Metabolic, Mitochondrial, and Inflammatory Effects of Efavirenz, Emtricitabine, and Tenofovir Disoproxil Fumarate in Asymptomatic Antiretroviral-Naïve People with HIV
<p>Metabolic parameters in Naïve HIV patients (n = 33) compared to patients treated with cART (combined antiretroviral therapy) based on TDF/FTC/EFV for more than one year (n = 29). (<b>A</b>) Plasma glucose values; (<b>B</b>) Total Cholesterol values; (<b>C</b>) LDL: LDL-Cholesterol values; (<b>D</b>) HDL: HDL-Cholesterol values; (<b>E</b>) TG: Triglycerides levels; (<b>F</b>) Total bilirubin levels; (<b>G</b>) Indirect bilirubin levels; (<b>H</b>) GGT: Gamma-glutamyl transferase values; (<b>I</b>) ALP: Alkaline phosphatase values; (<b>J</b>) LDH: Lactate Dehydrogenase values. Box and whiskers plots showing median, minimum, and maximum values. # <span class="html-italic">p</span>-value = (0.05–0.1), * <span class="html-italic">p</span>-value < 0.05, ** <span class="html-italic">p</span>-value < 0.01, *** <span class="html-italic">p</span>-value < 0.001.</p> "> Figure 2
<p>Mitochondrial parameters in Naïve HIV patients (n = 33) compared to patients treated with cART (combined antiretroviral therapy) based on TDF/FTC/EFV for more than one year (n = 29). (<b>A</b>) PBMC-mtDNA: Peripheral blood mononuclear cells mitochondrial DNA; (<b>B</b>) Plasma-mtDNA: Plasma mitochondrial DNA levels; (<b>C</b>) CoQ: Coenzyme Q values; (<b>D</b>); VDAC: Voltage-Dependent Anion-selective Channel vs. β-actin ratio; (<b>E</b>) COX-II: Cytochrome c oxidase subunit II vs. β-actin ratio; (<b>F</b>) COX IV: Cytochrome c oxidase subunit IV vs. β-actin ratio; (<b>G</b>) COX-II/COX-IV ratio; (<b>H</b>) COX-II/VDAC ratio; (<b>I</b>) COX-IV/VDAC ratio. Box and whiskers plots showing median, minimum, and maximum values. # <span class="html-italic">p</span>-value = (0.05–0.1), * <span class="html-italic">p</span>-value < 0.05, ** <span class="html-italic">p</span>-value < 0.01. (<b>J</b>) Representative Western Blot bands for proteins quantification in PBMC from two Naïve HIV patients compared to two patients treated with TDF/EFV/EFV STR for more than one year: β-actin (47 kDa), VDAC (31 kDa), COX-II (25.6 kDa) and COX-VI (15 kDa).</p> "> Figure 3
<p>Inflammatory and soluble mediators in Naïve HIV patients (n = 15) compared to patients treated with cART (combined antiretroviral therapy) based on TDF/FTC/EFV for more than one year (n = 10). (<b>A</b>) TNFα: Tumor Necrosis Factor α levels. (<b>B</b>) IL6: Interleukin 6 values; (<b>C</b>) IL8: Interleukin 8 values; (<b>D</b>) MCP-1: Monocyte Chemoattractant protein 1 levels; (<b>E</b>) NGF: Nerve Growth Factor values; (<b>F</b>) Leptin: Serum Leptin levels; (<b>G</b>) HGF: Hepatocyte Growth Factor levels; (<b>H</b>) FGF21: Fibroblast Growth Factor 21 levels. Box and whiskers plots showing median, minimum, and maximum values. # <span class="html-italic">p</span>-value = (0.05–0.1) * <span class="html-italic">p</span>-value < 0.05.</p> "> Figure 4
<p>Significant correlations between virologic and metabolic parameters with mitochondrial biomarkers in both cohorts. Linear regression line (solid line) and 95% confidence band of the best-fit line (dotted line) are shown. (<b>A</b>) Correlation between mitochondrial DNA content in PBMCs (PBMC-mtDNA) vs. patient viral load; (<b>B</b>) Correlation between PBMC-mtDNA vs. total cholesterol values; (<b>C</b>) Correlation between PBMC-mtDNA vs. LDL values; (<b>D</b>) Correlation between PBMC-mtDNA vs. alkaline phosphatase (ALP) values; (<b>E</b>) Correlation between PBMC-mtDNA vs. Creatine Kinase values. * <span class="html-italic">p</span>-value < 0.05, ** <span class="html-italic">p</span>-value < 0.01.</p> "> Figure 5
<p>Significant correlations between virologic and mitochondrial parameters with inflammatory biomarkers in both cohorts. Linear regression line (solid line) and 95% confidence band of the best-fit line (dotted line) are shown. (<b>A</b>) Correlation between TNFα vs. viral load; (<b>B</b>) Correlation between Tumor Necrosis Factor α (TNFα) vs. IL-8 values; (<b>C</b>) Correlation between TNFα vs. Monocyte Chemoattractant protein 1 (MCP-1) values; (<b>D</b>) Correlation between TNFα vs. mitochondrial DNA in PBMCs; (<b>E</b>) Correlation between IL-6 vs. mitochondrial DNA in plasma. * <span class="html-italic">p</span>-value < 0.05, ** <span class="html-italic">p</span>-value < 0.01, *** <span class="html-italic">p</span>-value < 0.0001.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Clinical and Hematological Characteristics of HIV-1 Infected Patients Comparing Naïve vs. Treated with cART
2.2. Metabolic Parameters of HIV-1 Infected Patients Comparing Naïve vs. Treated with cART
2.3. Mitochondrial Parameters of HIV-1 Infected Patients Comparing Naïve vs. Treated with cART
2.4. Inflammatory and Soluble Mediators of HIV-1 Infected Patients Compared with Naïve vs. Treated with cART
2.5. Significant Correlations between Virologic and Metabolic Parameters with Mitochondrial Biomarkers in Both Cohorts
2.6. Significant Correlations between Virologic and Mitochondrial Parameters with Inflammatory Biomarkers in Both Cohorts
3. Discussion
4. Materials and Methods
4.1. Patient Cohorts
4.2. Sample Collection
4.3. Infection Markers
4.4. Metabolic Toxicity Markers
4.5. Total DNA Isolation from PBMCs and mtDNA Quantification
4.6. Nucleic Acid Isolation from Plasma and Quantification of mtDNA
4.7. Mitochondrial Protein Quantification from PBMCs by Western Blot
4.8. Enzyme-Linked Immunosorbent Assay (ELISA) and Multiplex Assays
4.9. Coenzyme Q10 (CoQ) Quantification
4.10. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rumlová, M.; Křížová, I.; Keprová, A.; Hadravová, R.; Doležal, M.; Strohalmová, K.; Pichová, I.; Hájek, M.; Ruml, T. HIV-1 Protease-Induced Apoptosis. Retrovirology 2014, 11, 37. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Mora, S.; Mateos, E.; Moran, M.; Martín, M.Á.; López, J.A.; Calvo, E.; Terrón, M.C.; Luque, D.; Muriaux, D.; Alcamí, J.; et al. Intracellular Expression of Tat Alters Mitochondrial Functions in T Cells: A Potential Mechanism to Understand Mitochondrial Damage during HIV-1 Replication. Retrovirology 2015, 12, 78. [Google Scholar] [CrossRef]
- Ghosn, J.; Taiwo, B.; Seedat, S.; Autran, B.; Katlama, C. HIV. Lancet 2018, 392, 685–697. [Google Scholar] [CrossRef] [PubMed]
- Samji, H.; Cescon, A.; Hogg, R.S.; Modur, S.P.; Althoff, K.N.; Buchacz, K.; Burchell, A.N.; Cohen, M.; Gebo, K.A.; Gill, M.J.; et al. Closing the Gap: Increases in Life Expectancy among Treated HIV-Positive Individuals in the United States and Canada. PLoS ONE 2013, 8, e81355. [Google Scholar] [CrossRef] [PubMed]
- INSIGHT START Study Group; Lundgren, J.D.; Babiker, A.G.; Gordin, F.; Emery, S.; Grund, B.; Sharma, S.; Avihingsanon, A.; Cooper, D.A.; Fätkenheuer, G.; et al. Initiation of Antiretroviral Therapy in Early Asymptomatic HIV Infection. N. Engl. J. Med. 2015, 373, 795–807. [Google Scholar] [CrossRef] [PubMed]
- TEMPRANO ANRS 12136 Study Group; Danel, C.; Moh, R.; Gabillard, D.; Badje, A.; Le Carrou, J.; Ouassa, T.; Ouattara, E.; Anzian, A.; Ntakpé, J.-B.; et al. A Trial of Early Antiretrovirals and Isoniazid Preventive Therapy in Africa. N. Engl. J. Med. 2015, 373, 808–822. [Google Scholar] [CrossRef] [PubMed]
- Rodger, A.J.; Cambiano, V.; Bruun, T.; Vernazza, P.; Collins, S.; Degen, O.; Corbelli, G.M.; Estrada, V.; Geretti, A.M.; Beloukas, A.; et al. Risk of HIV Transmission through Condomless Sex in Serodifferent Gay Couples with the HIV-Positive Partner Taking Suppressive Antiretroviral Therapy (PARTNER): Final Results of a Multicentre, Prospective, Observational Study. Lancet 2019, 393, 2428–2438. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; Gregson, J.; Parkin, N.; Haile-Selassie, H.; Tanuri, A.; Andrade Forero, L.; Kaleebu, P.; Watera, C.; Aghokeng, A.; Mutenda, N.; et al. HIV-1 Drug Resistance before Initiation or Re-Initiation of First-Line Antiretroviral Therapy in Low-Income and Middle-Income Countries: A Systematic Review and Meta-Regression Analysis. Lancet Infect. Dis. 2018, 18, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Gardner, K.; Hall, P.A.; Chinnery, P.F.; Payne, B.A.I. HIV Treatment and Associated Mitochondrial Pathology. Toxicol. Pathol. 2014, 42, 811–822. [Google Scholar] [CrossRef]
- Kakuda, T.N. Pharmacology of Nucleoside and Nucleotide Reverse Transcriptase Inhibitor-Induced Mitochondrial Toxicity. Clin. Ther. 2000, 22, 685–708. [Google Scholar] [CrossRef]
- Holec, A.D.; Mandal, S.; Prathipati, P.K.; Destache, C.J. Nucleotide Reverse Transcriptase Inhibitors: A Thorough Review, Present Status and Future Perspective as HIV Therapeutics. Curr. HIV Res. 2018, 15, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez de la Concepción, M.L.; Yubero, P.; Domingo, J.C.; Iglesias, R.; Domingo, P.; Villarroya, F.; Giralt, M. Reverse Transcriptase Inhibitors Alter Uncoupling Protein-1 and Mitochondrial Biogenesis in Brown Adipocytes. Antivir. Ther. 2005, 10, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Garrabou, G.; Morén, C.; Gallego-Escuredo, J.M.; Milinkovic, A.; Villarroya, F.; Negredo, E.; Giralt, M.; Vidal, F.; Pedrol, E.; Martínez, E.; et al. Genetic and Functional Mitochondrial Assessment of HIV-Infected Patients Developing HAART-Related Hyperlactatemia. JAIDS J. Acquir. Immune Defic. Syndr. 2009, 52, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Margolis, A.M.; Heverling, H.; Pham, P.A.; Stolbach, A. A Review of the Toxicity of HIV Medications. J. Med. Toxicol. 2014, 10, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Villarroya, F.; Domingo, P.; Giralt, M. Drug-Induced Lipotoxicity: Lipodystrophy Associated with HIV-1 Infection and Antiretroviral Treatment. Biochim. Biophys. Acta BBA-Mol. Cell Biol. Lipids 2010, 1801, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Birkus, G.; Hitchcock, M.J.M.; Cihlar, T. Assessment of Mitochondrial Toxicity in Human Cells Treated with Tenofovir: Comparison with Other Nucleoside Reverse Transcriptase Inhibitors. Antimicrob. Agents Chemother. 2002, 46, 716–723. [Google Scholar] [CrossRef]
- Lewis, W.; Day, B.J.; Copeland, W.C. Mitochondrial Toxicity of NRTI Antiviral Drugs: An Integrated Cellular Perspective. Nat. Rev. Drug Discov. 2003, 2, 812–822. [Google Scholar] [CrossRef] [PubMed]
- Apostolova, N.; Blas-Garcia, A.; Esplugues, V.J. Mitochondrial Toxicity in HAART: An Overview of In Vitro Evidence. Curr. Pharm. Des. 2011, 17, 2130–2144. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.; Robinson, S.; Mikhailenko, I.; Strickland, D.K. Modulation of the LDL Receptor and LRP Levels by HIV Protease Inhibitors. J. Lipid Res. 2003, 44, 1859–1869. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Wei, B.; Zullo, S.; Wood, L.; Weiner, H. In Vitro Evidence of Inhibition of Mitochondrial Protease Processing by HIV-1 Protease Inhibitors in Yeast: A Possible Contribution to Lipodystrophy Syndrome. Mitochondrion 2002, 1, 511–518. [Google Scholar] [CrossRef]
- Ganta, K.K.; Mandal, A.; Chaubey, B. Depolarization of Mitochondrial Membrane Potential Is the Initial Event in Non-Nucleoside Reverse Transcriptase Inhibitor Efavirenz Induced Cytotoxicity. Cell Biol. Toxicol. 2017, 33, 69–82. [Google Scholar] [CrossRef]
- Shikuma, C.M.; Gerschenson, M.; Chow, D.; Libutti, D.E.; Willis, J.H.; Murray, J.; Capaldi, R.A.; Marusich, M. Mitochondrial Oxidative Phosphorylation Protein Levels in Peripheral Blood Mononuclear Cells Correlate with Levels in Subcutaneous Adipose Tissue within Samples Differing by HIV and Lipoatrophy Status. AIDS Res. Hum. Retroviruses 2008, 24, 1255–1262. [Google Scholar] [CrossRef] [PubMed]
- Blas-Garcia, A.; Polo, M.; Alegre, F.; Funes, H.A.; Martinez, E.; Apostolova, N.; Esplugues, J.V. Lack of Mitochondrial Toxicity of Darunavir, Raltegravir and Rilpivirine in Neurons and Hepatocytes: A Comparison with Efavirenz. J. Antimicrob. Chemother. 2014, 69, 2995–3000. [Google Scholar] [CrossRef] [PubMed]
- Blas-García, A.; Apostolova, N.; Ballesteros, D.; Monleón, D.; Morales, J.M.; Rocha, M.; Victor, V.M.; Esplugues, J.V. Inhibition of Mitochondrial Function by Efavirenz Increases Lipid Content in Hepatic Cells. Hepatology 2010, 52, 115–125. [Google Scholar] [CrossRef]
- Domingo, P.; Gutierrez, M.d.M.; Gallego-Escuredo, J.M.; Torres, F.; Mateo, G.M.; Villarroya, J.; de los Santos, I.; Domingo, J.C.; Villarroya, F.; Rio, L.D.; et al. Effects of Switching from Stavudine to Raltegravir on Subcutaneous Adipose Tissue in HIV-Infected Patients with HIV/HAART-Associated Lipodystrophy Syndrome (HALS). A Clinical and Molecular Study. PLoS ONE 2014, 9, e89088. [Google Scholar] [CrossRef] [PubMed]
- Cahn, P.; Madero, J.S.; Arribas, J.R.; Antinori, A.; Ortiz, R.; Clarke, A.E.; Hung, C.-C.; Rockstroh, J.K.; Girard, P.-M.; Sievers, J.; et al. Durable Efficacy of Dolutegravir Plus Lamivudine in Antiretroviral Treatment-Naive Adults With HIV-1 Infection: 96-Week Results From the GEMINI-1 and GEMINI-2 Randomized Clinical Trials. J. Acquir. Immune Defic. Syndr. 2020, 83, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Barroso, S.; Morén, C.; González-Segura, À.; Riba, N.; Arnaiz, J.A.; Manriquez, M.; Santana, G.; Blanco, J.L.; Larousse, M.; Loncà, M.; et al. Metabolic, Mitochondrial, Renal and Hepatic Safety of Enfuvirtide and Raltegravir Antiretroviral Administration: Randomized Crossover Clinical Trial in Healthy Volunteers. PLoS ONE 2019, 14, e0216712. [Google Scholar] [CrossRef]
- Ambrosioni, J.; Levi, L.; Alagaratnam, J.; Van Bremen, K.; Mastrangelo, A.; Waalewijn, H.; Molina, J.; Guaraldi, G.; Winston, A.; Boesecke, C.; et al. Major Revision Version 12.0 of the European AIDS Clinical Society Guidelines 2023. HIV Med. 2023, 24, 1126–1136. [Google Scholar] [CrossRef] [PubMed]
- Ajaykumar, A.; Caloren, L.C.; Povshedna, T.; Hsieh, A.Y.Y.; Zakaria, A.; Cai, R.; Smith, M.-S.R.; Thompson, C.A.H.; Becquart, P.; Uday, P.; et al. Dolutegravir-Containing HIV Therapy Reversibly Alters Mitochondrial Health and Morphology in Cultured Human Fibroblasts and Peripheral Blood Mononuclear Cells. AIDS 2023, 37, 19–32. [Google Scholar] [CrossRef]
- Jung, I.; Tu-Sekine, B.; Jin, S.; Anokye-Danso, F.; Ahima, R.S.; Brown, T.T.; Kim, S.F. Dolutegravir Suppresses Thermogenesis via Disrupting Uncoupling Protein 1 Expression and Mitochondrial Function in Brown/Beige Adipocytes in Preclinical Models. J. Infect. Dis. 2022, 226, 1626–1636. [Google Scholar] [CrossRef]
- Taiwo, B.O.; Romdhani, H.; Lafeuille, M.-H.; Bhojwani, R.; Milbers, K.; Donga, P. Treatment and Comorbidity Burden among People Living with HIV: A Review of Systematic Literature Reviews. J. Drug Assess. 2023, 12, 1–11. [Google Scholar] [CrossRef] [PubMed]
- de Waal, R.; Cohen, K.; Maartens, G. Systematic Review of Antiretroviral-Associated Lipodystrophy: Lipoatrophy, but Not Central Fat Gain, Is an Antiretroviral Adverse Drug Reaction. PLoS ONE 2013, 8, e63623. [Google Scholar] [CrossRef] [PubMed]
- Alikhani, A.; Morin, H.; Matte, S.; Alikhani, P.; Tremblay, C.; Durand, M. Association between Lipodystrophy and Length of Exposure to ARTs in Adult HIV-1 Infected Patients in Montreal. BMC Infect. Dis. 2019, 19, 820. [Google Scholar] [CrossRef]
- Behrens, G.; Rijnders, B.; Nelson, M.; Orkin, C.; Cohen, C.; Mills, A.; Elion, R.A.; Vanveggel, S.; Stevens, M.; Rimsky, L.; et al. Rilpivirine Versus Efavirenz with Emtricitabine/Tenofovir Disoproxil Fumarate in Treatment-Naïve HIV-1–Infected Patients with HIV-1 RNA ≤100,000 Copies/ML: Week 96 Pooled ECHO/THRIVE Subanalysis. AIDS Patient Care STDS 2014, 28, 168–175. [Google Scholar] [CrossRef]
- Frampton, J.E.; Croom, K.F. Efavirenz/Emtricitabine/Tenofovir Disoproxil Fumarate. Drugs 2006, 66, 1501–1512. [Google Scholar] [CrossRef]
- Moyle, G.J.; Orkin, C.; Fisher, M.; Dhar, J.; Anderson, J.; Wilkins, E.; Ewan, J.; Ebrahimi, R.; Wang, H. A Randomized Comparative Trial of Continued Abacavir/Lamivudine plus Efavirenz or Replacement with Efavirenz/Emtricitabine/Tenofovir DF in Hypercholesterolemic HIV-1 Infected Individuals. PLoS ONE 2015, 10, e0116297. [Google Scholar] [CrossRef]
- Boontanondha, P.; Nimitphong, H.; Musikarat, S.; Ragkho, A.; Kiertiburanakul, S. Vitamin D and Calcium Supplement Attenuate Bone Loss among HIV Infected Patients Receiving Tenofovir Disoproxil Fumarate/Emtricitabine/Efavirenz: An Open-Label, Randomized Controlled Trial. Curr. HIV Res. 2020, 18, 52–62. [Google Scholar] [CrossRef]
- Horberg, M.A.; Klein, D.B. An Update on the Use of Atripla in the Treatment of HIV in the United States. HIV AIDS 2010, 2, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Lanza, I.R.; Nair, K.S. Mitochondrial Metabolic Function Assessed in Vivo and in Vitro. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 511–517. [Google Scholar] [CrossRef]
- Gahan, M.E.; Miller, F.; Lewin, S.R.; Cherry, C.L.; Hoy, J.F.; Mijch, A.; Rosenfeldt, F.; Wesselingh, S.L. Quantification of Mitochondrial DNA in Peripheral Blood Mononuclear Cells and Subcutaneous Fat Using Real-Time Polymerase Chain Reaction. J. Clin. Virol. 2001, 22, 241–247. [Google Scholar] [CrossRef]
- Zhang, Q.; Raoof, M.; Chen, Y.; Sumi, Y.; Sursal, T.; Junger, W.; Brohi, K.; Itagaki, K.; Hauser, C.J. Circulating Mitochondrial DAMPs Cause Inflammatory Responses to Injury. Nature 2010, 464, 104–107. [Google Scholar] [CrossRef]
- Cossarizza, A.; Pinti, M.; Nasi, M.; Gibellini, L.; Manzini, S.; Roat, E.; De Biasi, S.; Bertoncelli, L.; Montagna, J.P.; Bisi, L.; et al. Increased Plasma Levels of Extracellular Mitochondrial DNA during HIV Infection: A New Role for Mitochondrial Damage-Associated Molecular Patterns during Inflammation. Mitochondrion 2011, 11, 750–755. [Google Scholar] [CrossRef] [PubMed]
- Domingo, P.; Gallego-Escuredo, J.M.; Domingo, J.C.; Gutiérrez, M.d.M.; Mateo, M.G.; Fernández, I.; Vidal, F.; Giralt, M.; Villarroya, F. Serum FGF21 Levels Are Elevated in Association with Lipodystrophy, Insulin Resistance and Biomarkers of Liver Injury in HIV-1-Infected Patients. AIDS 2010, 24, 2629–2637. [Google Scholar] [CrossRef]
- Suomalainen, A.; Elo, J.M.; Pietiläinen, K.H.; Hakonen, A.H.; Sevastianova, K.; Korpela, M.; Isohanni, P.; Marjavaara, S.K.; Tyni, T.; Kiuru-Enari, S.; et al. FGF-21 as a Biomarker for Muscle-Manifesting Mitochondrial Respiratory Chain Deficiencies: A Diagnostic Study. Lancet Neurol. 2011, 10, 806–818. [Google Scholar] [CrossRef] [PubMed]
- Potthoff, M.J. A New Frontier in FGF21 Biology. Nat. Rev. Endocrinol. 2017, 13, 74–76. [Google Scholar] [CrossRef] [PubMed]
- Yubero, D.; Allen, G.; Artuch, R.; Montero, R. The Value of Coenzyme Q10 Determination in Mitochondrial Patients. J. Clin. Med. 2017, 6, 37. [Google Scholar] [CrossRef]
- Domínguez-Pérez, M.; Nuño-Lámbarri, N.; Clavijo-Cornejo, D.; Luna-López, A.; Souza, V.; Bucio, L.; Miranda, R.U.; Muñoz, L.; Gomez-Quiroz, L.E.; Uribe-Carvajal, S.; et al. Hepatocyte Growth Factor Reduces Free Cholesterol-Mediated Lipotoxicity in Primary Hepatocytes by Countering Oxidative Stress. Oxid. Med. Cell Longev. 2016, 2016, 7960386. [Google Scholar] [CrossRef]
- Martorana, F.; Gaglio, D.; Bianco, M.R.; Aprea, F.; Virtuoso, A.; Bonanomi, M.; Alberghina, L.; Papa, M.; Colangelo, A.M. Differentiation by Nerve Growth Factor (NGF) Involves Mechanisms of Crosstalk between Energy Homeostasis and Mitochondrial Remodeling. Cell Death Dis. 2018, 9, 391. [Google Scholar] [CrossRef]
- Zhang, X.; Tachibana, S.; Wang, H.; Hisada, M.; Williams, G.M.; Gao, B.; Sun, Z. Interleukin-6 Is an Important Mediator for Mitochondrial DNA Repair after Alcoholic Liver Injury in Mice. Hepatology 2010, 52, 2137–2147. [Google Scholar] [CrossRef]
- White, J.P.; Puppa, M.J.; Sato, S.; Gao, S.; Price, R.L.; Baynes, J.W.; Kostek, M.C.; Matesic, L.E.; Carson, J.A. IL-6 Regulation on Skeletal Muscle Mitochondrial Remodeling during Cancer Cachexia in the Apc Min/+ Mouse. Skelet. Muscle 2012, 2, 14. [Google Scholar] [CrossRef]
- Yamada, T.; Hisanaga, M.; Nakajima, Y.; Kanehiro, H.; Aomatsu, Y.; Ko, S.; Kin, T.; Nishio, K.; Sho, M.; Nagao, M.; et al. The Serum Interleukin 8 Level Reflects Hepatic Mitochondrial Redox State in Hyperthermochemohypoxic Isolated Liver Perfusion with Use of a Venovenous Bypass. Surgery 1999, 125, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Vriens, A.; Plusquin, M.; Baeyens, W.; Bruckers, L.; Den Hond, E.; Loots, I.; Nelen, V.; Schoeters, G.; Janssen, B.G.; Nawrot, T.S. Cord Blood Leptin and Insulin Levels in Association with Mitochondrial DNA Content. J. Transl. Med. 2018, 16, 224. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Gu, J.; Liu, R.; Xu, F.; Qian, H.; He, Q.; Meng, W. Release of Mitochondrial DNA Correlates with Peak Inflammatory Cytokines in Patients with Acute Myocardial Infarction. Anatol. J. Cardiol. 2017, 17, 224–228. [Google Scholar] [CrossRef]
- Pinti, M.; Salomoni, P.; Cossarizza, A. Anti-HIV Drugs and the Mitochondria. Biochim. Biophys. Acta BBA-Bioenerg. 2006, 1757, 700–707. [Google Scholar] [CrossRef]
- Luscombe, C.A.; Avihingsanon, A.; Supparatpinyo, K.; Gatechompol, S.; Han, W.M.; Ewart, G.D.; Thomson, A.S.; Miller, M.; Becker, S.; Murphy, R.L. Human Immunodeficiency Virus Type 1 Vpu Inhibitor, BIT225, in Combination with 3-Drug Antiretroviral Therapy: Inflammation and Immune Cell Modulation. J. Infect. Dis. 2021, 223, 1914–1922. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Xu, Y.; Han, D.; Peng, X.; Lu, X.; Brockmeyer, N.H.; Wu, N. Changes in Lipid Indices in HIV+ Cases on HAART. Biomed. Res. Int. 2019, 2019, 2870647. [Google Scholar] [CrossRef] [PubMed]
- Duro, M.; Sarmento-Castro, R.; Almeida, C.; Medeiros, R.; Rebelo, I. Lipid Profile Changes by High Activity Anti-Retroviral Therapy. Clin. Biochem. 2013, 46, 740–744. [Google Scholar] [CrossRef] [PubMed]
- Kabbara, W.K.; Ramadan, W.H. Emtricitabine/Rilpivirine/Tenofovir Disoproxil Fumarate for the Treatment of HIV-1 Infection in Adults. J. Infect. Public Health 2015, 8, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Orkin, C.; Squires, K.E.; Molina, J.-M.; Sax, P.E.; Wong, W.-W.; Sussmann, O.; Kaplan, R.; Lupinacci, L.; Rodgers, A.; Xu, X.; et al. Doravirine/Lamivudine/Tenofovir Disoproxil Fumarate Is Non-Inferior to Efavirenz/Emtricitabine/Tenofovir Disoproxil Fumarate in Treatment-Naive Adults With Human Immunodeficiency Virus–1 Infection: Week 48 Results of the DRIVE-AHEAD Trial. Clin. Infect. Dis. 2019, 68, 535–544. [Google Scholar] [CrossRef]
- Butt, A.A.; Michaels, S.; Kissinger, P. The Association of Serum Lactate Dehydrogenase Level with Selected Opportunistic Infections and HIV Progression. Int. J. Infect. Dis. 2002, 6, 178–181. [Google Scholar] [CrossRef]
- Sulkowski, M.S. Drug-Induced Liver Injury Associated with Antiretroviral Therapy That Includes HIV-1 Protease Inhibitors. Clin. Infect. Dis. 2004, 38, S90–S97. [Google Scholar] [CrossRef] [PubMed]
- Vennarecci, G.; Ettorre, G.M.; Antonini, M.; Maritti, M.; Moricca, P.; D’Offizzi, G.; Narciso, P.; Lonardo, M.T.; Boschetto, A.; Del Nonno, F.; et al. Acute Liver Toxicity of Antiretroviral Therapy (HAART) after Liver Transplantation in a Patient with HIV-HCV Coinfection and Associated Hepatocarcinoma (HCC). Tumori 2003, 89, 159–161. [Google Scholar] [PubMed]
- Te, H.S. Cholestasis in HIV-Infected Patients. Clin. Liver Dis. 2004, 8, 213–228. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection: Recommendations for a Public Health Approach, 2nd ed.; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- The DAD Study Group. The members of the Data Collection on Adverse Events of Anti-HIV Drugs (DAD) Study Group Class of Antiretroviral Drugs and the Risk of Myocardial Infarction. N. Engl. J. Med. 2007, 356, 1723–1735. [Google Scholar] [CrossRef]
- Sundaram, M.; Saghayam, S.; Priya, B.; Venkatesh, K.K.; Balakrishnan, P.; Shankar, E.M.; Murugavel, K.G.; Solomon, S.; Kumarasamy, N. Changes in Antioxidant Profile among HIV-Infected Individuals on Generic Highly Active Antiretroviral Therapy in Southern India. Int. J. Infect. Dis. 2008, 12, e61–e66. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Chen, X.; Lin, H.; Ding, Y.; He, N. Incidence of Impaired Kidney Function among People with HIV: A Systematic Review and Meta-Analysis. BMC Nephrol. 2022, 23, 107. [Google Scholar] [CrossRef] [PubMed]
- Morén, C.; Noguera-Julián, A.; Garrabou, G.; Rovira, N.; Catalán, M.; Bañó, M.; Guitart-Mampel, M.; Tobías, E.; Hernández, S.; Cardellach, F.; et al. Mitochondrial Disturbances in HIV Pregnancies. AIDS 2015, 29, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Schank, M.; Wang, L.; Li, Z.; Nguyen, L.N.; Dang, X.; Cao, D.; Khanal, S.; Nguyen, L.N.T.; Thakuri, B.K.C.; et al. Mitochondrial Functions Are Compromised in CD4 T Cells From ART-Controlled PLHIV. Front. Immunol. 2021, 12, 658420. [Google Scholar] [CrossRef] [PubMed]
- Noguera-Julian, A.; Morén, C.; Rovira, N.; Garrabou, G.; Catalán, M.; Sánchez, E.; Cardellach, F.; Miró, Ó.; Fortuny, C. Decreased Mitochondrial Function Among Healthy Infants Exposed to Antiretrovirals During Gestation, Delivery and the Neonatal Period. Pediatr. Infect. Dis. J. 2015, 34, 1349–1354. [Google Scholar] [CrossRef]
- Negredo, E.; Garrabou, G.; Puig, J.; Lòpez, S.; Morén, C.; Bellido, R.; Ayen, R.; Cardellach, F.; Miró, Ó.; Clotet, B. Partial Immunological and Mitochondrial Recovery after Reducing Didanosine Doses in Patients on Didanosine and Tenofovir-Based Regimens. Antivir. Ther. 2008, 13, 467–468. [Google Scholar] [CrossRef]
- Miró, O.; Garrabou, G.; López, S.; Deig, E.; Vidal, I.; Infante, A.B.; Cardellach, F.; Casademont, J.; Pedrol, E. Short Communication Metabolic and Mitochondrial Effects of Switching Antiretroviral-Experienced Patients to Enfuvirtide, Tenofovir and Saquinavir/Ritonavir. Antivir. Ther. 2006, 11, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Negredo, E.; Romeu, J.; Rodríguez-Santiago, B.; Miró, O.; Garrabou, G.; Puig, J.; Pérez-Alvarez, N.; Moren, C.; Ruiz, L.; Bellido, R.; et al. Mild Improvement in Mitochondrial Function after a 3-Year Antiretroviral Treatment Interruption despite Persistent Impairment of Mitochondrial DNA Content. Curr. HIV Res. 2010, 8, 379–385. [Google Scholar] [CrossRef]
- Korencak, M.; Byrne, M.; Richter, E.; Schultz, B.T.; Juszczak, P.; Ake, J.A.; Ganesan, A.; Okulicz, J.F.; Robb, M.L.; de Los Reyes, B.; et al. Effect of HIV Infection and Antiretroviral Therapy on Immune Cellular Functions. JCI Insight 2019, 4, e126675. [Google Scholar] [CrossRef] [PubMed]
- Garrabou, G.; Morén, C.; López, S.; Tobías, E.; Cardellach, F.; Miró, Ò.; Casademont, J. The Effects of Sepsis on Mitochondria. J. Infect. Dis. 2012, 205, 392–400. [Google Scholar] [CrossRef]
- Bañó, M.; Morén, C.; Barroso, S.; Juárez, D.L.; Guitart-Mampel, M.; González-Casacuberta, I.; Canto-Santos, J.; Lozano, E.; León, A.; Pedrol, E.; et al. Mitochondrial Toxicogenomics for Antiretroviral Management: HIV Post-Exposure Prophylaxis in Uninfected Patients. Front. Genet. 2020, 11, 497. [Google Scholar] [CrossRef] [PubMed]
- Riddler, S.A.; Smit, E.; Cole, S.; Chmiel, J.; Dobs, A.; Palella, F.; Visscher, B.; Evans, R.; Kingsley, L. Impact of HIV Infection and HAART on Serum Lipids in Men. JAMA 2003, 289, 2978. [Google Scholar] [CrossRef]
- Lee, D. HIV: How to Manage Dyslipidaemia in HIV. Drugs Context 2022, 11, 1–9. [Google Scholar] [CrossRef]
- Maagaard, A.; Holberg-Petersen, M.; Kollberg, G.; Oldfors, A.; Sandvik, L.; Bruun, J.N. Mitochondrial (Mt)DNA Changes in Tissue May Not Be Reflected by Depletion of MtDNA in Peripheral Blood Mononuclear Cells in HIV-Infected Patients. Antivir. Ther. 2006, 11, 601–608. [Google Scholar] [CrossRef]
- Montero, R.; Sánchez-Alcázar, J.A.; Briones, P.; Hernández, Á.R.; Cordero, M.D.; Trevisson, E.; Salviati, L.; Pineda, M.; García-Cazorla, A.; Navas, P.; et al. Analysis of Coenzyme Q10 in Muscle and Fibroblasts for the Diagnosis of CoQ10 Deficiency Syndromes. Clin. Biochem. 2008, 41, 697–700. [Google Scholar] [CrossRef]
Naïve | TDF/FTC/EFV | p-Value | |
---|---|---|---|
Sex (male n, %) | 33 (28, 84.8%) | 29 (22, 75.9%) | 0.372 |
Age (years) | 37.24 ± 1.7 | 40.83 ± 1.8 | 0.051 |
Time since diagnosis (years) | 3.27 ± 0.5 | 5.2 ± 0.7 | 0.019 * |
Time on cART (months) | - | 22.3 ± 2.6 | - |
CD4 count (cells/mm3) | 473.06 ± 30.2 | 610.14 ± 36.7 | 0.003 ** |
Log (Viral Load) | 4.38 ± 0.2 | 1.60 ± 0.01 | <0.001 *** |
White blood cells (×109/L) | 5.89 ± 0.3 | 6.51 ± 0.4 | 0.321 |
Hemoglobin (g/L) | 143.9 ± 2.4 | 147.0 ± 2.0 | 0.335 |
Hematocrit (%) | 43.0 ± 0.6 | 44.2 ± 0.6 | 0.200 |
MCV (fL) | 88.7 ± 0.6 | 92.9 ± 0.6 | <0.001 *** |
MCH (pg) | 29.7 ± 0.3 | 31.0 ± 0.2 | 0.001 ** |
MCHC (g/L) | 334.5 ± 1.9 | 332.5 ± 2.0 | 0.529 |
RDW (%) | 13.4 ± 0.1 | 13.1 ± 0.2 | 0.097 |
HDW (g/L) | 26.8 ± 0.5 | 25.9 ± 0.4 | 0.197 |
Hypochromic (%) | 1.36 ± 0.4 | 0.84 ± 0.2 | 0.285 |
Platelets (×109/L) | 215.84 ± 9.1 | 263.4 ± 11.4 | 0.004 ** |
MPV (fL) | 8.3 ± 0.1 | 8.6 ± 0.2 | 0.292 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barroso, S.; Guitart-Mampel, M.; García-García, F.J.; Cantó-Santos, J.; Valls-Roca, L.; Andújar-Sánchez, F.; Vilaseca-Capel, A.; Tobías, E.; Arias-Dimas, A.; Quesada-López, T.; et al. Metabolic, Mitochondrial, and Inflammatory Effects of Efavirenz, Emtricitabine, and Tenofovir Disoproxil Fumarate in Asymptomatic Antiretroviral-Naïve People with HIV. Int. J. Mol. Sci. 2024, 25, 8418. https://doi.org/10.3390/ijms25158418
Barroso S, Guitart-Mampel M, García-García FJ, Cantó-Santos J, Valls-Roca L, Andújar-Sánchez F, Vilaseca-Capel A, Tobías E, Arias-Dimas A, Quesada-López T, et al. Metabolic, Mitochondrial, and Inflammatory Effects of Efavirenz, Emtricitabine, and Tenofovir Disoproxil Fumarate in Asymptomatic Antiretroviral-Naïve People with HIV. International Journal of Molecular Sciences. 2024; 25(15):8418. https://doi.org/10.3390/ijms25158418
Chicago/Turabian StyleBarroso, Sergio, Mariona Guitart-Mampel, Francesc Josep García-García, Judith Cantó-Santos, Laura Valls-Roca, Félix Andújar-Sánchez, Adrià Vilaseca-Capel, Ester Tobías, Angela Arias-Dimas, Tania Quesada-López, and et al. 2024. "Metabolic, Mitochondrial, and Inflammatory Effects of Efavirenz, Emtricitabine, and Tenofovir Disoproxil Fumarate in Asymptomatic Antiretroviral-Naïve People with HIV" International Journal of Molecular Sciences 25, no. 15: 8418. https://doi.org/10.3390/ijms25158418
APA StyleBarroso, S., Guitart-Mampel, M., García-García, F. J., Cantó-Santos, J., Valls-Roca, L., Andújar-Sánchez, F., Vilaseca-Capel, A., Tobías, E., Arias-Dimas, A., Quesada-López, T., Artuch, R., Villarroya, F., Giralt, M., Martínez, E., Lozano, E., & Garrabou, G. (2024). Metabolic, Mitochondrial, and Inflammatory Effects of Efavirenz, Emtricitabine, and Tenofovir Disoproxil Fumarate in Asymptomatic Antiretroviral-Naïve People with HIV. International Journal of Molecular Sciences, 25(15), 8418. https://doi.org/10.3390/ijms25158418