Multi-Spectroscopic and Molecular Modeling Studies of Interactions Between Anionic Porphyrin and Human Serum Albumin
<p>Absorption spectra of TSPP in pH 7 buffer upon addition of different amounts of HSA. Concentration of TSPP is constant and equal to 5.0 µM, HSA concentrations as indicated.</p> "> Figure 2
<p>(<b>a</b>) Absorbance at λ = 423 nm versus total concentration of porphyrin measured for pH ~7 buffer solutions containing: (1) only TSPP, <span class="html-italic">A</span><sub>L</sub>; (2) 2 μM HSA and TSPP, <span class="html-italic">A<sub>obs</sub></span>; (3) 75 μM HSA and TSPP, <span class="html-italic">A</span><sub>LP</sub>. (<b>b</b>) Contribution of the porphyrin in the binding state to the absorbance observed at λ = 423 nm, <span class="html-italic">xA</span><sub>LP</sub>, as a function of <span class="html-italic">C</span><sub>TSPP</sub> The molar fraction <span class="html-italic">x</span> of the binding TSPP molecules is given by Equation (6). The theoretical curve given by Equation (9) is fitted to the experimental data by taking <span class="html-italic">K<sub>d</sub></span>, <span class="html-italic">n</span> and <span class="html-italic">ε<sub>b</sub></span> as adjustable parameters.</p> "> Figure 3
<p>Dependence of [LP]/(<span class="html-italic">C</span><sub>HSA</sub>[L]) on the occupancy of the macromolecule [LP]/<span class="html-italic">C</span><sub>HSA</sub>. [LP] and <span class="html-italic">C</span><sub>HSA</sub> are concentrations of bound porphyrin and HSA, respectively. Experimental data are calculated using the absorption spectra shown in <a href="#ijms-25-12473-f001" class="html-fig">Figure 1</a>. Assuming that there are two different types of independent TSPP binding sites in the albumin, linear fits for experimental points in the range of low (1) and high (2) values of [LP]/<span class="html-italic">C</span><sub>HSA</sub> allow for a rough estimation of the binding parameters: <span class="html-italic">n</span><sub>1</sub>, <span class="html-italic">K<sub>d</sub></span><sub>1</sub>, <span class="html-italic">n</span><sub>2</sub>, and <span class="html-italic">K<sub>d</sub></span><sub>2</sub>.</p> "> Figure 4
<p>Triplet–triplet (T–T) transient absorption spectra for N<sub>2</sub>-saturated buffer solutions containing 3 µM TSPP in the absence (red circles) and in the presence (black circles) of 20 µM HSA recorded 1.7 µs after a laser light pulse of wavelength 351 nm. The spectrum for the TSPP + HSA solution was multiplied by ~1.5 in order to normalize it to the maximum of the T–T band for the TSPP solution. The solid bold lines correspond to the modified absorption spectra of the considered solutions (original spectrum multiplied by −1 and normalized to the minimum of the corresponding transient absorption spectrum).</p> "> Figure 5
<p>Kinetic curves of triplet–triplet absorbance decay recorded at λ = 460 nm for buffer solutions containing TSPP and HSA in the following molar ratios: 1:0 (10:0 µM; curve 1), 1:1 (30:30 µM; curve 2), 2:1 (40:20 µM; curve 3), 2.5:1 (50:20 µM; curve 4), 3:1 (30:10 µM; curve 5), and 4:1 (40:10 µM; curve 6). Kinetic curves were recorded after a pulse of laser light with a wavelength of λ = 351 nm. The solutions were vacuum deaerated. The kinetic curves were registered for 460 nm. Exponential functions of the best fit are superimposed on the experimental curves. Exponential best-fit functions are superimposed on the experimental curves (parameters of the fits are provided in the <a href="#app1-ijms-25-12473" class="html-app">Supplementary Materials Table S1</a>).</p> "> Figure 6
<p>Far UV CD spectra of buffer solution of HSA (0.25 μM) and TSPP; the porphyrin to protein molar ratio, <span class="html-italic">C</span><sub>TSPP</sub>/<span class="html-italic">C</span><sub>HSA</sub>, changes from 0:1 to 150:1, room temperature. Inset: ellipticity measured at <span class="html-italic">λ</span> = 222 nm as a function of the porphyrin concentration in the buffer solution of HSA (0.25 μM).</p> "> Figure 7
<p>Dependence of ellipticity, registered at <span class="html-italic">λ</span> = 222 nm for buffer solutions of HSA (0.5 µM) and TSPP, on the porphyrin concentration, <span class="html-italic">C</span><sub>TSPP</sub>/<span class="html-italic">C</span><sub>HSA</sub> changes from 0:1 to 25:1, room temperature. Values of ellipticity are obtained as averages of three independent measurements, the error bars are shown in the figure. Data points are fitted by straight lines plotted in the figure, and values of the correlation coefficients <span class="html-italic">R</span> are given for each linear fit 1 to 3. The original CD spectra for the data presented in <a href="#ijms-25-12473-f007" class="html-fig">Figure 7</a> have been added to the <a href="#app1-ijms-25-12473" class="html-app">Supplementary Material as Figure S2</a>.</p> "> Figure 8
<p>Near UV CD spectra of the buffer solution of HSA (30 µM) and TSPP; the porphyrin to protein molar ratio, <span class="html-italic">C</span><sub>TSPP</sub>/<span class="html-italic">C</span><sub>HSA</sub>, changes from 0:1 to 5:1, room temperature. Inset: ellipticity measured at <span class="html-italic">λ</span> = 267 nm as a function of the porphyrin concentration in the buffer solution of HSA.</p> "> Figure 9
<p>Overall view of the HSA native structure with three TSPP docking sites found, each marked with a circle: green for site 1, red for site 2, and black for site 3.</p> "> Figure 10
<p>(<b>Upper Part</b>): Interactions between TSPP and amino acid residues within three binding sites of HSA (PDB ID: 1E78) illustrated in 2D using the Schrödinger Ligand Interaction Diagram. The three binding sites correspond to those depicted in <a href="#ijms-25-12473-f009" class="html-fig">Figure 9</a>. Residues are depicted as spheres labeled with their respective residue names and numbers, and colored based on their properties (refer to the legend). Interactions between residues and the ligand are visualized as lines, with each interaction type assigned a specific color (refer to the legend). The ligand’s binding pocket is delineated by a colored line surrounding it, indicating the nearest residue’s property. Hydrophobic residues are shown in green, positively charged residues in blue, negatively charged residues in red, and polar residues in cyan. The exposure of the ligand’s atoms to solvent is marked, indicated by a break in the line outlining the pocket. (<b>Lower Part</b>): The 3D structure of TSPP interacting with amino acid residues within the binding sites. Different types of interactions are highlighted with distinct colors for the marked bonds: yellow for hydrogen bonds, purple for ionic bonds, and brown for π-cation interactions.</p> "> Figure 11
<p>The populations of contacts (interactions) between amino acid residues of albumin (PDB ID: 1E78) and TSPP obtained for the three binding sites during the Desmond MD simulation. The three binding sites correspond to those depicted in <a href="#ijms-25-12473-f009" class="html-fig">Figure 9</a>. Contacts are classified into four types (hydrogen bonds, hydrophobic, ionic, and water bridges) and each interaction type is assigned a color according to the legend.</p> "> Figure 12
<p>Changes in far UV CD spectrum of the HSA buffer solution (<span class="html-italic">C</span><sub>HSA</sub> = 0.5 μM) caused by temperature increase from 25 to 80 °C. Inset: ellipticity recorded for wavelength <span class="html-italic">λ</span> = 222 nm as a function of temperature. The experimental points are fitted by two straight lines. For each linear fit the value of the correlation coefficient <span class="html-italic">R</span> is given.</p> "> Figure 13
<p>Changes in far UV CD spectrum of the HSA (0.5 µM) and TSPP (1.5 µM) buffer solution caused by temperature increase from 25 to 80 °C. Inset: ellipticity recorded for wavelength <span class="html-italic">λ</span> = 222 nm as a function of temperature. The experimental points are fitted by two straight lines. For each linear fit the value of the correlation coefficient <span class="html-italic">R</span> is given.</p> "> Figure 14
<p>Temperature dependence of fluorescence ratio F350/F330 obtained for buffer solutions of porphyrin and protein in a molar ratio <span class="html-italic">C</span><sub>TSPP</sub>/<span class="html-italic">C</span><sub>HSA</sub> varying from 0:1 to 5:1 (black circles). The inset in the first picture shows the density of measurement points provided by the Prometheus NT.48 device. The melting (unfolding) temperatures (Tm) for each solution are determined based on the graph of the first derivative of F350 with respect to the temperature. The experimental data are fitted with a polynomial function, and first derivative (blue line) displays peaks at the points of maximal slope, which correspond to Tm.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Assessment of Binding Sites from Ground State Absorption Spectra
2.2. Triplet–Triplet (T–T) Absorption Spectra
2.3. CD Spectra of HSA at Room Temperature
2.4. Molecular Docking and Dynamics Simulation
2.4.1. Docking and Prime MMGBSA Studies
2.4.2. Molecular Dynamics (MD) Simulations
2.5. Thermal Unfolding Analysis of HSA
2.5.1. CD Measurements
2.5.2. Differential Scanning Fluorimetry Measurements
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Absorption Spectrophotometry
4.3. Flash Photolysis
4.4. Circular Dichroism, CD
4.5. Differential Scanning Fluorimetry
4.6. Computational Modeling
4.6.1. Ligand Preparation
4.6.2. Protein Preparation
4.6.3. Docking and MD Simulation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, R. An Introduction to porphyrins. In Porphyrins: Spectral Data of Tetraphenyl and Analogous Porphyrins, Part 1; Gupta, V., Lechner, M.D., Gupta, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–11. [Google Scholar]
- Gouterman, M. Study of the Effects of Substitution on the Absorption Spectra of Porphin. J. Chem. Phys. 1959, 30, 1139–1161. [Google Scholar] [CrossRef]
- Rehman, F.U.; Zhao, C.Q.; Wu, C.Y.; Li, X.Q.; Jiang, H.; Selke, M.; Wang, X.M. Synergy and translation of allogenic bone marrow stem cells after photodynamic treatment of rheumatoid arthritis with tetra sulfonatophenyl porphyrin and TiO2 nanowhiskers. Nano Res. 2016, 9, 3305–3321. [Google Scholar] [CrossRef]
- Wang, X.; Lv, H.; Sun, Y.; Zu, G.; Zhang, X.; Song, Y.; Zhao, F.; Wang, J. New porphyrin photosensitizers-Synthesis, singlet oxygen yield, photophysical properties and application in PDT. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 279, 121447. [Google Scholar] [CrossRef] [PubMed]
- Josefsen, L.B.; Boyle, R.W. Unique Diagnostic and Therapeutic Roles of Porphyrins and Phthalocyanines in Photodynamic Therapy, Imaging and Theranostics. Theranostics 2012, 2, 916–966. [Google Scholar] [CrossRef]
- Boss, M.K.; Oberley-Deegan, R.E.; Batinic-Haberle, I.; Talmon, G.A.; Somarelli, J.A.; Xu, S.; Kosmacek, E.A.; Griess, B.; Mir, S.; Shrishrimal, S.; et al. Manganese Porphyrin and Radiotherapy Improves Local Tumor Response and Overall Survival in Orthotopic Murine Mammary Carcinoma Models. Radiat. Res. 2021, 195, 128–139. [Google Scholar] [CrossRef]
- Ion, R.-M. Revisiting Tetra-p-Sulphonated Porphyrin as Antimicrobial Photodynamic Therapy Agent. Coatings 2021, 11, 393. [Google Scholar] [CrossRef]
- Clichici, S.; Filip, A.; Daicoviciu, D.; Ion, R.M.; Mocan, T.; Tatomir, C.; Rogojan, L.; Olteanu, D.; Muresan, A. The dynamics of reactive oxygen species in photodynamic therapy with tetra sulfophenyl-porphyrin. Acta Physiol. Hung. 2010, 97, 41–51. [Google Scholar] [CrossRef]
- Ding, J.; Zhao, J.; Cheng, K.; Liu, G.; Xiu, D. In vivo photodynamic therapy and magnetic resonance imaging of cancer by TSPP-coated Fe3O4 nanoconjugates. J. Biomed. Nanotechnol. 2010, 6, 683–686. [Google Scholar] [CrossRef]
- Lapes, M.; Petera, J.; Jirsa, M. Photodynamic therapy of cutaneous metastases of breast cancer after local application of meso-tetra-(para-sulphophenyl)-porphin (TPPS4). J. Photochem. Photobiol. B Biol. 1996, 36, 205–207. [Google Scholar] [CrossRef]
- Maitra, D.; Cunha, J.B.; Elenbaas, J.S.; Bonkovsky, H.L.; Shavit, J.A.; Omary, M.B. Porphyrin-Induced Protein Oxidation and Aggregation as a Mechanism of Porphyria-Associated Cell Injury. Cell. Mol. Gastroenterol. Hepatol. 2019, 8, 535–548. [Google Scholar] [CrossRef]
- Varshney, A.; Sen, P.; Ahmad, E.; Rehan, M.; Subbarao, N.; Khan, R.H. Ligand Binding Strategies of Human Serum Albumin: How Can the Cargo be Utilized? Chirality 2010, 22, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Ghuman, J.; Zunszain, P.A.; Petitpas, I.; Bhattacharya, A.A.; Otagiri, M.; Curry, S. Structural basis of the drug-binding specificity of human serum albumin. J. Mol. Biol. 2005, 353, 38–52. [Google Scholar] [CrossRef]
- Andrade, S.M.; Costa, S.M.B. Tetrakis(4-sulfonatophenyl)porphyrin fluorescence as reporter of human serum albumin structural changes induced by guanidine hydrochloride. J. Photochem. Photobiol. A Chem. 2011, 217, 125–135. [Google Scholar] [CrossRef]
- Sudlow, G.; Birkett, D.J.; Wade, D.N. The characterization of two specific drug binding sites on human serum albumin. Mol. Pharmacol. 1975, 11, 824–832. [Google Scholar] [PubMed]
- Wardell, M.; Wang, Z.M.; Ho, J.X.; Robert, J.; Ruker, F.; Ruble, J.; Carter, D.C. The atomic structure of human methemalbumin at 1.9 angstrom. Biochem. Biophys. Res. Commun. 2002, 291, 813–819. [Google Scholar] [CrossRef]
- Costa-Tuna, A.; Chaves, O.A.; Loureiro, R.J.S.; Pinto, S.; Pina, J.; Serpa, C. Interaction between a water-soluble anionic porphyrin and human serum albumin unexpectedly stimulates the aggregation of the photosensitizer at the surface of the albumin. Int. J. Biol. Macromol. 2024, 255, 128210. [Google Scholar] [CrossRef]
- Cohen, S.; Margalit, R. Binding of porphyrin to human serum albumin. Structure-activity relationships. Biochem. J. 1990, 270, 325–330. [Google Scholar] [CrossRef]
- Rehman, F.U.; Zhao, C.; Jiang, H.; Selke, M.; Wang, X. Protective effect of TiO2 nanowhiskers on Tetra Sulphonatophenyl Porphyrin (TSPP) complexes induced oxidative stress during photodynamic therapy. Photodiagnosis Photodyn. Ther. 2016, 13, 267–275. [Google Scholar] [CrossRef] [PubMed]
- An, W.; Jiao, Y.; Dong, C.; Yang, C.; Inoue, Y.; Shuang, S. Spectroscopic and molecular modeling of the binding of meso-tetrakis(4-hydroxyphenyl)porphyrin to human serum albumin. Dye. Pigment. 2009, 81, 1–9. [Google Scholar] [CrossRef]
- Pucelik, B.; Paczynski, R.; Dubin, G.; Pereira, M.M.; Arnaut, L.G.; Dabrowski, J.M. Properties of halogenated and sulfonated porphyrins relevant for the selection of photosensitizers in anticancer and antimicrobial therapies. PLoS ONE 2018, 12, e0185984, Erratum in PLoS ONE 2018, 13, e0191777. [Google Scholar] [CrossRef]
- Gjuroski, I.; Girousi, E.; Meyer, C.; Hertig, D.; Stojkov, D.; Fux, M.; Schnidrig, N.; Bucher, J.; Pfister, S.; Sauser, L.; et al. Evaluation of polyvinylpyrrolidone and block copolymer micelle encapsulation of serine chlorin e6 and chlorin e4 on their reactivity towards albumin and transferrin and their cell uptake. J. Control. Release 2019, 316, 150–167. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.L.; Wang, S.J.; Guo, Y.M. Synthesis of New Tailed Porphyrins and Studies on the Interaction Between Metalloporphyrins and HSA. Chin. J. Inorg. Chem. 2012, 28, 1315–1323. [Google Scholar]
- Andrade, S.M.; Costa, S.M. Spectroscopic studies on the interaction of a water soluble porphyrin and two drug carrier proteins. Biophys. J. 2002, 82, 1607–1619. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cohen, B.; Jicsinszky, L.; Douhal, A. Femtosecond to second studies of a water-soluble porphyrin derivative in chemical and biological nanocavities. Langmuir 2012, 28, 4363–4372. [Google Scholar] [CrossRef]
- Strozik, T.; Wolszczak, M.; Hilczer, M. Radiolysis of 5,10,15,20-tetrakis(N-methyl-4-pyridyl)-porphyrin or 5,10,15,20-tetrakis(4-sulfonatophenyl)-porphyrin in aqueous solution in the presence and in the absence of DNA or human serum albumin. Radiat. Phys. Chem. 2013, 91, 156–165. [Google Scholar] [CrossRef]
- Luo, R.S.; Liu, M.L.; Mao, X.A. NMR diffusion and relaxation study of drug-protein interaction. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1999, 55, 1897–1901. [Google Scholar] [CrossRef]
- Pîrnău, A.B.M. Investigation of the interaction between naproxen and human serum albumin. Rom. J. Bophys. 2008, 18, 49–55. [Google Scholar]
- Sudlow, G.; Birkett, D.J.; Wade, D.N. Further characterization of specific drug binding sites on human serum albumin. Mol. Pharmacol. 1976, 12, 1052–1061. [Google Scholar]
- Scatchard, G. The attractions of proteins for small molecules and ions. Ann. N. Y. Acad. Sci. 1949, 51, 660–672. [Google Scholar] [CrossRef]
- Marszalek, M.; Konarska, A.; Szajdzinska-Pietek, E.; Wolszczak, M. Interaction of cationic protoberberine alkaloids with human serum albumin. No spectroscopic evidence on binding to Sudlow’s site 1. J. Phys. Chem. B 2013, 117, 15987–15993. [Google Scholar] [CrossRef]
- Sekowski, S.; Bitiucki, M.; Ionov, M.; Zdeb, M.; Abdulladjanova, N.; Rakhimov, R.; Mavlyanov, S.; Bryszewska, M.; Zamaraeva, M. Influence of valoneoyl groups on the interactions between Euphorbia tannins and human serum albumin. J. Lumin. 2018, 194, 170–178. [Google Scholar] [CrossRef]
- Zhang, G.; Ma, Y. Mechanistic and conformational studies on the interaction of food dye amaranth with human serum albumin by multispectroscopic methods. Food Chem. 2013, 136, 442–449. [Google Scholar] [CrossRef]
- Kashapov, R.R.; Razuvayeva, Y.S.; Lukashenko, S.S.; Amerhanova, S.K.; Lyubina, A.P.; Voloshina, A.D.; Syakaev, V.V.; Salnikov, V.V.; Zakharova, L.Y. Supramolecular Self-Assembly of Porphyrin and Metallosurfactant as a Drug Nanocontainer Design. Nanomaterials 2022, 12, 1986. [Google Scholar] [CrossRef]
- Samperi, M.; Vittorio, S.; De Luca, L.; Romeo, A.; Monsu Scolaro, L. Interaction of Aggregated Cationic Porphyrins with Human Serum Albumin. Int. J. Mol. Sci. 2023, 24, 2099. [Google Scholar] [CrossRef]
- Dockal, M.; Chang, M.; Carter, D.C.; Ruker, F. Five recombinant fragments of human serum albumin-tools for the characterization of the warfarin binding site. Protein Sci. A Publ. Protein Soc. 2000, 9, 1455–1465. [Google Scholar] [CrossRef]
- Ahmad, B.; Parveen, S.; Khan, R.H. Effect of albumin conformation on the binding of ciprofloxacin to human serum albumin: A novel approach directly assigning binding site. Biomacromolecules 2006, 7, 1350–1356. [Google Scholar] [CrossRef]
- Uversky, V.N.; Narizhneva, N.V.; Ivanova, T.V.; Tomashevski, A.Y. Rigidity of human alpha-fetoprotein tertiary structure is under ligand control. Biochemistry 1997, 36, 13638–13645. [Google Scholar] [CrossRef] [PubMed]
- Sjoholm, I.; Ljungstedt, I. Studies on the tryptophan and drug-binding properties of human serum albumin fragments by affinity chromatography and circular dichroism measurements. J. Biol. Chem. 1973, 248, 8434–8441. [Google Scholar] [CrossRef] [PubMed]
- Strickland, E.H. Aromatic contributions to circular dichroism spectra of proteins. CRC Crit. Rev. Biochem. 1974, 2, 113–175. [Google Scholar] [CrossRef]
- Fanali, G.; De Sanctis, G.; Gioia, M.; Coletta, M.; Ascenzi, P.; Fasano, M. Reversible two-step unfolding of heme-human serum albumin: A (1)H-NMR relaxometric and circular dichroism study. J. Biol. Inorg. Chem. 2009, 14, 209–217. [Google Scholar] [CrossRef]
- Rozinek, S.C.; Thomas, R.J.; Brancaleon, L. Biophysical characterization of the interaction of human albumin with an anionic porphyrin. Biochem. Biophys. Rep. 2016, 7, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Shamsipur, M.; Chaichi, M.J. A study of quenching effect of sulfur-containing amino acids L-cysteine and L-methionine on peroxyoxalate chemiluminescence of 7-amino-4-trifluoromethylcumarin. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 61, 1227–1231. [Google Scholar] [CrossRef] [PubMed]
- Manandhar, S.; Sankhe, R.; Priya, K.; Hari, G.; Kumar, B.H.; Mehta, C.H.; Nayak, U.Y.; Pai, K.S.R. Molecular dynamics and structure-based virtual screening and identification of natural compounds as Wnt signaling modulators: Possible therapeutics for Alzheimer’s disease. Mol. Divers. 2022, 26, 2793–2811. [Google Scholar] [CrossRef] [PubMed]
- Senisterra, G.; Chau, I.; Vedadi, M. Thermal denaturation assays in chemical biology. Assay Drug Dev. Technol. 2012, 10, 128–136. [Google Scholar] [CrossRef]
- He, X.M.; Carter, D.C. Atomic structure and chemistry of human serum albumin. Nature 1992, 358, 209–215. [Google Scholar] [CrossRef]
- Nemergut, M.; Sedlakova, D.; Fabriciova, G.; Belej, D.; Jancura, D.; Sedlak, E. Explanation of inconsistencies in the determination of human serum albumin thermal stability. Int. J. Biol. Macromol. 2023, 232, 123379. [Google Scholar] [CrossRef]
- Flora, K.; Brennan, J.D.; Baker, G.A.; Doody, M.A.; Bright, F.V. Unfolding of acrylodan-labeled human serum albumin probed by steady-state and time-resolved fluorescence methods. Biophys. J. 1998, 75, 1084–1096. [Google Scholar] [CrossRef]
- Zaidi, N.; Ajmal, M.R.; Rabbani, G.; Ahmad, E.; Khan, R.H. A Comprehensive Insight into Binding of Hippuric Acid to Human Serum Albumin: A Study to Uncover Its Impaired Elimination through Hemodialysis. PLoS ONE 2013, 8, e71422. [Google Scholar] [CrossRef]
- Shaw, A.K.; Pal, S.K. Spectroscopic studies on the effect of temperature on pH-induced folded states of human serum albumin. J. Photochem. Photobiol. B Biol. 2008, 90, 69–77. [Google Scholar] [CrossRef]
- Mitra, R.K.; Sinha, S.S.; Pal, S.K. Hydration in protein folding: Thermal unfolding/refolding of human serum albumin. Langmuir 2007, 23, 10224–10229. [Google Scholar] [CrossRef]
- Farruggia, B.; Rodriguez, F.; Rigatuso, R.; Fidelio, G.; Pico, G. The participation of human serum albumin domains in chemical and thermal unfolding. J. Protein Chem. 2001, 20, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Dill, K.A. Dominant forces in protein folding. Biochemistry 1990, 29, 7133–7155. [Google Scholar] [CrossRef] [PubMed]
- Baljinnyam, B.; Ronzetti, M.; Yasgar, A.; Simeonov, A. Applications of Differential Scanning Fluorometry and Related Technologies in Characterization of Protein-Ligand Interactions. Methods Mol. Biol. 2020, 2089, 47–68. [Google Scholar]
- Martin, L.; Schwarz, S.; Breitsprecher, D. Prometheus: The Platform for Analyzing Protein Stability and Thermal Unfolding of Proteins. Available online: https://resources.nanotempertech.com/i/1050485-prometheus-the-platform-for-analyzing-protein-stability-and-thermal-unfolding-of-proteins/0? (accessed on 15 September 2024).
- Taylor, C.G.; Meisl, G.; Horrocks, M.H.; Zetterberg, H.; Knowles, T.P.J.; Klenerman, D. Extrinsic Amyloid-Binding Dyes for Detection of Individual Protein Aggregates in Solution. Anal. Chem. 2018, 90, 10385–10393. [Google Scholar] [CrossRef]
- Watanabe, T.; Swaminathan, P.; Björk, L.; Nakanishi, A.; Sato, H.; Zako, T.; Nilsson, K.P.R.; Lindgren, M. Spectroscopic Response of Chiral Proteophenes Binding to Two Chiral Insulin Amyloids. ChemPhotoChem 2024, e202400225. [Google Scholar] [CrossRef]
- Bartosova, J.; Kalousek, I.; Hrkal, Z. Binding of meso-tetra(4-sulfonatophenyl)porphine to haemopexin and albumin studied by spectroscopy methods. Int. J. Biochem. 1994, 26, 631–637. [Google Scholar] [CrossRef]
- Ion, R.-M.; Suica-Bunghez, I.-R. Oxidative Stress-Based Photodynamic Therapy with Synthetic Sensitizers and/or Natural Antioxidants. In Basic Principles and Clinical Significance of Oxidative Stress; Gowder, S.J.T., Ed.; IntechOpen: Rijeka, Croatia, 2015; pp. 283–317. [Google Scholar]
- Davila, J.; Harriman, A. Photochemical and Radiolytic Oxidation of a Zinc Porphyrin Bound to Human Serum-Albumin. J. Am. Chem. Soc. 1990, 112, 2686–2690. [Google Scholar] [CrossRef]
- He, W.Y.; Li, Y.; Si, H.Z.; Dong, Y.M.; Sheng, F.L.; Yao, X.J.; Hu, Z.D. Molecular modeling and spectroscopic studies on the binding of guaiacol to human serum albumin. J. Photochem. Photobiol. A Chem. 2006, 182, 158–167. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Dong, L.; Li, J.Z.; He, W.Y.; Chen, X.G.; Hu, Z.D. Investigation of the interaction between naringin and human serum albumin. J. Mol. Struct. 2008, 875, 1–8. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, C.M.; Li, G.B.; Yang, S.Y.; Liu, L.S.; Tan, C.L.; Wei, S.; Hu, X.Y.; Zhao, Y.Y.; Fan, J. Studies on the binding of isoalantolactone to human serum albumin by molecular spectroscopy and modeling. Indian J. Chem. A 2011, 50, 1547–1554. [Google Scholar]
- Kalyanasundaram, K.; Neumannspallart, M. Photophysical and Redox Properties of Water-Soluble Porphyrins in Aqueous-Media. J. Phys. Chem. 1982, 86, 5163–5169. [Google Scholar] [CrossRef]
- Galantini, L.; Leggio, C.; Konarev, P.V.; Pavel, N.V. Human serum albumin binding ibuprofen: A 3D description of the unfolding pathway in urea. Biophys. Chem. 2010, 147, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, A.B.; Holder, A.J. Gauss View 5.0, User’s Reference; Gaussian Inc.: Pittsburgh, PA, USA, 2009. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. GAUSSIAN09; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef] [PubMed]
- Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput.-Aided Mol. Des. 2013, 27, 221–234. [Google Scholar] [CrossRef]
- Schrödinger Release 2018-1Schrödinger Release 2018-1; Phase S., LLC: New York, NY, USA, 2018.
- Repasky, M.P.; Shelley, M.; Friesner, R.A. Flexible ligand docking with Glide. Curr. Protoc. Bioinform. 2007, 18, 8.12.1–8.12.36. [Google Scholar] [CrossRef]
- Schrödinger Release 2018-1: Desmond Molecular Dynamics System D.E.S.R. N.Y., NY, 2018. Maestro-Desmond Interoperability Tools; Schrödinger: New York, NY, USA, 2018.
Molar Ratio [TSPP]:[HSA] | α-Helix % | β-Antiparallel % | β-Sheet % | β-Turn % | Random Coil % |
---|---|---|---|---|---|
0:1 | 50.1 ± 0.7 | 4.3 ± 0.2 | 6.3 ± 0.1 | 14.8 ± 0.1 | 25.1 ± 0.3 |
1:1 | 47.4 ± 0.7 | 5.2 ± 0.2 | 6.4 ± 0.1 | 15.1 ± 0.2 | 26.0 ± 0.2 |
10:1 | 45.4 ± 0.9 | 5.9 ± 0.4 | 6.5 ± 0.1 | 15.4 ± 0.1 | 26.5 ± 0.2 |
50:1 | 43.9 ± 0.7 | 6.5 ± 0.4 | 6.6 ± 0.1 | 15.5 ± 0.1 | 26.9 ± 0.1 |
100:1 | 42.4 ± 0.2 | 7.0 ± 0.3 | 6.6 ± 0.1 | 15.8 ± 0.1 | 27.7 ± 0.5 |
150:1 | 42.4 ± 0.2 | 7.2 ± 0.7 | 6.6 ± 0.0 | 15.9 ± 0.4 | 27.4 ± 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strózik, T.; Wolszczak, M.; Hilczer, M.; Pawlak, M.; Wasiak, T.; Wardęga, P.; Ionov, M.; Bryszewska, M. Multi-Spectroscopic and Molecular Modeling Studies of Interactions Between Anionic Porphyrin and Human Serum Albumin. Int. J. Mol. Sci. 2024, 25, 12473. https://doi.org/10.3390/ijms252212473
Strózik T, Wolszczak M, Hilczer M, Pawlak M, Wasiak T, Wardęga P, Ionov M, Bryszewska M. Multi-Spectroscopic and Molecular Modeling Studies of Interactions Between Anionic Porphyrin and Human Serum Albumin. International Journal of Molecular Sciences. 2024; 25(22):12473. https://doi.org/10.3390/ijms252212473
Chicago/Turabian StyleStrózik, Tadeusz, Marian Wolszczak, Maria Hilczer, Magdalena Pawlak, Tomasz Wasiak, Piotr Wardęga, Maksim Ionov, and Maria Bryszewska. 2024. "Multi-Spectroscopic and Molecular Modeling Studies of Interactions Between Anionic Porphyrin and Human Serum Albumin" International Journal of Molecular Sciences 25, no. 22: 12473. https://doi.org/10.3390/ijms252212473
APA StyleStrózik, T., Wolszczak, M., Hilczer, M., Pawlak, M., Wasiak, T., Wardęga, P., Ionov, M., & Bryszewska, M. (2024). Multi-Spectroscopic and Molecular Modeling Studies of Interactions Between Anionic Porphyrin and Human Serum Albumin. International Journal of Molecular Sciences, 25(22), 12473. https://doi.org/10.3390/ijms252212473