Role of Peroxisome Proliferator-Activated Receptor α-Dependent Mitochondrial Metabolism in Ovarian Cancer Stem Cells
<p>Role of PPARs in energy metabolism of ovarian CSCs. (<b>A</b>) The dependence of each carbon source (fuel) dependency was calculated from the oxygen consumption rates measured by the Seahorse analyzer using the Mito Fuel Flex test kit. Cells were treated with 0.1% DMSO or 5 μM GW6471 for 24 h before performing the Mito Fuel Flex test. (<b>B</b>) The mRNA expression levels of PPARs in A2780 (non-CSC) and A2780-SP (CSC) cells. (<b>C</b>) PPAR transcriptional activity was measured using Dual-Luciferase Reporter assay. Cells were transfected with luciferase plasmid vectors 48 h before measuring luciferase signal activity. Data are presented as mean ± SEM. ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001 (<span class="html-italic">n</span> = 3 for each group). PPAR, peroxisome proliferator-activated receptor; DMSO, dimethyl sulfoxide; CSC, cancer stem cell; mRNA, messenger ribonucleic acid; SEM, standard error of the mean.</p> "> Figure 2
<p>Effects of PPAR antagonists on cell viability of ovarian CSCs. (<b>A</b>) Cell viability was determined by MTT assay. CSCs were treated with the indicated concentrations of antagonists (GW6471, GW9662, GSK0660) for 48 h. (<b>B</b>) Representative images of spheroid formation assay of CSCs in the presence or absence of GW6471. Scale bar, 200 μm. (<b>C</b>) Quantification of spheroid number in spheroid formation assay. The number of spheroids with a diameter > 100 μm was counted. Data are presented as mean ± SEM. *** <span class="html-italic">p</span> < 0.001 (<span class="html-italic">n</span> = 3 for each group). (<b>D</b>) Representative immunocytochemistry images for detection of cleaved caspase-3. CSCs were treated with 0.1% DMSO (mock) or 10 μM GW6471 for 48 h before staining. Scale bar, 100 μm. PPAR, peroxisome proliferator-activated receptor; CSC, cancer stem cell; MTT, 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide; DMSO, dimethyl sulfoxide; SEM, standard error of the mean.</p> "> Figure 3
<p>Effects of PPARα knockdown on cell proliferation and spheroid-forming abilities of CSCs. (<b>A</b>) Relative mRNA expression of PPARα in CSCs transduced with lentiviruses bearing sh-PPARα or sh-control was measured by qRT-PCR. (<b>B</b>) Cell proliferation assessed by WST assay at indicated time points. (<b>C</b>) Representative images of spheroid formation in CSCs transduced with lentiviruses bearing sh-PPARα or sh-control. Scale bar, 300 μm (<b>D</b>) Quantification of spheroid numbers in spheroid formation assay. The number of spheroids > 150 μm in diameter. Data are presented as mean ± SEM. ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001 (<span class="html-italic">n</span> = 3 for each group). PPAR: peroxisome proliferator-activated receptor; CSC: cancer stem cell; mRNA: messenger ribonucleic acid; sh: small hairpin; qRT-PCR: quantitative reverse transcription–polymerase chain reaction; WST: water-soluble tetrazolium salt; SEM: standard error of the mean.</p> "> Figure 4
<p>Effects of GW6471 on the mitochondrial metabolism of ovarian CSCs. (<b>A</b>) Oxygen consumption rates of the mock and GW6471-treated groups were measured with a Seahorse analyzer using the Mito Stress test kit. Oligo: oligomycin; FCCP: carbonyl cyanide-4 (trifluoromethoxy) phenylhydrazone; R/A: rotenone and antimycin A. (<b>B</b>) Mitochondrial metabolic parameters were calculated from the Mito Stress test results. Basal: basal respiration; maximal: maximal respiration; spare: spare respiratory capacity; non-mito: nonmitochondrial respiration. (<b>C</b>) Dependence on each carbon source (fuel) was calculated from oxygen consumption rates measured by a Seahorse analyzer using the Mito Fuel Flex test kit. CSCs were treated with 0.1% DMSO or 5 μM GW6471 for 24 h before performing the Mito Stress Test or Mito Fuel Flex test. Data are presented as mean ± SEM. *** <span class="html-italic">p</span> < 0.001 (<span class="html-italic">n</span> = 3 for each group). CSC: cancer stem cell; DMSO: dimethyl sulfoxide; SEM: standard error of the mean.</p> "> Figure 5
<p>Effects of GW6471 on in vivo tumor growth of ovarian CSCs. (<b>A</b>) Experimental overview of ovarian cancer xenotransplantation model. Treatment with PBS or 20 μM GW6471 was started on day 22 after cell injection and continued twice a week until day 40. (<b>B</b>) Representative images of mice and resected tumors at day 43. (<b>C</b>) Tumor weight measured after resection on day 43. (<b>D</b>,<b>E</b>) Tumor volume (<b>D</b>) and mouse body weight (<b>E</b>) were measured twice a week from day 22 to day 43. Data are presented as mean ± SEM. * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01 (<span class="html-italic">n</span> = 3 for each group). CSC: cancer stem cell; PBS: phosphate-buffered saline; SEM: standard error of the mean.</p> "> Figure 6
<p>Role of PPARs in the prognosis of patients with ovarian cancer. Kaplan–Meier survival curves for overall survival and disease-free survival stratified by the expression level of PPAR subtypes (<span class="html-italic">PPARA</span>, <span class="html-italic">PPARG</span>, <span class="html-italic">PPARD</span>). (<b>A</b>,<b>C</b>,<b>E</b>) Overall survival of patients with low (blue line) or high (red line) expression of <span class="html-italic">PPARA</span>, <span class="html-italic">PPARG</span>, or <span class="html-italic">PPARD</span>, respectively. (<b>B</b>,<b>D</b>,<b>F</b>) Disease-free survival for patients with low (blue line) or high (red line) expression of <span class="html-italic">PPARA</span>, <span class="html-italic">PPARG</span>, or <span class="html-italic">PPARD</span>, respectively. * <span class="html-italic">p</span> < 0.05; *** <span class="html-italic">p</span> < 0.001. PPAR: peroxisome proliferator-activated receptor; n: number of patients in each group; HR: hazard ratio; 95% CI: 95% confidence interval.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Expression and Activity of PPARs Are Increased in Ovarian CSCs
2.2. PPARα Plays a Pivotal Role in the Survival of Ovarian CSC
2.3. Treatment with GW6471 Inhibits Mitochondrial Metabolism of CSCs
2.4. Treatment with GW6471 Suppresses Tumor Growth in an Ovarian Cancer Xenograft Model
2.5. PPARα Is Associated with Poor Prognosis in Patients with Ovarian Cancer
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Cell Culture
4.3. Dual-Luciferase Reporter Assay
4.4. Immunoblotting Assay
4.5. Quantitative Reverse Transcription-Polymerase Chain Reaction
4.6. Cytotoxicity Assay
4.7. Spheroid Formation
4.8. Immunocytochemistry Staining
4.9. Silencing of PPARα Using shRNA Lentiviral Transduction
4.10. Cell Proliferation Assay
4.11. Seahorse Assay
4.12. Antitumor Efficacy of PPARα Antagonist in a Xenograft Tumor Model
4.13. The Cancer Genome Atlas Dataset Analysis
4.14. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Cortez, A.J.; Tudrej, P.; Kujawa, K.A.; Lisowska, K.M. Advances in ovarian cancer therapy. Cancer Chemother. Pharmacol. 2018, 81, 17–38. [Google Scholar] [CrossRef] [PubMed]
- Keyvani, V.; Farshchian, M.; Esmaeili, S.A.; Yari, H.; Moghbeli, M.; Nezhad, S.K.; Abbaszadegan, M.R. Ovarian cancer stem cells and targeted therapy. J. Ovarian Res. 2019, 12, 120. [Google Scholar] [CrossRef]
- Jordan, C.T.; Guzman, M.L.; Noble, M. Cancer stem cells. N. Engl. J. Med. 2006, 355, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, H.; Okudela, K.; Yazawa, T.; Sato, H.; Shimoyamada, H. Cancer stem cell: Implications in cancer biology and therapy with special reference to lung cancer. Lung Cancer 2009, 66, 275–281. [Google Scholar] [CrossRef]
- Reya, T.; Morrison, S.J.; Clarke, M.F.; Weissman, I.L. Stem cells, cancer, and cancer stem cells. Nature 2001, 414, 105–111. [Google Scholar] [CrossRef]
- Bapat, S.A.; Mali, A.M.; Koppikar, C.B.; Kurrey, N.K. Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res. 2005, 65, 3025–3029. [Google Scholar] [CrossRef]
- Abdullah, L.N.; Chow, E.K. Mechanisms of chemoresistance in cancer stem cells. Clin. Transl. Med. 2013, 2, 3. [Google Scholar] [CrossRef]
- Walters Haygood, C.L.; Arend, R.C.; Straughn, J.M.; Buchsbaum, D.J. Ovarian cancer stem cells: Can targeted therapy lead to improved progression-free survival? World J. Stem Cells 2014, 6, 441–447. [Google Scholar] [CrossRef]
- Danhier, P.; Banski, P.; Payen, V.L.; Grasso, D.; Ippolito, L.; Sonveaux, P.; Porporato, P.E. Cancer metabolism in space and time: Beyond the Warburg effect. Biochim. Biophys. Acta Bioenerg. 2017, 1858, 556–572. [Google Scholar] [CrossRef]
- Koren, E.; Fuchs, Y. The bad seed: Cancer stem cells in tumor development and resistance. Drug Resist. Updat. 2016, 28, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Marrone, L.; Romano, S.; Malasomma, C.; Di Giacomo, V.; Cerullo, A.; Abate, R.; Vecchione, M.A.; Fratantonio, D.; Romano, M.F. Metabolic vulnerability of cancer stem cells and their niche. Front. Pharmacol. 2024, 15, 1375993. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Temkin, S.M.; Hawkridge, A.M.; Guo, C.; Wang, W.; Wang, X.Y.; Fang, X. Fatty acid oxidation: An emerging facet of metabolic transformation in cancer. Cancer Lett. 2018, 435, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Nieman, K.M.; Kenny, H.A.; Penicka, C.V.; Ladanyi, A.; Buell-Gutbrod, R.; Zillhardt, M.R.; Romero, I.L.; Carey, M.S.; Mills, G.B.; Hotamisligil, G.S.; et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 2011, 17, 1498–1503. [Google Scholar] [CrossRef]
- Motohara, T.; Masuda, K.; Morotti, M.; Zheng, Y.; El-Sahhar, S.; Chong, K.Y.; Wietek, N.; Alsaadi, A.; Carrami, E.M.; Hu, Z.; et al. An evolving story of the metastatic voyage of ovarian cancer cells: Cellular and molecular orchestration of the adipose-rich metastatic microenvironment. Oncogene 2019, 38, 2885–2898. [Google Scholar] [CrossRef]
- Chen, R.R.; Yung, M.M.H.; Xuan, Y.; Zhan, S.; Leung, L.L.; Liang, R.R.; Leung, T.H.Y.; Yang, H.; Xu, D.; Sharma, R.; et al. Targeting of lipid metabolism with a metabolic inhibitor cocktail eradicates peritoneal metastases in ovarian cancer cells. Commun. Biol. 2019, 2, 281. [Google Scholar] [CrossRef]
- Mangelsdorf, D.J.; Thummel, C.; Beato, M.; Herrlich, P.; Schutz, G.; Umesono, K.; Blumberg, B.; Kastner, P.; Mark, M.; Chambon, P.; et al. The nuclear receptor superfamily: The second decade. Cell 1995, 83, 835–839. [Google Scholar] [CrossRef]
- Tachibana, K.; Yamasaki, D.; Ishimoto, K.; Doi, T. The Role of PPARs in Cancer. PPAR Res. 2008, 2008, 102737. [Google Scholar] [CrossRef]
- Takada, I.; Makishima, M. Peroxisome proliferator-activated receptor agonists and antagonists: A patent review (2014-present). Expert Opin. Ther. Pat. 2020, 30, 1–13. [Google Scholar] [CrossRef]
- Montaigne, D.; Butruille, L.; Staels, B. PPAR control of metabolism and cardiovascular functions. Nat. Rev. Cardiol. 2021, 18, 809–823. [Google Scholar] [CrossRef]
- Bougarne, N.; Weyers, B.; Desmet, S.J.; Deckers, J.; Ray, D.W.; Staels, B.; De Bosscher, K. Molecular Actions of PPARalpha in Lipid Metabolism and Inflammation. Endocr. Rev. 2018, 39, 760–802. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Kim, D.H.; Heck, B.E.; Shaffer, M.; Yoo, K.H.; Hur, J. PPAR-delta agonist affects adipo-chondrogenic differentiation of human mesenchymal stem cells through the expression of PPAR-gamma. Regen. Ther. 2020, 15, 103–111. [Google Scholar] [CrossRef]
- Vitale, S.G.; Lagana, A.S.; Nigro, A.; La Rosa, V.L.; Rossetti, P.; Rapisarda, A.M.; La Vignera, S.; Condorelli, R.A.; Corrado, F.; Buscema, M.; et al. Peroxisome Proliferator-Activated Receptor Modulation during Metabolic Diseases and Cancers: Master and Minions. PPAR Res. 2016, 2016, 6517313. [Google Scholar] [CrossRef]
- Wang, Y.; Lei, F.; Lin, Y.; Han, Y.; Yang, L.; Tan, H. Peroxisome proliferator-activated receptors as therapeutic target for cancer. J. Cell Mol. Med. 2023, 28, e17931. [Google Scholar] [CrossRef] [PubMed]
- Messmer, D.; Lorrain, K.; Stebbins, K.; Bravo, Y.; Stock, N.; Cabrera, G.; Correa, L.; Chen, A.; Jacintho, J.; Chiorazzi, N.; et al. A Selective Novel Peroxisome Proliferator-Activated Receptor (PPAR)-alpha Antagonist Induces Apoptosis and Inhibits Proliferation of CLL Cells In Vitro and In Vivo. Mol. Med. 2015, 21, 410–419. [Google Scholar] [CrossRef]
- Sun, J.; Yu, L.; Qu, X.; Huang, T. The role of peroxisome proliferator-activated receptors in the tumor microenvironment, tumor cell metabolism, and anticancer therapy. Front. Pharmacol. 2023, 14, 1184794. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Yin, X.; Jiang, Y.; Jin, L.; Liang, W. PPARalpha at the crossroad of metabolic-immune regulation in cancer. FEBS J. 2022, 289, 7726–7739. [Google Scholar] [CrossRef]
- Peters, J.M.; Cattley, R.C.; Gonzalez, F.J. Role of PPAR alpha in the mechanism of action of the nongenotoxic carcinogen and peroxisome proliferator Wy-14,643. Carcinogenesis 1997, 18, 2029–2033. [Google Scholar] [CrossRef]
- Kuramoto, K.; Yamamoto, M.; Suzuki, S.; Togashi, K.; Sanomachi, T.; Kitanaka, C.; Okada, M. Inhibition of the Lipid Droplet-Peroxisome Proliferator-Activated Receptor alpha Axis Suppresses Cancer Stem Cell Properties. Genes 2021, 12, 99. [Google Scholar] [CrossRef]
- Seo, E.J.; Kwon, Y.W.; Jang, I.H.; Kim, D.K.; Lee, S.I.; Choi, E.J.; Kim, K.H.; Suh, D.S.; Lee, J.H.; Choi, K.U.; et al. Autotaxin Regulates Maintenance of Ovarian Cancer Stem Cells through Lysophosphatidic Acid-Mediated Autocrine Mechanism. Stem Cells 2016, 34, 551–564. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Wang, J.; Shen, Y.; Tang, X.; Yu, F.; Wang, R. Expression and Function of PPARs in Cancer Stem Cells. Curr. Stem Cell Res. Ther. 2016, 11, 226–234. [Google Scholar] [CrossRef]
- Castelli, V.; Catanesi, M.; Alfonsetti, M.; Laezza, C.; Lombardi, F.; Cinque, B.; Cifone, M.G.; Ippoliti, R.; Benedetti, E.; Cimini, A.; et al. PPARalpha-Selective Antagonist GW6471 Inhibits Cell Growth in Breast Cancer Stem Cells Inducing Energy Imbalance and Metabolic Stress. Biomedicines 2021, 9, 127. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research, N. Integrated genomic analyses of ovarian carcinoma. Nature 2011, 474, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Abu Aboud, O.; Wettersten, H.I.; Weiss, R.H. Inhibition of PPARalpha induces cell cycle arrest and apoptosis, and synergizes with glycolysis inhibition in kidney cancer cells. PLoS ONE 2013, 8, e71115. [Google Scholar] [CrossRef] [PubMed]
- Florio, R.; De Lellis, L.; di Giacomo, V.; Di Marcantonio, M.C.; Cristiano, L.; Basile, M.; Verginelli, F.; Verzilli, D.; Ammazzalorso, A.; Prasad, S.C.; et al. Effects of PPARalpha inhibition in head and neck paraganglioma cells. PLoS ONE 2017, 12, e0178995. [Google Scholar] [CrossRef]
- Benedetti, E.; d’Angelo, M.; Ammazzalorso, A.; Gravina, G.L.; Laezza, C.; Antonosante, A.; Panella, G.; Cinque, B.; Cristiano, L.; Dhez, A.C.; et al. PPARalpha Antagonist AA452 Triggers Metabolic Reprogramming and Increases Sensitivity to Radiation Therapy in Human Glioblastoma Primary Cells. J. Cell Physiol. 2017, 232, 1458–1466. [Google Scholar] [CrossRef]
- Kim, S.M.; Woo, J.S.; Jeong, C.H.; Ryu, C.H.; Lim, J.Y.; Jeun, S.S. Effective combination therapy for malignant glioma with TRAIL-secreting mesenchymal stem cells and lipoxygenase inhibitor MK886. Cancer Res. 2012, 72, 4807–4817. [Google Scholar] [CrossRef]
- Gallorini, M.; Di Valerio, V.; Bruno, I.; Carradori, S.; Amoroso, R.; Cataldi, A.; Ammazzalorso, A. Phenylsulfonimide PPARalpha Antagonists Enhance Nrf2 Activation and Promote Oxidative Stress-Induced Apoptosis/Pyroptosis in MCF7 Breast Cancer Cells. Int. J. Mol. Sci. 2023, 24, 1316. [Google Scholar] [CrossRef]
- Tan, Y.; Wang, M.; Yang, K.; Chi, T.; Liao, Z.; Wei, P. PPAR-alpha Modulators as Current and Potential Cancer Treatments. Front. Oncol. 2021, 11, 599995. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Xin, B.; Shigeto, T.; Umemoto, M.; Kasai-Sakamoto, A.; Futagami, M.; Tsuchida, S.; Al-Mulla, F.; Mizunuma, H. Clofibric acid, a peroxisome proliferator-activated receptor alpha ligand, inhibits growth of human ovarian cancer. Mol. Cancer Ther. 2007, 6, 1379–1386. [Google Scholar] [CrossRef]
- Sancho, P.; Barneda, D.; Heeschen, C. Hallmarks of cancer stem cell metabolism. Br. J. Cancer 2016, 114, 1305–1312. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, M.; Lefebvre, P.; Staels, B. Molecular mechanism of PPARalpha action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J. Hepatol. 2015, 62, 720–733. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Byun, J.K.; Choi, Y.K.; Park, K.G. Targeting glutamine metabolism as a therapeutic strategy for cancer. Exp. Mol. Med. 2023, 55, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, E.; Marin de Mas, I.; Zodda, E.; Marin, S.; Morrish, F.; Selivanov, V.; Meca-Cortes, O.; Delowar, H.; Pons, M.; Izquierdo, I.; et al. Metabolic Reprogramming and Dependencies Associated with Epithelial Cancer Stem Cells Independent of the Epithelial-Mesenchymal Transition Program. Stem Cells 2016, 34, 1163–1176. [Google Scholar] [CrossRef] [PubMed]
- Sancho, P.; Burgos-Ramos, E.; Tavera, A.; Bou Kheir, T.; Jagust, P.; Schoenhals, M.; Barneda, D.; Sellers, K.; Campos-Olivas, R.; Grana, O.; et al. MYC/PGC-1alpha Balance Determines the Metabolic Phenotype and Plasticity of Pancreatic Cancer Stem Cells. Cell Metab. 2015, 22, 590–605. [Google Scholar] [CrossRef]
- Moindjie, H.; Rodrigues-Ferreira, S.; Nahmias, C. Mitochondrial Metabolism in Carcinogenesis and Cancer Therapy. Cancers 2021, 13, 3311. [Google Scholar] [CrossRef]
- Davidson, B.; Hadar, R.; Stavnes, H.T.; Trope, C.G.; Reich, R. Expression of the peroxisome proliferator-activated receptors-alpha, -beta, and -gamma in ovarian carcinoma effusions is associated with poor chemoresponse and shorter survival. Hum. Pathol. 2009, 40, 705–713. [Google Scholar] [CrossRef]
- Yaghoubizadeh, M.; Pishkar, L.; Basati, G. Aberrant Expression of Peroxisome Proliferator-Activated Receptors in Colorectal Cancer and Their Association with Cancer Progression and Prognosis. Gastrointest. Tumors 2020, 7, 11–20. [Google Scholar] [CrossRef]
- de Bruijn, I.; Kundra, R.; Mastrogiacomo, B.; Tran, T.N.; Sikina, L.; Mazor, T.; Li, X.; Ochoa, A.; Zhao, G.; Lai, B.; et al. Analysis and Visualization of Longitudinal Genomic and Clinical Data from the AACR Project GENIE Biopharma Collaborative in cBioPortal. Cancer Res. 2023, 83, 3861–3867. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 7 May 2024).
- Lausen, B.; Schumacher, M. Maximally Selected Rank Statistics. Biometrics 1992, 48, 73–85. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.Y.; Shin, M.J.; Choi, S.M.; Kim, D.K.; Choi, M.G.; Kim, J.S.; Suh, D.S.; Kim, J.H.; Kim, S.J. Role of Peroxisome Proliferator-Activated Receptor α-Dependent Mitochondrial Metabolism in Ovarian Cancer Stem Cells. Int. J. Mol. Sci. 2024, 25, 11760. https://doi.org/10.3390/ijms252111760
Lee SY, Shin MJ, Choi SM, Kim DK, Choi MG, Kim JS, Suh DS, Kim JH, Kim SJ. Role of Peroxisome Proliferator-Activated Receptor α-Dependent Mitochondrial Metabolism in Ovarian Cancer Stem Cells. International Journal of Molecular Sciences. 2024; 25(21):11760. https://doi.org/10.3390/ijms252111760
Chicago/Turabian StyleLee, Seo Yul, Min Joo Shin, Seong Min Choi, Dae Kyoung Kim, Mee Gyeon Choi, Jun Se Kim, Dong Soo Suh, Jae Ho Kim, and Seong Jang Kim. 2024. "Role of Peroxisome Proliferator-Activated Receptor α-Dependent Mitochondrial Metabolism in Ovarian Cancer Stem Cells" International Journal of Molecular Sciences 25, no. 21: 11760. https://doi.org/10.3390/ijms252111760
APA StyleLee, S. Y., Shin, M. J., Choi, S. M., Kim, D. K., Choi, M. G., Kim, J. S., Suh, D. S., Kim, J. H., & Kim, S. J. (2024). Role of Peroxisome Proliferator-Activated Receptor α-Dependent Mitochondrial Metabolism in Ovarian Cancer Stem Cells. International Journal of Molecular Sciences, 25(21), 11760. https://doi.org/10.3390/ijms252111760