Harmony in Healing: Investigating Platelet-Rich Plasma Activation during Acetylsalicylic Acid Treatment
<p>Platelet-rich plasma collection and activation. PRP was isolated using a whole blood separator (<b>A</b>). PPP (syringe on the left) was collected each time along with the PRP (<b>B</b>) and was used for subsequent thrombin isolation (<b>C</b>). Activation with thrombin resulted in visible clot formation, marked with a black arrow (<b>D</b>). Samples after 60 min activation, from the left: non-activated PRP, PRP activated with thrombin, PRP activated with collagen IV, PRP activated with collagen I, and PPP. PRP—platelet-rich plasma; PPP—platelet-poor plasma.</p> "> Figure 2
<p>The comparison between cytokine concentration in non-activated platelet-rich plasma obtained from patients treated with acetylsalicylic acid (ASA) compared to the control group. After activation with autologous thrombin/CaCl<sub>2,</sub> the fold increase in fluorescence intensity in the ASA group in comparison to the control group was 1.16 for IL-1A, 1.10 for IL-8, 1.16 for IL-10, 1.06 for MCP-1, 1.11 for INFg, and 1.32 for TNFa (<a href="#ijms-25-11037-f003" class="html-fig">Figure 3</a>). For IL-1B, IL-4, and IL-6, activation with thrombin/CaCl2 resulted in lower fluorescence intensity in the ASA group than in the control. Activation with collagen I increased only the release of MCP-1 (1.15-fold) and TNFa (1.26-fold). In turn, activation with collagen IV resulted in a fold change of 1.61, 1.38, 1.10, 1.22, 1.23, 1.48, and 1.10 for IL-1B, IL-4, IL-6, IL-8, IL-10, IFNg, and TNFa, respectively. *, <span class="html-italic">p</span>-value < 0.05 was considered statistically significant.</p> "> Figure 3
<p>The comparison between inflammatory cytokine concentration in platelet-rich plasma activated with calcium chloride (CaCl<sub>2</sub>), collagen I (col I), and collagen IV (col IV) obtained from patients treated with acetylsalicylic acid (ASA) compared to the control group.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Platelet Concentration in the Whole Blood
2.2. Clot Formation
2.3. Inflammatory Cytokines in Non-Activated PRP
3. Discussion
4. Materials and Methods
4.1. PRP Collection
4.2. Thrombin Isolation
4.3. PRP Activation
4.4. Cytokine Release
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Everts, P.; Onishi, K.; Jayaram, P.; Lana, J.F.; Mautner, K. Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020. Int. J. Mol. Sci. 2020, 21, 7794. [Google Scholar] [CrossRef] [PubMed]
- Sethi, D.; Martin, K.E.; Shrotriya, S.; Brown, B.L. Systematic literature review evaluating evidence and mechanisms of action for platelet-rich plasma as an antibacterial agent. J. Cardiothorac. Surg. 2021, 16, 1–43. [Google Scholar] [CrossRef] [PubMed]
- Bolton, L. Platelet-Rich Plasma: Optimal Use in Surgical Wounds. Wounds: A Compend. Clin. Res. Pract. 2021, 33, 219–221. [Google Scholar] [CrossRef]
- Frelinger, A.L.; Gerrits, A.J.; Neculaes, V.B.; Gremmel, T.; Torres, A.S.; Caiafa, A.; Carmichael, S.L.; Michelson, A.D. Tunable activation of therapeutic platelet-rich plasma by pulse electric field: Differential effects on clot formation, growth factor release, and platelet morphology. PLoS ONE 2018, 13, e0203557. [Google Scholar] [CrossRef]
- Lin, M.-Y.; Lin, C.-S.; Hu, S.; Chung, W.-H. Progress in the Use of Platelet-rich Plasma in Aesthetic and Medical Dermatology. J. Clin. Aesthetic Dermatol. 2020, 13, 28–35. [Google Scholar]
- White, C.; Brahs, A.; Dorton, D.; Witfill, K. Platelet-Rich Plasma: A Comprehensive Review of Emerging Applications in Medical and Aesthetic Dermatology. J. Clin. Aesthetic Dermatol. 2021, 14, 44–57. [Google Scholar]
- Piszczorowicz, L.; Król, D.; Dyląg, S. Autologous platelet-rich plasma therapy—A promising method for tissue repair/ /regeneration in many medical fields. J. Transfus. Med. 2020, 13, 135–148. [Google Scholar] [CrossRef]
- Gaule, T.G.; Ajjan, R.A. Fibrin(ogen) as a Therapeutic Target: Opportunities and Challenges. Int. J. Mol. Sci. 2021, 22, 6916. [Google Scholar] [CrossRef]
- Cavallo, C.; Roffi, A.; Grigolo, B.; Mariani, E.; Pratelli, L.; Merli, G.; Kon, E.; Marcacci, M.; Filardo, G. Platelet-Rich Plasma: The Choice of Activation Method Affects the Release of Bioactive Molecules. BioMed Res. Int. 2016, 2016, 1–7. [Google Scholar] [CrossRef]
- Garner, A.L.; Frelinger, A.L.; Gerrits, A.J.; Gremmel, T.; Forde, E.E.; Carmichael, S.L.; Michelson, A.D.; Neculaes, V.B.; Garner, A.L.; Frelinger, A.L.; et al. Using extracellular calcium concentration and electric pulse conditions to tune platelet-rich plasma growth factor release and clotting. Med. Hypotheses 2019, 125, 100–105. [Google Scholar] [CrossRef]
- Hansson, E.C.; Malm, C.J.; Hesse, C.; Hornestam, B.; Dellborg, M.; Rexius, H.; Jeppsson, A. Platelet function recovery after ticagrelor withdrawal in patients awaiting urgent coronary surgery. Eur. J. Cardio-Thorac. Surg. 2016, 51, 633–637. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, J.K.; Dunuu, T.; Park, S.J.; Kang, J.Y.; Choi, R.K.; Hyon, M.S. Recovery Time of Platelet Function After Aspirin Withdrawal. Curr. Ther. Res. 2014, 76, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Hesseler, M.J.; Shyam, N. Platelet-rich plasma and its utility in medical dermatology: A systematic review. J. Am. Acad. Dermatol. 2019, 81, 834–846. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Paliczak, A.; Delgado, D. Evidence-based indications of platelet-rich plasma therapy. Expert. Rev. Hematol. 2020, 14, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, Z.; Alimohamadi, Y.; Janani, M.; Hejazi, P.; Kamali, M.; Goodarzi, A. Platelet-rich plasma in the treatment of scars, to suggest or not to suggest? A systematic review and meta-analysis. J. Tissue Eng. Regen. Med. 2022, 16, 875–899. [Google Scholar] [CrossRef]
- Gupta, A.K.; Versteeg, S.G.; Rapaport, J.; Hausauer, A.K.; Shear, N.H.; Piguet, V. The Efficacy of Platelet-Rich Plasma in the Field of Hair Restoration and Facial Aesthetics—A Systematic Review and Meta-analysis. J. Cutan. Med. Surg. 2019, 23, 185–203. [Google Scholar] [CrossRef]
- Fang, J.; Wang, X.; Jiang, W.; Zhu, Y.; Hu, Y.; Zhao, Y.; Song, X.; Zhao, J.; Zhang, W.; Peng, J.; et al. Platelet-Rich Plasma Therapy in the Treatment of Diseases Associated with Orthopedic Injuries. Tissue Eng. Part. B Rev. 2020, 26, 571–585. [Google Scholar] [CrossRef]
- Amable, P.R.; Carias, R.B.V.; Teixeira, M.V.T.; da Cruz Pacheco, Í.; Amaral, R.J.F.C.D.; Granjeiro, J.M.; Borojevic, R. Platelet-rich plasma preparation for regenerative medicine: Optimization and quantification of cytokines and growth factors. Stem Cell Res. Ther. 2013, 4, 67. [Google Scholar] [CrossRef]
- Pochini, A.d.C.; Antonioli, E.; Bucci, D.Z.; Sardinha, L.R.; Andreoli, C.V.; Ferretti, M.; Ejnisman, B.; Goldberg, A.C.; Cohen, M. Analysis of cytokine profile and growth factors in platelet-rich plasma obtained by open systems and commercial columns. Einstein-Sao Paulo 2016, 14, 391–397. [Google Scholar] [CrossRef]
- Dejnek, M.; Moreira, H.; Płaczkowska, S.; Barg, E.; Reichert, P.; Królikowska, A. Leukocyte-Rich Platelet-Rich Plasma as an Effective Source of Molecules That Modulate Local Immune and Inflammatory Cell Responses. Oxid. Med. Cell. Longev. 2022, 2022, 8059622. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oh, J.H.; Kim, W.; Park, K.U.; Roh, Y.H. Comparison of the Cellular Composition and Cytokine-Release Kinetics of Various Platelet-Rich Plasma Preparations. Am. J. Sports Med. 2015, 43, 3062–3070. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.I.; Bae, H.C.; Park, H.J.; Lee, M.C.; Han, H.S. Effect of Storage Conditions and Activation on Growth Factor Concentration in Platelet-Rich Plasma. J. Orthop. Res. 2019, 38, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Niemann, M.; Ort, M.; Lauterbach, L.; Streitz, M.; Wilhelm, A.; Grütz, G.; Fleckenstein, F.N.; Graef, F.; Blankenstein, A.; Reinke, S.; et al. Individual immune cell and cytokine profiles determine platelet-rich plasma composition. Arthritis Res. Ther. 2023, 25, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, T.; Ushiki, T.; Suzuki, K.; Sato, M.; Ishiguro, H.; Suwabe, T.; Edama, M.; Omori, G.; Yamamoto, N.; Kawase, T. Characterization of Leukocyte- and Platelet-Rich Plasma Derived from Female Collage Athletes: A Cross-Sectional Cohort Study Focusing on Growth Factor, Inflammatory Cytokines, and Anti-Inflammatory Cytokine Levels. Int. J. Mol. Sci. 2023, 24, 13592. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhu, P.; Liao, B.; You, H.; Cai, Y. Effects and action mechanisms of individual cytokines contained in PRP on osteoarthritis. J. Orthop. Surg. Res. 2023, 18, 1–12. [Google Scholar] [CrossRef]
- Jayaram, P.; Yeh, P.; Patel, S.J.; Cela, R.; Shybut, T.B.; Grol, M.W.; Lee, B.H. Effects of Aspirin on Growth Factor Release From Freshly Isolated Leukocyte-Rich Platelet-Rich Plasma in Healthy Men: A Prospective Fixed-Sequence Controlled Laboratory Study. Am. J. Sports Med. 2019, 47, 1223–1229. [Google Scholar] [CrossRef]
- Frey, C.; Yeh, P.C.; Jayaram, P. Effects of Antiplatelet and Nonsteroidal Anti-inflammatory Medications on Platelet-Rich Plasma: A Systematic Review. Orthop. J. Sports Med. 2020, 8, 2325967120912841. [Google Scholar] [CrossRef]
- Hennigan, B.W.; Good, R.; Adamson, C.; Parker, W.A.; Martin, L.; Anderson, L.; Campbell, M.; Serruys, P.W.; Storey, R.F.; Oldroyd, K.G. Recovery of platelet reactivity following cessation of either aspirin or ticagrelor in patients treated with dual antiplatelet therapy following percutaneous coronary intervention: A GLOBAL LEADERS substudy. Platelets 2020, 33, 141–146. [Google Scholar] [CrossRef]
- Ludwig, H.C.; Birdwhistell, K.E.; Brainard, B.M.; Franklin, S.P. Use of a Cyclooxygenase-2 Inhibitor Does Not Inhibit Platelet Activation or Growth Factor Release from Platelet-Rich Plasma. Am. J. Sports Med. 2017, 45, 3351–3357. [Google Scholar] [CrossRef]
WBCs [103/μL] | RBCs [106/μL] | HGB [g/dL] | HCT [%] | PLT [103/μL] | |
---|---|---|---|---|---|
Control | 6.55 (1.67) | 4.57 (0.24) | 13.97 (0.40) | 40.67 (0.23) | 217.67 (48.13) |
ASA | 8.10 (1.56) | 4.91 (0.18) | 14.70 (0.79) | 43.43 (1.65) | 269.33 (29.48) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maj, M.; Tomczyk, R.; Bajek, A. Harmony in Healing: Investigating Platelet-Rich Plasma Activation during Acetylsalicylic Acid Treatment. Int. J. Mol. Sci. 2024, 25, 11037. https://doi.org/10.3390/ijms252011037
Maj M, Tomczyk R, Bajek A. Harmony in Healing: Investigating Platelet-Rich Plasma Activation during Acetylsalicylic Acid Treatment. International Journal of Molecular Sciences. 2024; 25(20):11037. https://doi.org/10.3390/ijms252011037
Chicago/Turabian StyleMaj, Małgorzata, Remigiusz Tomczyk, and Anna Bajek. 2024. "Harmony in Healing: Investigating Platelet-Rich Plasma Activation during Acetylsalicylic Acid Treatment" International Journal of Molecular Sciences 25, no. 20: 11037. https://doi.org/10.3390/ijms252011037
APA StyleMaj, M., Tomczyk, R., & Bajek, A. (2024). Harmony in Healing: Investigating Platelet-Rich Plasma Activation during Acetylsalicylic Acid Treatment. International Journal of Molecular Sciences, 25(20), 11037. https://doi.org/10.3390/ijms252011037