. https://doi.org/10.3390/ijms252312768