PDE4D: A Multipurpose Pharmacological Target
<p>Superposition of Roflumilast (cyan, PDB code: 1XOQ) [<a href="#B18-ijms-25-08052" class="html-bibr">18</a>] and Rolipram (orange, PDB code: 1TBB) [<a href="#B23-ijms-25-08052" class="html-bibr">23</a>] crystallographic binding modes. The metal M, solvent S, and lipophilic Q1 and Q2 pockets are represented. Details on the coordination of Mg<sup>2+</sup> and Zn<sup>2+</sup> ions are reported.</p> "> Figure 2
<p>Structure of different PDE4 subtypes.</p> "> Figure 3
<p>Catechol-based PDE4DIs. The catechol portion is highlighted in red. Structural modifications of lead compounds LASSBio-448 and FCPE07 are reported in boxes.</p> "> Figure 4
<p>General structure of the GEBR library (groups A, B, and C).</p> "> Figure 5
<p>Molecular structure of catechol-based PDE4DIs <b>GEBR-7b</b>, <b>GEBR-11b</b>, <b>GEBR-54</b>, <b>GEBR-32a</b>, <b>GEBR-18a</b>, and <b>GEBR-26g</b>.</p> "> Figure 6
<p>PDE4DIs with pyridine and pyrimidine scaffolds. The pyridine and pyrimidine portions are colored in blue. Structural modifications of lead compound <b>9</b> are reported in boxes.</p> "> Figure 7
<p>Quinoline-based PDE4DIs. The quinoline portion is highlighted in green. The structural modification of lead compound <b>12</b> is reported in the box.</p> "> Figure 8
<p>(<b>A</b>) Binding mode of compound <b>13</b> within PDE4D binding site (PDB code: 7CBJ) [<a href="#B157-ijms-25-08052" class="html-bibr">157</a>]. H-bonds are reported as red dotted lines. (<b>B</b>) Ligplot representation of receptor/ligand interactions.</p> "> Figure 9
<p>PDE4DIs with pyridazinone and naphthyridine scaffolds. The pyridazinone and naphthyridine portions are colored orange. Structural modifications of lead compound NVP-ABE171 are reported in boxes.</p> "> Figure 10
<p>Other heterocyclic PDE4DIs reported in the literature.</p> "> Figure 11
<p>Natural PDE4DIs reported in the literature. The structural modifications of lead compounds Toddacoumalone and α-Mangostin are reported in boxes.</p> "> Figure 12
<p>Schematic representation of the biological activities of different chemical scaffolds of reported PDE4DIs.</p> ">
Abstract
:1. Introduction
1.1. The Role of PDE in Pathological Conditions
1.2. PDE4 Structure
2. PDE4 Inhibitors (PDEIs)
2.1. The Pharmacological Role of the PDE4D Isoform
2.2. PDE4Is Approved or in Clinical Trials
Compound | Structure | Condition or Disease | IC50 | Literature Data |
---|---|---|---|---|
Rolipram (±) 4-(3-(cyclopentyloxy)-4-methoxyphenyl)pyrrolidin-2-one | Multiple sclerosis, depression, Huntington’s disease, major depressive disorder | PDE4D = 0.24 µM | [72] | |
Tanimilast (CHF6001) (S)-3,5-dichloro-4-(2-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-2-((3-(cyclopropylmethoxy)-4-(methylsulfonamido)benzoyl)oxy)ethyl)pyridine 1-oxide | COPD, asthma | PDE4 = 26 pM | [74,75] | |
Cilomilast (SB-207499) 4-cyano-4-(3-(cyclopentyloxy)-4-methoxyphenyl)cyclohexane-1-carboxylic acid | COPD | PDE4 = 120 nM | [75,76,77] | |
Difamilast (OPA-15406/MM36) N-((2-(4-(difluoromethoxy)-3-isopropoxyphenyl)oxazol-4-yl)methyl)-2-ethoxybenzamide | Chronic thromboembolic pulmonary hypertension, joint disease, atopic dermatitis | PDE4A = 0.0832 µM PDE4B = 0.0112 µM PDE4C = 0.2493 µM PDE4D = 0.0738 µM | [78,79,80,81] | |
LEO 29102 2-(6-(2-(3,5-dichloropyridin-4-yl)acetyl)-2,3-dimethoxyphenoxy)-N-propylacetamide | Atopic dermatitis, psoriasis | PDE4 = 5 nM | [82,83] | |
HT-0712 (3S,5S)-5-(3-(cyclopentyloxy)-4-methoxyphenyl)-3-(3-methylbenzyl)piperidin-2-one | Age-associated memory impairment | PDE4D = 150 nM | [84,85] |
Compound | Structure | Condition or Disease | IC50 | Literature Data |
---|---|---|---|---|
Tetomilast (OPC-6535) 6-(2-(3,4-diethoxyphenyl)thiazol-4-yl)picolinic acid | COPD, Crohn’s disease, ulcerative colitis | PDE4 = 74 nM | [86,87] | |
UK500,001 2-(3,4-difluorophenoxy)-5-fluoro-N-((1s,4s)-4-(2-hydroxy-5-methylbenzamido)cyclohexyl)nicotinamide | COPD | PDE4 = 0.38–1.9 nM | [88] | |
Zatolmilast (BPN14770) 2-(4-((2-(3-chlorophenyl)-6-(trifluoromethyl)pyridin-4-yl)methyl)phenyl)acetic acid | Alzheimer’s disease, fragile X syndrome, depression | PDE4D = 8 nM | [89,90,91] |
Compound | Structure | Condition or Disease | IC50 | Literature Data |
---|---|---|---|---|
AWD-12-281 (GW842470X) N-(3,5-dichloropyridin-4-yl)-2-(1-(4-fluorobenzyl)-5-hydroxy-1H-indol-3-yl)-2-oxoacetamide | Atopic dermatitis | PDE4 = 9.7 nM | [92,93] | |
Orismilast (LEO-32731) 3,5-dichloro-4-(2-(4-(difluoromethoxy)-1′,1′-dioxido-2′,3′,5′,6′-tetrahydrospiro[benzo[d][1,3]dioxole-2,4′-thiopyran]-7-yl)-2-oxoethyl)pyridine 1-oxide | Psoriasis, atopic dermatitis, hidradenitis suppurativa | PDE4B = 6–16 nM PDE4D = 3–9 nM | [13,97] | |
Lotamilast (E6005) ethyl 4-((3-(6,7-dimethoxy-2-(methylamino)quinazolin-4-yl)phenyl)carbamoyl)benzoate | Atopic dermatitis | PDE4 = 2.8 nM | [94,95,96] | |
DRM02 2-(5-amino-3-methyl-1H-pyrazol-4-yl)-5-fluoro-N-methylbenzo[d]thiazole-6-sulfonamide | Rosacea, atopic dermatitis, psoriasis | PDE4A = 0.64 µM PDE4B = 0.44 µM PDE4D = 0.63 µM | [98] | |
MK-0873 3-((3-(3-(cyclopropylcarbamoyl)-4-oxo-1,8-naphthyridin-1(4H)-yl)phenyl)ethynyl)pyridine 1-oxide | Rheumatoid arthritis, psoriasis, COPD | PDE4 = 38 nM | [99,100] | |
Mufemilast (Hemay005) (S)-N-(5-(1-(3-ethoxy-4-methoxyphenyl)-2-(methylsulfonyl)ethyl)-4,6-dioxo-5,6-dihydro-4H-thieno[3,4-c]pyrrol-1-yl)acetamide | Psoriasis, severe ulcerative colitis, Behçet’s disease, active ankylosing spondylitis | PDE4 = 80–120 nM | [101,102] | |
GSK256066 6-((3-(dimethylcarbamoyl)phenyl)sulfonyl)-4-((3-methoxyphenyl)amino)-8-methylquinoline-3-carboxamide | COPD, rhinitis, asthma | PDE4 = 3.2 pM | [103,104] | |
GSK356278 5-(5-((2,4-dimethyl-4,5-dihydrothiazol-5-yl)methyl)-1,3,4-oxadiazol-2-yl)-1-ethyl-N-(tetrahydro-2H-pyran-4-yl)-1H-pyrazolo[3,4-b]pyridin-4-amine | Depressive and anxiety disorders, Huntington’s disease | PDE4A = 2.51 nM PDE4B = 1.58 nM PDE4D = 2.00 nM | [105,106] | |
Etazolate ethyl 1-ethyl-4-(2-(propan-2-ylidene)hydrazineyl)-1H-pyrazolo[3,4-b]pyridine-5-carboxylate | Alzheimer’s disease | PDE4 = 2 µM | [107,108,109,110] | |
MK-0952 (1S,2S)-2-(3′-(3-(cyclopropylcarbamoyl)-4-oxo-1,8-naphthyridin-1(4H)-yl)-3-fluoro-[1,1′-biphenyl]-4-yl)cyclopropane-1-carboxylic acid | Alzheimer’s disease | PDE4 = 0.6 nM | [111,112] | |
Oglemilast (GRC 3886) N-(3,5-dichloropyridin-4-yl)-4-(difluoromethoxy)-8-(methylsulfonamido)dibenzo[b,d]furan-1-carboxamide | COPD, asthma | PDE4 = 0.5 nM | [113,116] | |
Revamilast 3,5-dichloro-4-(6-(difluoromethoxy)benzofuro[3,2-c]pyridine-9-carboxamido)pyridine 1-oxide | Asthma, rheumatoid arthritis | PDE4 = 2.7 nM | [114,116] | |
Ensifentrine (RPL554) (E)-1-(2-(2-(mesitylimino)-9,10-dimethoxy-4-oxo-6,7-dihydro-2H-pyrimido[6,1-a]isoquinolin-3(4H)-yl)ethyl)urea | COPD, asthma, COVID-19, cystic fibrosis | PDE4 = 1.48 µM | [115] |
3. PDE4D Inhibitors (PDE4DIs)
3.1. Catechol-Based Compounds
3.2. Pyridine- and Pyrimidine-Based PDE4DIs
3.3. Quinoline-Based PDE4DIs
3.4. Pyridazinone- and Naphthyridine-Based PDE4DIs
3.5. Miscellaneous PDE4DIs
3.6. Natural Products
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAMI | age-associated memory impairment |
AD | Alzheimer’s disease |
AKAP | A-kinase-anchoring proteins |
AMP | adenosine monophosphate |
cAMP | cyclic adenosine monophosphate |
cGMP | cyclic guanosine monophosphate |
CNS | central nervous system |
COPD | chronic obstructive pulmonary disease |
COX | cyclooxygenase |
CR | conserved region |
CREB | cAMP response element-binding protein |
CUS | chronic unpredictable stress |
ERK | extracellular signal-regulated kinase |
GMP | guanosine monophosphate |
HARBS | high-affinity Rolipram binding state |
HCC | hepatocellular carcinoma |
IFN | interferon |
IL | interleukin |
iNOS | inducible nitric oxide synthase |
LARBS | Low-affinity Rolipram binding state |
LPS | lipopolysaccharide |
MAS | McCune–Albright syndrome |
MS | multiple sclerosis |
PAMPA | parallel artificial membrane permeability assay |
PDE | phosphodiesterase |
PDE4 | phosphodiesterase 4 |
PDE4I | phosphodiesterase 4 inhibitor |
PKA | protein kinase A |
RACK1 | receptor for activated C kinase 1 |
ROS | reactive oxygen species |
TNF | tumor necrosis factor |
UCR | upstream-conserved region |
References
- Keravis, T.; Lugnier, C. Cyclic Nucleotide Phosphodiesterase (PDE) Isozymes as Targets of the Intracellular Signalling Network: Benefits of PDE Inhibitors in Various Diseases and Perspectives for Future Therapeutic Developments. Br. J. Pharmacol. 2012, 165, 1288–1305. [Google Scholar] [CrossRef]
- Fertig, B.; Baillie, G. PDE4-Mediated cAMP Signalling. J. Cardiovasc. Dev. Dis. 2018, 5, 8. [Google Scholar] [CrossRef]
- Wang, H.; Peng, M.-S.; Chen, Y.; Geng, J.; Robinson, H.; Houslay, M.D.; Cai, J.; Ke, H. Structures of the Four Subfamilies of Phosphodiesterase-4 Provide Insight into the Selectivity of Their Inhibitors. Biochem. J. 2007, 408, 193–201. [Google Scholar] [CrossRef]
- Soderling, S.H.; Beavo, J.A. Regulation of cAMP and cGMP Signaling: New Phosphodiesterases and New Functions. Curr. Opin. Cell Biol. 2000, 12, 174–179. [Google Scholar] [CrossRef]
- Hansen, R.T.; Zhang, H.-T. The Past, Present, and Future of Phosphodiesterase-4 Modulation for Age-Induced Memory Loss. In Phosphodiesterases: CNS Functions and Diseases; Zhang, H.-T., Xu, Y., O’Donnell, J.M., Eds.; Advances in Neurobiology; Springer International Publishing: Cham, Switzerland, 2017; Volume 17, pp. 169–199. ISBN 978-3-319-58809-4. [Google Scholar]
- Sakkas, L.I.; Mavropoulos, A.; Bogdanos, D.P. Phosphodiesterase 4 Inhibitors in Immune-Mediated Diseases: Mode of Action, Clinical Applications, Current and Future Perspectives. Curr. Med. Chem. 2017, 24, 3054–3067. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-H.; Chang, S.-H.; Fang, J.-Y. Recent Advances Using Phosphodiesterase 4 (PDE4) Inhibitors to Treat Inflammatory Disorders: Animal and Clinical Studies. Curr. Drug Ther. 2016, 11, 21–40. [Google Scholar] [CrossRef]
- Parikh, N.; Chakraborti, A.K. Phosphodiesterase 4 (PDE4) Inhibitors in the Treatment of COPD: Promising Drug Candidates and Future Directions. Curr. Med. Chem. 2016, 23, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liao, Q.; Qi, S.; Huang, H.; He, S.; Lyu, W.; Liang, J.; Qin, H.; Cheng, Z.; Yu, F.; et al. Opportunities and Perspectives of Small Molecular Phosphodiesterase Inhibitors in Neurodegenerative Diseases. Eur. J. Med. Chem. 2024, 271, 116386. [Google Scholar] [CrossRef]
- Conti, M.; Richter, W.; Mehats, C.; Livera, G.; Park, J.-Y.; Jin, C. Cyclic AMP-Specific PDE4 Phosphodiesterases as Critical Components of Cyclic AMP Signaling. J. Biol. Chem. 2003, 278, 5493–5496. [Google Scholar] [CrossRef] [PubMed]
- Fleming, Y.M.; Frame, M.C.; Houslay, M.D. PDE4-Regulated cAMP Degradation Controls the Assembly of Integrin-Dependent Actin Adhesion Structures and REF52 Cell Migration. J. Cell Sci. 2004, 117, 2377–2388. [Google Scholar] [CrossRef]
- Wang, P.; Wu, P.; Ohleth, K.M.; Egan, R.W.; Billah, M.M. Phosphodiesterase 4B2 Is the Predominant Phosphodiesterase Species and Undergoes Differential Regulation of Gene Expression in Human Monocytes and Neutrophils. Mol. Pharmacol. 1999, 56, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, J.I.; French, L.E.; Warren, R.B.; Strober, B.; Kjøller, K.; Sommer, M.O.A.; Andres, P.; Felding, J.; Weiss, A.; Tutkunkardas, D.; et al. Pharmacology of Orismilast, a Potent and Selective PDE4 Inhibitor. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Rutten, K.; Misner, D.L.; Works, M.; Blokland, A.; Novak, T.J.; Santarelli, L.; Wallace, T.L. Enhanced Long-term Potentiation and Impaired Learning in Phosphodiesterase 4D-knockout (PDE4D−/−) Mice. Eur. J. Neurosci. 2008, 28, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Yu, G.; Shen, H.; Luo, Y.; Shang, T.; Shen, R.; Xi, M.; Sun, H. Targeting Phosphodiesterase 4 as a Therapeutic Strategy for Cognitive Improvement. Bioorg. Chem. 2023, 130, 106278. [Google Scholar] [CrossRef] [PubMed]
- Bolger, G.; Michaeli, T.; Martins, T.; St John, T.; Steiner, B.; Rodgers, L.; Riggs, M.; Wigler, M.; Ferguson, K. A Family of Human Phosphodiesterases Homologous to the Dunce Learning and Memory Gene Product of Drosophila melanogaster Are Potential Targets for Antidepressant Drugs. Mol. Cell. Biol. 1993, 13, 6558–6571. [Google Scholar] [CrossRef] [PubMed]
- Houslay, M.D.; Adams, D.R. PDE4 cAMP Phosphodiesterases: Modular Enzymes that Orchestrate Signalling Cross-Talk, Desensitization and Compartmentalization. Biochem. J. 2003, 370, 1–18. [Google Scholar] [CrossRef]
- Card, G.L.; England, B.P.; Suzuki, Y.; Fong, D.; Powell, B.; Lee, B.; Luu, C.; Tabrizizad, M.; Gillette, S.; Ibrahim, P.N.; et al. Structural Basis for the Activity of Drugs That Inhibit Phosphodiesterases. Structure 2004, 12, 2233–2247. [Google Scholar] [CrossRef]
- Xu, R.X.; Hassell, A.M.; Vanderwall, D.; Lambert, M.H.; Holmes, W.D.; Luther, M.A.; Rocque, W.J.; Milburn, M.V.; Zhao, Y.; Ke, H.; et al. Atomic Structure of PDE4: Insights into Phosphodiesterase Mechanism and Specificity. Science 2000, 288, 1822–1825. [Google Scholar] [CrossRef] [PubMed]
- Al-Nema, M.; Gaurav, A.; Lee, V.S. Docking Based Screening and Molecular Dynamics Simulations to Identify Potential Selective PDE4B Inhibitor. Heliyon 2020, 6, e04856. [Google Scholar] [CrossRef]
- Sandoval, S.; Pigazzi, M.; Sakamoto, K.M. CREB: A Key Regulator of Normal and Neoplastic Hematopoiesis. Adv. Hematol. 2009, 2009, 634292. [Google Scholar] [CrossRef]
- Peng, T.; Qi, B.; He, J.; Ke, H.; Shi, J. Advances in the Development of Phosphodiesterase-4 Inhibitors. J. Med. Chem. 2020, 63, 10594–10617. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.Y.J.; Card, G.L.; Suzuki, Y.; Artis, D.R.; Fong, D.; Gillette, S.; Hsieh, D.; Neiman, J.; West, B.L.; Zhang, C.; et al. A Glutamine Switch Mechanism for Nucleotide Selectivity by Phosphodiesterases. Mol. Cell 2004, 15, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Tibbo, A.J.; Baillie, G.S. Phosphodiesterase 4B: Master Regulator of Brain Signaling. Cells 2020, 9, 1254. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Xiao, Z.; Haider, A.; Gebhard, C.; Xu, H.; Luo, H.-B.; Zhang, H.-T.; Josephson, L.; Wang, L.; Liang, S.H. Advances in Cyclic Nucleotide Phosphodiesterase-Targeted PET Imaging and Drug Discovery. J. Med. Chem. 2021, 64, 7083–7109. [Google Scholar] [CrossRef] [PubMed]
- Titus, D.; Oliva, A.; Wilson, N.; Atkins, C. Phosphodiesterase Inhibitors as Therapeutics for Traumatic Brain Injury. Curr. Pharm. Des. 2014, 21, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Houslay, M.D.; Schafer, P.; Zhang, K.Y.J. Keynote Review: Phosphodiesterase-4 as a Therapeutic Target. Drug Discov. Today 2005, 10, 1503–1519. [Google Scholar] [CrossRef] [PubMed]
- Lugnier, C. The Complexity and Multiplicity of the Specific cAMP Phosphodiesterase Family: PDE4, Open New Adapted Therapeutic Approaches. Int. J. Mol. Sci. 2022, 23, 10616. [Google Scholar] [CrossRef] [PubMed]
- Richter, W.; Conti, M. The Oligomerization State Determines Regulatory Properties and Inhibitor Sensitivity of Type 4 cAMP-Specific Phosphodiesterases. J. Biol. Chem. 2004, 279, 30338–30348. [Google Scholar] [CrossRef] [PubMed]
- Sette, C.; Conti, M. Phosphorylation and Activation of a cAMP-Specific Phosphodiesterase by the cAMP-Dependent Protein Kinase. J. Biol. Chem. 1996, 271, 16526–16534. [Google Scholar] [CrossRef]
- MacKenzie, S.J.; Baillie, G.S.; McPhee, I.; MacKenzie, C.; Seamons, R.; McSorley, T.; Millen, J.; Beard, M.B.; Van Heeke, G.; Houslay, M.D. Long PDE4 cAMP Specific Phosphodiesterases Are Activated by Protein Kinase A-mediated Phosphorylation of a Single Serine Residue in Upstream Conserved Region 1 (UCR1). Br. J. Pharmacol. 2002, 136, 421–433. [Google Scholar] [CrossRef]
- Bird, R.J.; Baillie, G.S.; Yarwood, S.J. Interaction with Receptor for Activated C-Kinase 1 (RACK1) Sensitizes the Phosphodiesterase PDE4D5 towards Hydrolysis of cAMP and Activation by Protein Kinase C. Biochem. J. 2010, 432, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Taskén, K.A.; Collas, P.; Kemmner, W.A.; Witczak, O.; Conti, M.; Taskén, K. Phosphodiesterase 4D and Protein Kinase A Type II Constitute a Signaling Unit in the Centrosomal Area. J. Biol. Chem. 2001, 276, 21999–22002. [Google Scholar] [CrossRef] [PubMed]
- Dodge, K.L. mAKAP Assembles a Protein Kinase A/PDE4 Phosphodiesterase cAMP Signaling Module. EMBO J. 2001, 20, 1921–1930. [Google Scholar] [CrossRef] [PubMed]
- Baillie, G.S.; MacKenzie, S.J.; McPhee, I.; Houslay, M.D. Sub-family Selective Actions in the Ability of Erk2 MAP Kinase to Phosphorylate and Regulate the Activity of PDE4 Cyclic AMP-specific Phosphodiesterases. Br. J. Pharmacol. 2000, 131, 811–819. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Graham, J.M.; Rimoin, D.L.; Lachman, R.S.; Krejci, P.; Tompson, S.W.; Nelson, S.F.; Krakow, D.; Cohn, D.H. Exome Sequencing Identifies PDE4D Mutations in Acrodysostosis. Am. J. Hum. Genet. 2012, 90, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Lynch, D.C.; Dyment, D.A.; Huang, L.; Nikkel, S.M.; Lacombe, D.; Campeau, P.M.; Lee, B.; Bacino, C.A.; Michaud, J.L.; Bernier, F.P.; et al. Identification of Novel Mutations Confirms Pde4d as a Major Gene Causing Acrodysostosis. Hum. Mutat. 2013, 34, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Barad, M.; Bourtchouladze, R.; Winder, D.G.; Golan, H.; Kandel, E. Rolipram, a Type IV-Specific Phosphodiesterase Inhibitor, Facilitates the Establishment of Long-Lasting Long-Term Potentiation and Improves Memory. Proc. Natl. Acad. Sci. USA 1998, 95, 15020–15025. [Google Scholar] [CrossRef] [PubMed]
- Huth, A.; Schmiechen, R.; Kehr, W.; Palenschat, D.; Paschelke, G.; Wachtel, H. 4-(Polyalkoxyphenyl)-2-Pyrrolidones (II). U.S. Patent US 4153713A1979, 8 May 1979. [Google Scholar]
- Kawamatawong, T. Phosphodiesterase-4 Inhibitors for Non-COPD Respiratory Diseases. Front. Pharmacol. 2021, 12, 518345. [Google Scholar] [CrossRef] [PubMed]
- Souness, J.E.; Rao, S. Proposal for Pharmacologically Distinct Conformers of PDE4 Cyclic AMP Phosphodiesterases. Cell. Signal. 1997, 9, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Schick, M.A.; Schlegel, N. Clinical Implication of Phosphodiesterase-4-Inhibition. Int. J. Mol. Sci. 2022, 23, 1209. [Google Scholar] [CrossRef]
- Boomkamp, S.D.; McGrath, M.A.; Houslay, M.D.; Barnett, S.C. E Pac and the High Affinity Rolipram Binding Conformer of PDE 4 Modulate Neurite Outgrowth and Myelination Using an in Vitro Spinal Cord Injury Model. Br. J. Pharmacol. 2014, 171, 2385–2398. [Google Scholar] [CrossRef]
- Zhang, H.-T.; Zhao, Y.; Huang, Y.; Deng, C.; Hopper, A.T.; De Vivo, M.; Rose, G.M.; O’Donnell, J.M. Antidepressant-like Effects of PDE4 Inhibitors Mediated by the High-Affinity Rolipram Binding State (HARBS) of the Phosphodiesterase-4 Enzyme (PDE4) in Rats. Psychopharmacology 2006, 186, 209–217. [Google Scholar] [CrossRef]
- Phillips, J.E. Inhaled Phosphodiesterase 4 (PDE4) Inhibitors for Inflammatory Respiratory Diseases. Front. Pharmacol. 2020, 11, 259. [Google Scholar] [CrossRef] [PubMed]
- Duplantier, A.J.; Biggers, M.S.; Chambers, R.J.; Cheng, J.B.; Cooper, K.; Damon, D.B.; Eggler, J.F.; Kraus, K.G.; Marfat, A.; Masamune, H.; et al. Biarylcarboxylic Acids and -Amides: Inhibition of Phosphodiesterase Type IV versus [3H] Rolipram Binding Activity and Their Relationship to Emetic Behavior in the Ferret. J. Med. Chem. 1996, 39, 120–125. [Google Scholar] [CrossRef]
- Robichaud, A.; Stamatiou, P.B.; Jin, S.-L.C.; Lachance, N.; MacDonald, D.; Laliberté, F.; Liu, S.; Huang, Z.; Conti, M.; Chan, C.-C. Deletion of Phosphodiesterase 4D in Mice Shortens A2-Adrenoceptor–Mediated Anesthesia, a Behavioral Correlate of Emesis. J. Clin. Investig. 2002, 110, 1045–1052. [Google Scholar] [CrossRef] [PubMed]
- Burgin, A.B.; Magnusson, O.T.; Singh, J.; Witte, P.; Staker, B.L.; Bjornsson, J.M.; Thorsteinsdottir, M.; Hrafnsdottir, S.; Hagen, T.; Kiselyov, A.S.; et al. Design of Phosphodiesterase 4D (PDE4D) Allosteric Modulators for Enhancing Cognition with Improved Safety. Nat. Biotechnol. 2010, 28, 63–70. [Google Scholar] [CrossRef]
- Naganuma, K.; Omura, A.; Maekawara, N.; Saitoh, M.; Ohkawa, N.; Kubota, T.; Nagumo, H.; Kodama, T.; Takemura, M.; Ohtsuka, Y.; et al. Discovery of Selective PDE4B Inhibitors. Bioorganic Med. Chem. Lett. 2009, 19, 3174–3176. [Google Scholar] [CrossRef]
- Bruno, O.; Fedele, E.; Prickaerts, J.; Parker, L.; Canepa, E.; Brullo, C.; Cavallero, A.; Gardella, E.; Balbi, A.; Domenicotti, C.; et al. GEBR-7b, a Novel PDE4D Selective Inhibitor That Improves Memory in Rodents at Non-Emetic Doses: In Vivo Effects of a Novel PDE4D Selective Inhibitor. Br. J. Pharmacol. 2011, 164, 2054–2063. [Google Scholar] [CrossRef] [PubMed]
- Gurney, M.E.; D’Amato, E.C.; Burgin, A.B. Phosphodiesterase-4 (PDE4) Molecular Pharmacology and Alzheimer’s Disease. Neurotherapeutics 2015, 12, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Mika, D.; Conti, M. PDE4D Phosphorylation: A Coincidence Detector Integrating Multiple Signaling Pathways. Cell. Signal. 2016, 28, 719–724. [Google Scholar] [CrossRef]
- Tibbo, A.J.; Tejeda, G.S.; Baillie, G.S. Understanding PDE4’s Function in Alzheimer’s Disease; a Target for Novel Therapeutic Approaches. Biochem. Soc. Trans. 2019, 47, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
- Vanmierlo, T.; Schepers, M.; Piccart, E.; Prickaerts, J. Compounds and Pharmaceutical Compositions for Use in Neurodegenerative Disorders. WO Patent WO 2022253959A1, 18 December 2022. [Google Scholar]
- Schepers, M.; Paes, D.; Tiane, A.; Rombaut, B.; Piccart, E.; Van Veggel, L.; Gervois, P.; Wolfs, E.; Lambrichts, I.; Brullo, C.; et al. Selective PDE4 Subtype Inhibition Provides New Opportunities to Intervene in Neuroinflammatory versus Myelin Damaging Hallmarks of Multiple Sclerosis. Brain Behav. Immun. 2023, 109, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Ainatzoglou, A.; Stamoula, E.; Dardalas, I.; Siafis, S.; Papazisis, G. The Effects of PDE Inhibitors on Multiple Sclerosis: A Review of in Vitro and in Vivo Models. Curr. Pharm. Des. 2021, 27, 2387–2397. [Google Scholar] [CrossRef] [PubMed]
- Zamarbide, M.; Mossa, A.; Muñoz-Llancao, P.; Wilkinson, M.K.; Pond, H.L.; Oaks, A.W.; Manzini, M.C. Male-Specific cAMP Signaling in the Hippocampus Controls Spatial Memory Deficits in a Mouse Model of Autism and Intellectual Disability. Biol. Psychiatry 2019, 85, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xu, Y.; Chowdhary, A.; Fox, D.; Gurney, M.E.; Zhang, H.-T.; Auerbach, B.D.; Salvi, R.J.; Yang, M.; Li, G.; et al. Memory Enhancing Effects of BPN14770, an Allosteric Inhibitor of Phosphodiesterase-4D, in Wild-Type and Humanized Mice. Neuropsychopharmacology 2018, 43, 2299–2309. [Google Scholar] [CrossRef]
- Sierksma, A.S.R.; Van Den Hove, D.L.A.; Pfau, F.; Philippens, M.; Bruno, O.; Fedele, E.; Ricciarelli, R.; Steinbusch, H.W.M.; Vanmierlo, T.; Prickaerts, J. Improvement of Spatial Memory Function in APPswe/PS1dE9 Mice after Chronic Inhibition of Phosphodiesterase Type 4D. Neuropharmacology 2014, 77, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Paes, D.; Schepers, M.; Willems, E.; Rombaut, B.; Tiane, A.; Solomina, Y.; Tibbo, A.; Blair, C.; Kyurkchieva, E.; Baillie, G.S.; et al. Ablation of Specific Long PDE4D Isoforms Increases Neurite Elongation and Conveys Protection against Amyloid-β Pathology. Cell. Mol. Life Sci. 2023, 80, 178. [Google Scholar] [CrossRef]
- Leslie, S.N.; Datta, D.; Christensen, K.R.; Van Dyck, C.H.; Arnsten, A.F.T.; Nairn, A.C. Phosphodiesterase PDE4D Is Decreased in Frontal Cortex of Aged Rats and Positively Correlated with Working Memory Performance and Inversely Correlated with PKA Phosphorylation of Tau. Front. Aging Neurosci. 2020, 12, 576723. [Google Scholar] [CrossRef]
- Xu, J.; Liu, X.; Guo, H.; Lu, Y.; Yang, T.; Zhou, D.; Chen, Z.; Wang, H.; Wang, C.; Sayed, M.D.S.M. cAMP/PKA/CREB/GLT1 Signaling Involved in the Antidepressant-like Effects of Phosphodiesterase 4D Inhibitor (GEBR-7b) in Rats. Neuropsychiatr. Dis. Treat. 2016, 12, 219. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, X.; Liu, A.; Zhang, J.; Wang, Q. Application PDE4D (Phosphodiesterase 4D) Inhibitor GEBR-7b. CN Patent CN 201410144269A, 23 September 2014. [Google Scholar]
- Ragusa, F.; Panera, N.; Cardarelli, S.; Scarsella, M.; Bianchi, M.; Biagioni, S.; Giorgi, M.; Alisi, A.; Massimi, M. Phosphodiesterase 4D Depletion/Inhibition Exerts Anti-Oncogenic Properties in Hepatocellular Carcinoma. Cancers 2021, 13, 2182. [Google Scholar] [CrossRef]
- Özgür, Ş.; Rasmi, R.M. Tamoksifen Dirençli Meme Kanseri Tedavisi Için Geliştirilen Yeni Stratejiler. TR Patent TR 201718258A, 21 June 2019. [Google Scholar]
- Mishra, R.R.; Belder, N.; Ansari, S.A.; Kayhan, M.; Bal, H.; Raza, U.; Ersan, P.G.; Tokat, Ü.M.; Eyüpoğlu, E.; Saatci, Ö.; et al. Reactivation of cAMP Pathway by PDE4D Inhibition Represents a Novel Druggable Axis for Overcoming Tamoxifen Resistance in ER-Positive Breast Cancer. Clin. Cancer Res. 2018, 24, 1987–2001. [Google Scholar] [CrossRef]
- Moore, T.L.; Pannuzzo, G.; Costabile, G.; Palange, A.L.; Spanò, R.; Ferreira, M.; Graziano, A.C.E.; Decuzzi, P.; Cardile, V. Nanomedicines to Treat Rare Neurological Disorders: The Case of Krabbe Disease. Adv. Drug Deliv. Rev. 2023, 203, 115132. [Google Scholar] [CrossRef]
- Rolan, P.; Hutchinson, M.; Johnson, K. Ibudilast: A Review of Its Pharmacology, Efficacy and Safety in Respiratory and Neurological Disease. Expert Opin. Pharmacother. 2009, 10, 2897–2904. [Google Scholar] [CrossRef] [PubMed]
- Freitas, E.; Gooderham, M.; Torres, T. New Topical Therapies in Development for Atopic Dermatitis. Drugs 2022, 82, 843–853. [Google Scholar] [CrossRef]
- González-García, C.; Bravo, B.; Ballester, A.; Gómez-Pérez, R.; Eguiluz, C.; Redondo, M.; Martínez, A.; Gil, C.; Ballester, S. Comparative Assessment of PDE 4 and 7 Inhibitors as Therapeutic Agents in Experimental Autoimmune Encephalomyelitis. Br. J. Pharmacol. 2013, 170, 602–613. [Google Scholar] [CrossRef] [PubMed]
- Dozier, L.; Bartos, G.; Kerdel, F. Apremilast and Psoriasis in the Real World: A Retrospective Case Series. J. Am. Acad. Dermatol. 2020, 83, 221–222. [Google Scholar] [CrossRef] [PubMed]
- U.S National Library of Medicine ClinicalTrials.Gov. Available online: https://Clinicaltrials.Gov/Search?cond=Rolipram (accessed on 10 June 2024).
- Boyce, A.M.; Collins, M.T. Fibrous Dysplasia/McCune-Albright Syndrome: A Rare, Mosaic Disease of Gα s Activation. Endocr. Rev. 2020, 41, 345–370. [Google Scholar] [CrossRef]
- U.S National Library of Medicine ClinicalTrials.Gov. Available online: https://Clinicaltrials.Gov/Search?intr=CHF6001 (accessed on 10 June 2024).
- Li, H.; Zuo, J.; Tang, W. Phosphodiesterase-4 Inhibitors for the Treatment of Inflammatory Diseases. Front. Pharmacol. 2018, 9, 1048. [Google Scholar] [CrossRef]
- U.S National Library of Medicine ClinicalTrials.Gov. Available online: https://Clinicaltrials.Gov/Search?term=Cilomilast%20 (accessed on 10 June 2024).
- Janjua, S.; Fortescue, R.; Poole, P. Phosphodiesterase-4 Inhibitors for Chronic Obstructive Pulmonary Disease. Cochrane Database Syst. Rev. 2020, 5, CD002309. [Google Scholar] [CrossRef]
- U.S National Library of Medicine ClinicalTrials.Gov. Available online: https://Clinicaltrials.Gov/Search?term=Difamilast%20 (accessed on 10 June 2024).
- U.S National Library of Medicine ClinicalTrials.Gov. Available online: https://Clinicaltrials.Gov/Search?term=OPA-15406%20 (accessed on 10 June 2024).
- U.S National Library of Medicine ClinicalTrials.Gov. Available online: https://Clinicaltrials.Gov/Search?term=MM36 (accessed on 10 June 2024).
- Hiyama, H.; Arichika, N.; Okada, M.; Koyama, N.; Tahara, T.; Haruta, J. Pharmacological Profile of Difamilast, a Novel Selective Phosphodiesterase 4 Inhibitor, for Topical Treatment of Atopic Dermatitis. J. Pharmacol. Exp. Ther. 2023, 386, 45–55. [Google Scholar] [CrossRef]
- U.S National Library of Medicine ClinicalTrials.Gov. Available online: https://Clinicaltrials.Gov/Search?term=LEO%2029102%20 (accessed on 10 June 2024).
- Felding, J.; Sørensen, M.D.; Poulsen, T.D.; Larsen, J.; Andersson, C.; Refer, P.; Engell, K.; Ladefoged, L.G.; Thormann, T.; Vinggaard, A.M.; et al. Discovery and Early Clinical Development of 2-{6-[2-(3,5-Dichloro-4-Pyridyl)Acetyl]-2,3-Dimethoxyphenoxy}-N-Propylacetamide (LEO 29102), a Soft-Drug Inhibitor of Phosphodiesterase 4 for Topical Treatment of Atopic Dermatitis. J. Med. Chem. 2014, 57, 5893–5903. [Google Scholar] [CrossRef] [PubMed]
- U.S National Library of Medicine ClinicalTrials.Gov. Available online: https://Clinicaltrials.Gov/Search?term=HT-0712%20 (accessed on 10 June 2024).
- MacDonald, E.; Van Der Lee, H.; Pocock, D.; Cole, C.; Thomas, N.; VandenBerg, P.M.; Bourtchouladze, R.; Kleim, J.A. A Novel Phosphodiesterase Type 4 Inhibitor, HT-0712, Enhances Rehabilitation-Dependent Motor Recovery and Cortical Reorganization after Focal Cortical Ischemia. Neurorehabilit. Neural Repair 2007, 21, 486–496. [Google Scholar] [CrossRef] [PubMed]
- Marafini, I.; Troncone, E.; Salvatori, S.; Monteleone, G. TGF-β Activity Restoration and Phosphodiesterase 4 Inhibition as Therapeutic Options for Inflammatory Bowel Diseases. Pharmacol. Res. 2020, 155, 104757. [Google Scholar] [CrossRef] [PubMed]
- U.S National Library of Medicine ClinicalTrials.Gov. Available online: https://Clinicaltrials.Gov/Search?term=Tetomilast (accessed on 10 June 2024).
- U.S National Library of Medicine ClinicalTrials.Gov. Available online: https://Clinicaltrials.Gov/Search?term=NCT00263874 (accessed on 10 June 2024).
- Prickaerts, J.; Heckman, P.R.A.; Blokland, A. Investigational Phosphodiesterase Inhibitors in Phase I and Phase II Clinical Trials for Alzheimer’s Disease. Expert Opin. Investig. Drugs 2017, 26, 1033–1048. [Google Scholar] [CrossRef] [PubMed]
- Gurney, M.E.; Nugent, R.A.; Mo, X.; Sindac, J.A.; Hagen, T.J.; Fox, D.; O’Donnell, J.M.; Zhang, C.; Xu, Y.; Zhang, H.-T.; et al. Design and Synthesis of Selective Phosphodiesterase 4D (PDE4D) Allosteric Inhibitors for the Treatment of Fragile X Syndrome and Other Brain Disorders. J. Med. Chem. 2019, 62, 4884–4901. [Google Scholar] [CrossRef] [PubMed]
- U.S National Library of Medicine ClinicalTrials.Gov. Available online: https://Clinicaltrials.Gov/Search?term=BPN14770 (accessed on 10 June 2024).
- U.S National Library of Medicine ClinicalTrials.Gov. Available online: https://Clinicaltrials.Gov/Search?term=GW842470X (accessed on 10 June 2024).
- Hoppmann, J.; Galetzka, C.; Höfgen, N.; Rundfeldt, C.; Bämer, W.; Kietzmann, M. The Phosphodiesterase 4 Inhibitor AWD 12–281 Is Active in a New Guinea-Pig Model of Allergic Skin Inflammation Predictive of Human Skin Penetration and Suppresses Both Th1 and Th2 Cytokines in Mice. J. Pharm. Pharmacol. 2010, 57, 1609–1617. [Google Scholar] [CrossRef] [PubMed]
- Furue, M.; Kitahara, Y.; Akama, H.; Hojo, S.; Hayashi, N.; Nakagawa, H.; The JAPANESE E6005 Study Investigators. Safety and Efficacy of Topical E6005, a Phosphodiesterase 4 Inhibitor, in Japanese Adult Patients with Atopic Dermatitis: Results of a Randomized, Vehicle-controlled, Multicenter Clinical Trial. J. Dermatol. 2014, 41, 577–585. [Google Scholar] [CrossRef]
- Ishii, N.; Shirato, M.; Wakita, H.; Miyazaki, K.; Takase, Y.; Asano, O.; Kusano, K.; Yamamoto, E.; Inoue, C.; Hishinuma, I. Antipruritic Effect of the Topical Phosphodiesterase 4 Inhibitor E6005 Ameliorates Skin Lesions in a Mouse Atopic Dermatitis Model. J. Pharmacol. Exp. Ther. 2013, 346, 105–112. [Google Scholar] [CrossRef] [PubMed]
- U.S National Library of Medicine ClinicalTrials.Gov. Available online: https://Clinicaltrials.Gov/Search?term=E6005 (accessed on 10 June 2024).
- U.S National Library of Medicine ClinicalTrials.Gov. Available online: https://Clinicaltrials.Gov/Search?term=Orismilast%20 (accessed on 10 June 2024).
- U.S National Library of Medicine ClinicalTrials.Gov. Available online: https://Clinicaltrials.Gov/Search?term=DRM02 (accessed on 10 June 2024).
- U.S National Library of Medicine ClinicalTrials.Gov. Available online: https://Clinicaltrials.Gov/Search?term=MK-0873 (accessed on 10 June 2024).
- Guay, D.; Boulet, L.; Friesen, R.W.; Girard, M.; Hamel, P.; Huang, Z.; Laliberté, F.; Laliberté, S.; Mancini, J.A.; Muise, E.; et al. Optimization and Structure–Activity Relationship of a Series of 1-Phenyl-1,8-Naphthyridin-4-One-3-Carboxamides: Identification of MK-0873, a Potent and Effective PDE4 Inhibitor. Bioorganic Med. Chem. Lett. 2008, 18, 5554–5558. [Google Scholar] [CrossRef]
- U.S National Library of Medicine ClinicalTrials.Gov. Available online: https://Clinicaltrials.Gov/Search?term=Hemay005 (accessed on 10 June 2024).
- Liu, X.; Chen, R.; Zeng, G.; Gao, Y.; Liu, X.; Zhang, D.; Hu, P.; Wang, H.; Jiang, J. Determination of a PDE4 Inhibitor Hemay005 in Human Plasma and Urine by UPLC–MS/MS and Its Application to a PK Study. Bioanalysis 2018, 10, 863–875. [Google Scholar] [CrossRef]
- Watz, H.; Mistry, S.J.; Lazaar, A.L. Safety and Tolerability of the Inhaled Phosphodiesterase 4 Inhibitor GSK256066 in Moderate COPD. Pulm. Pharmacol. Ther. 2013, 26, 588–595. [Google Scholar] [CrossRef]
- U.S National Library of Medicine ClinicalTrials.Gov. Available online: https://Clinicaltrials.Gov/Search?term=GSK256066 (accessed on 10 June 2024).
- Rutter, A.R.; Poffe, A.; Cavallini, P.; Davis, T.G.; Schneck, J.; Negri, M.; Vicentini, E.; Montanari, D.; Arban, R.; Gray, F.A.; et al. GSK356278, a Potent, Selective, Brain-Penetrant Phosphodiesterase 4 Inhibitor That Demonstrates Anxiolytic and Cognition-Enhancing Effects without Inducing Side Effects in Preclinical Species. J. Pharmacol. Exp. Ther. 2014, 350, 153–163. [Google Scholar] [CrossRef]
- U.S National Library of Medicine ClinicalTrials.Gov. Available online: https://Clinicaltrials.Gov/Search?term=GSK356278 (accessed on 10 June 2024).
- U.S National Library of Medicine ClinicalTrials.Gov. Available online: https://Clinicaltrials.Gov/Search?term=Etazolate%20 (accessed on 10 June 2024).
- Wu, Y.; Li, Z.; Huang, Y.-Y.; Wu, D.; Luo, H.-B. Novel Phosphodiesterase Inhibitors for Cognitive Improvement in Alzheimer’s Disease: Miniperspective. J. Med. Chem. 2018, 61, 5467–5483. [Google Scholar] [CrossRef]
- Drott, J.; Desire, L.; Drouin, D.; Pando, M.; Haun, F. Etazolate Improves Performance in a Foraging and Homing Task in Aged Rats. Eur. J. Pharmacol. 2010, 634, 95–100. [Google Scholar] [CrossRef]
- Marcade, M.; Bourdin, J.; Loiseau, N.; Peillon, H.; Rayer, A.; Drouin, D.; Schweighoffer, F.; Désiré, L. Etazolate, a Neuroprotective Drug Linking GABA A Receptor Pharmacology to Amyloid Precursor Protein Processing. J. Neurochem. 2008, 106, 392–404. [Google Scholar] [CrossRef]
- U.S National Library of Medicine ClinicalTrials.Gov. Available online: https://Clinicaltrials.Gov/Search?term=MK-0952%20 (accessed on 10 June 2024).
- Gallant, M.; Aspiotis, R.; Day, S.; Dias, R.; Dubé, D.; Dubé, L.; Friesen, R.W.; Girard, M.; Guay, D.; Hamel, P.; et al. Discovery of MK-0952, a Selective PDE4 Inhibitor for the Treatment of Long-Term Memory Loss and Mild Cognitive Impairment. Bioorg. Med. Chem. Lett. 2010, 20, 6387–6393. [Google Scholar] [CrossRef]
- U.S National Library of Medicine ClinicalTrials.Gov. Available online: https://Clinicaltrials.Gov/Search?term=Oglemilast%20 (accessed on 10 June 2024).
- U.S National Library of Medicine ClinicalTrials.Gov. Available online: https://Clinicaltrials.Gov/Search?term=Revamilast (accessed on 10 June 2024).
- U.S National Library of Medicine ClinicalTrials.Gov. Available online: https://Clinicaltrials.Gov/Search?term=Ensifentrine%20 (accessed on 10 June 2024).
- Singh, D.; Lea, S.; Mathioudakis, A.G. Inhaled Phosphodiesterase Inhibitors for the Treatment of Chronic Obstructive Pulmonary Disease. Drugs 2021, 81, 1821–1830. [Google Scholar] [CrossRef]
- Ke, H.; Wang, H. Crystal Structures of Phosphodiesterases and Implications on Substrate Specificity and Inhibitor Selectivity. Curr. Top. Med. Chem. 2007, 7, 391–403. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, M.; Cao, Z.; Qiu, P.; Song, G. Phosphodiesterase-4 Inhibitors: A Review of Current Developments (2013–2021). Expert Opin. Ther. Pat. 2022, 32, 261–278. [Google Scholar] [CrossRef] [PubMed]
- Cazzola, M.; Calzetta, L.; Rogliani, P.; Matera, M.G. The Discovery of Roflumilast for the Treatment of Chronic Obstructive Pulmonary Disease. Expert Opin. Drug Discov. 2016, 11, 733–744. [Google Scholar] [CrossRef] [PubMed]
- Hatzelmann, A.; Morcillo, E.J.; Lungarella, G.; Adnot, S.; Sanjar, S.; Beume, R.; Schudt, C.; Tenor, H. The Preclinical Pharmacology of Roflumilast—A Selective, Oral Phosphodiesterase 4 Inhibitor in Development for Chronic Obstructive Pulmonary Disease. Pulm. Pharmacol. Ther. 2010, 23, 235–256. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; He, D.; Cai, X.; Guan, W.; Zhang, Y.; Wu, J.-Q.; Yao, H. Advances in the Development of Phosphodiesterase-4 Inhibitors. Eur. J. Med. Chem. 2023, 250, 115195. [Google Scholar] [CrossRef] [PubMed]
- Schudt, C.; Hatzelmann, A.; Beume, R.; Tenor, H. Phosphodiesterase Inhibitors: History of Pharmacology. In Phosphodiesterases as Drug Targets; Francis, S.H., Conti, M., Houslay, M.D., Eds.; Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2011; Volume 204, pp. 1–46. ISBN 978-3-642-17968-6. [Google Scholar]
- Ulrich Schade, F.; Schudt, C. The Specific Type III and IV Phosphodiesterase Inhibitor Zardaverine Suppresses Formation of Tumor Necrosis Factor by Macrophages. Eur. J. Pharmacol. 1993, 230, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Ukena, D.; Rentz, K.; Reiber, C.; Sybrecht, G.W. Effects of the Mixed Phosphodiesterase III/IV Inhibitor, Zardaverine, on Airway Function in Patients with Chronic Airflow Obstruction. Respir. Med. 1995, 89, 441–444. [Google Scholar] [CrossRef]
- Sun, L.; Quan, H.; Xie, C.; Wang, L.; Hu, Y.; Lou, L. Phosphodiesterase 3/4 Inhibitor Zardaverine Exhibits Potent and Selective Antitumor Activity against Hepatocellular Carcinoma Both In Vitro and In Vivo Independently of Phosphodiesterase Inhibition. PLoS ONE 2014, 9, e90627. [Google Scholar] [CrossRef] [PubMed]
- Poondra, R.R.; Nallamelli, R.V.; Meda, C.L.T.; Srinivas, B.N.V.; Grover, A.; Muttabathula, J.; Voleti, S.R.; Sridhar, B.; Pal, M.; Parsa, K.V.L. Discovery of Novel 1,4-Dihydropyridine-Based PDE4 Inhibitors. Bioorg. Med. Chem. Lett. 2013, 23, 1104–1109. [Google Scholar] [CrossRef] [PubMed]
- Boland, S.; Alen, J.; Bourin, A.; Castermans, K.; Boumans, N.; Panitti, L.; Vanormelingen, J.; Leysen, D.; Defert, O. Novel Roflumilast Analogs as Soft PDE4 Inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 4594–4597. [Google Scholar] [CrossRef] [PubMed]
- Nunes, I.K.D.C.; De Souza, E.T.; Cardozo, S.V.S.; Carvalho, V.D.F.; Romeiro, N.C.; Silva, P.M.R.E.; Martins, M.A.; Barreiro, E.J.; Lima, L.M. Synthesis, Pharmacological Profile and Docking Studies of New Sulfonamides Designed as Phosphodiesterase-4 Inhibitors. PLoS ONE 2016, 11, e0162895. [Google Scholar] [CrossRef] [PubMed]
- Nunes, I.K.D.C.; De Souza, E.T.; Martins, I.R.R.; Barbosa, G.; Moraes Junior, M.O.D.; Medeiros, M.D.M.; Silva, S.W.D.; Balliano, T.L.; Da Silva, B.A.; Silva, P.M.R.; et al. Discovery of Sulfonyl Hydrazone Derivative as a New Selective PDE4A and PDE4D Inhibitor by Lead-Optimization Approach on the Prototype LASSBio-448: In Vitro and in Vivo Preclinical Studies. Eur. J. Med. Chem. 2020, 204, 112492. [Google Scholar] [CrossRef]
- Zhou, Z.-Z.; Ge, B.-C.; Chen, Y.-F.; Shi, X.-D.; Yang, X.-M.; Xu, J.-P. Catecholic Amides as Potential Selective Phosphodiesterase 4D Inhibitors: Design, Synthesis, Pharmacological Evaluation and Structure–Activity Relationships. Bioorg. Med. Chem. 2015, 23, 7332–7339. [Google Scholar] [CrossRef]
- Zhou, Z.Z.; Ge, B.-C.; Zhong, Q.-P.; Huang, C.; Cheng, Y.-F.; Yang, X.-M.; Wang, H.-T.; Xu, J.-P. Development of Highly Potent Phosphodiesterase 4 Inhibitors with Anti-Neuroinflammation Potential: Design, Synthesis, and Structure-Activity Relationship Study of Catecholamides Bearing Aromatic Rings. Eur. J. Med. Chem. 2016, 124, 372–379. [Google Scholar] [CrossRef]
- Zhou, Z.-Z.; Cheng, Y.-F.; Zou, Z.-Q.; Ge, B.-C.; Yu, H.; Huang, C.; Wang, H.-T.; Yang, X.-M.; Xu, J.-P. Discovery of N-Alkyl Catecholamides as Selective Phosphodiesterase-4 Inhibitors with Anti-Neuroinflammation Potential Exhibiting Antidepressant-like Effects at Non-Emetic Doses. ACS Chem. Neurosci. 2017, 8, 135–146. [Google Scholar] [CrossRef]
- Xu, B.; Wang, T.; Xiao, J.; Dong, W.; Wen, H.; Wang, X.; Qin, Y.; Cai, N.; Zhou, Z.; Xu, J.; et al. FCPR03, a Novel Phosphodiesterase 4 Inhibitor, Alleviates Cerebral Ischemia/Reperfusion Injury through Activation of the AKT/GSK3β/ β-Catenin Signaling Pathway. Biochem. Pharmacol. 2019, 163, 234–249. [Google Scholar] [CrossRef]
- Zheng, S.; Kaur, G.; Wang, H.; Li, M.; Macnaughtan, M.; Yang, X.; Reid, S.; Prestegard, J.; Wang, B.; Ke, H. Design, Synthesis, and Structure−Activity Relationship, Molecular Modeling, and NMR Studies of a Series of Phenyl Alkyl Ketones as Highly Potent and Selective Phosphodiesterase-4 Inhibitors. J. Med. Chem. 2008, 51, 7673–7688. [Google Scholar] [CrossRef]
- Guo, H.; Cheng, Y.; Wang, C.; Wu, J.; Zou, Z.; Niu, B.; Yu, H.; Wang, H.; Xu, J. FFPM, a PDE4 Inhibitor, Reverses Learning and Memory Deficits in APP/PS1 Transgenic Mice via cAMP/PKA/CREB Signaling and Anti-Inflammatory Effects. Neuropharmacology 2017, 116, 260–269. [Google Scholar] [CrossRef]
- Liang, L.; Chen, H.; Mao, P.; Li, Y.; Xu, L.; He, Y.; Mu, Y.; Zhao, A.Z.; Zhou, S.; Zhao, Z.; et al. ZL-n-91, a Specific Phosphodiesterase-4 Inhibitor, Suppresses the Growth of Triple-Negative Breast Cancer. Investig. New Drugs 2022, 40, 875–883. [Google Scholar] [CrossRef]
- Purushothaman, B.; Arumugam, P.; Kulsi, G.; Song, J.M. Design, Synthesis, and Biological Evaluation of Novel Catecholopyrimidine Based PDE4 Inhibitor for the Treatment of Atopic Dermatitis. Eur. J. Med. Chem. 2018, 145, 673–690. [Google Scholar] [CrossRef]
- Purushothaman, B.; Arumugam, P.; Song, J.M. A Novel Catecholopyrimidine Based Small Molecule PDE4B Inhibitor Suppresses Inflammatory Cytokines in Atopic Mice. Front. Pharmacol. 2018, 9, 485. [Google Scholar] [CrossRef]
- Bruno, O.; Romussi, A.; Spallarossa, A.; Brullo, C.; Schenone, S.; Bondavalli, F.; Vanthuyne, N.; Roussel, C. New Selective Phosphodiesterase 4D Inhibitors Differently Acting on Long, Short, and Supershort Isoforms. J. Med. Chem. 2009, 52, 6546–6557. [Google Scholar] [CrossRef]
- Brullo, C.; Massa, M.; Villa, C.; Ricciarelli, R.; Rivera, D.; Pronzato, M.A.; Fedele, E.; Barocelli, E.; Bertoni, S.; Flammini, L.; et al. Synthesis, Biological Activities and Pharmacokinetic Properties of New Fluorinated Derivatives of Selective PDE4D Inhibitors. Bioorg. Med. Chem. 2015, 23, 3426–3435. [Google Scholar] [CrossRef]
- Brullo, C.; Massa, M.; Rocca, M.; Rotolo, C.; Guariento, S.; Rivera, D.; Ricciarelli, R.; Fedele, E.; Fossa, P.; Bruno, O. Synthesis, Biological Evaluation, and Molecular Modeling of New 3-(Cyclopentyloxy)-4-Methoxybenzaldehyde O-(2-(2,6-Dimethylmorpholino)-2-Oxoethyl) Oxime (GEBR-7b) Related Phosphodiesterase 4D (PDE4D) Inhibitors. J. Med. Chem. 2014, 57, 7061–7072. [Google Scholar] [CrossRef]
- Brullo, C.; Rapetti, F.; Abbate, S.; Prosdocimi, T.; Torretta, A.; Semrau, M.; Massa, M.; Alfei, S.; Storici, P.; Parisini, E.; et al. Design, Synthesis, Biological Evaluation and Structural Characterization of Novel GEBR Library PDE4D Inhibitors. Eur. J. Med. Chem. 2021, 223, 113638. [Google Scholar] [CrossRef]
- Brullo, C.; Ricciarelli, R.; Prickaerts, J.; Arancio, O.; Massa, M.; Rotolo, C.; Romussi, A.; Rebosio, C.; Marengo, B.; Pronzato, M.A.; et al. New Insights into Selective PDE4D Inhibitors: 3-(Cyclopentyloxy)-4-Methoxybenzaldehyde O-(2-(2,6-Dimethylmorpholino)-2-Oxoethyl) Oxime (GEBR-7b) Structural Development and Promising Activities to Restore Memory Impairment. Eur. J. Med. Chem. 2016, 124, 82–102. [Google Scholar] [CrossRef]
- Oliva, A.A.; Kang, Y.; Furones, C.; Alonso, O.F.; Bruno, O.; Dietrich, W.D.; Atkins, C.M. Phosphodiesterase Isoform-specific Expression Induced by Traumatic Brain Injury. J. Neurochem. 2012, 123, 1019–1029. [Google Scholar] [CrossRef]
- Ricciarelli, R.; Brullo, C.; Prickaerts, J.; Arancio, O.; Villa, C.; Rebosio, C.; Calcagno, E.; Balbi, M.; Van Hagen, B.T.J.; Argyrousi, E.K.; et al. Memory-Enhancing Effects of GEBR-32a, a New PDE4D Inhibitor Holding Promise for the Treatment of Alzheimer’s Disease. Sci. Rep. 2017, 7, 46320. [Google Scholar] [CrossRef]
- Bruno, O.; Brullo, C.; Romussi, A.; Fedele, E.; Ricciarelli, R.; Arancio, O.; Prickaerts, J. New Compounds Having a Selective Pde4d Inhibiting Activity. WO Patent WO 2015121212A1, 20 August 2015. [Google Scholar]
- Bruno, O.; Brullo, C.; Romussi, A.; Fedele, E.; Ricciarelli, R.; Arancio, O.; Prickaerts, J. New Compounds as Selective PDE4D Inhibitors. EP Patent EP 2907806A1, 19 August 2015. [Google Scholar]
- Prosdocimi, T.; Mollica, L.; Donini, S.; Semrau, M.S.; Lucarelli, A.P.; Aiolfi, E.; Cavalli, A.; Storici, P.; Alfei, S.; Brullo, C.; et al. Molecular Bases of PDE4D Inhibition by Memory-Enhancing GEBR Library Compounds. Biochemistry 2018, 57, 2876–2888. [Google Scholar] [CrossRef]
- Du, B.; Luo, M.; Ren, C.; Zhang, J. PDE4 Inhibitors for Disease Therapy: Advances and Future Perspective. Future Med. Chem. 2023, 15, 1185–1207. [Google Scholar] [CrossRef]
- Tang, L.; Huang, C.; Zhong, J.; He, J.; Guo, J.; Liu, M.; Xu, J.-P.; Wang, H.-T.; Zhou, Z.-Z. Discovery of Arylbenzylamines as PDE4 Inhibitors with Potential Neuroprotective Effect. Eur. J. Med. Chem. 2019, 168, 221–231. [Google Scholar] [CrossRef]
- Liu, J.; Liu, L.; Zheng, L.; Feng, K.-W.; Wang, H.-T.; Xu, J.-P.; Zhou, Z.-Z. Discovery of Novel 2,3-Dihydro-1H-Inden-1-Ones as Dual PDE4/AChE Inhibitors with More Potency against Neuroinflammation for the Treatment of Alzheimer’s Disease. Eur. J. Med. Chem. 2022, 238, 114503. [Google Scholar] [CrossRef]
- Gurney, M.E.; Hagen, T.J.; Mo, X.; Vellekoop, A.; Romero, D.L.; Campbell, R.F.; Walker, J.R.; Zhu, L. Heteroaryl Inhibitors of Pde4. WO Patent WO 2014066659A1, 1 May 2014. [Google Scholar]
- Wang, Z.; Wang, Y.; Wang, B.; Li, W.; Huang, L.; Li, X. Design, Synthesis, and Evaluation of Orally Available Clioquinol-Moracin M Hybrids as Multitarget-Directed Ligands for Cognitive Improvement in a Rat Model of Neurodegeneration in Alzheimer’s Disease. J. Med. Chem. 2015, 58, 8616–8637. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, M.; Xiang, H.; Wang, W.; Feng, X.; Yang, X. WBQ5187, a Multitarget Directed Agent, Ameliorates Cognitive Impairment in a Transgenic Mouse Model of Alzheimer’s Disease and Modulates Cerebral β-Amyloid, Gliosis, cAMP Levels, and Neurodegeneration. ACS Chem. Neurosci. 2019, 10, 4787–4799. [Google Scholar] [CrossRef]
- Liao, Y.; Jia, X.; Tang, Y.; Li, S.; Zang, Y.; Wang, L.; Cui, Z.-N.; Song, G. Discovery of Novel Inhibitors of Phosphodiesterase 4 with 1-Phenyl-3,4-Dihydroisoquinoline Scaffold: Structure-Based Drug Design and Fragment Identification. Bioorg. Med. Chem. Lett. 2019, 29, 126720. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, G.; Li, H.; Chen, W.; Li, J.; Feng, C.; Gu, Z.; Zhu, F.; Zhang, R.; Li, M.; et al. Structure-Aided Identification and Optimization of Tetrahydro-Isoquinolines as Novel PDE4 Inhibitors Leading to Discovery of an Effective Antipsoriasis Agent. J. Med. Chem. 2019, 62, 5579–5593. [Google Scholar] [CrossRef]
- Zhang, R.; Li, H.; Zhang, X.; Li, J.; Su, H.; Lu, Q.; Dong, G.; Dou, H.; Fan, C.; Gu, Z.; et al. Design, Synthesis, and Biological Evaluation of Tetrahydroisoquinolines Derivatives as Novel, Selective PDE4 Inhibitors for Antipsoriasis Treatment. Eur. J. Med. Chem. 2021, 211, 113004. [Google Scholar] [CrossRef]
- Gràcia, J.; Buil, M.A.; Castro, J.; Eichhorn, P.; Ferrer, M.; Gavaldà, A.; Hernández, B.; Segarra, V.; Lehner, M.D.; Moreno, I.; et al. Biphenyl Pyridazinone Derivatives as Inhaled PDE4 Inhibitors: Structural Biology and Structure–Activity Relationships. J. Med. Chem. 2016, 59, 10479–10497. [Google Scholar] [CrossRef]
- Dal Piaz, V.; Giovannoni, M.P.; Vergelli, C.; Aguilar, I.N. Pyridazin-3(2h)-One Derivatives as Pde4 Inhibitors. WO Patent WO 03097613A1, 27 November 2003. [Google Scholar]
- Barberot, C.; Moniot, A.; Allart-Simon, I.; Malleret, L.; Yegorova, T.; Laronze-Cochard, M.; Bentaher, A.; Médebielle, M.; Bouillon, J.-P.; Hénon, E.; et al. Synthesis and Biological Evaluation of Pyridazinone Derivatives as Potential Anti-Inflammatory Agents. Eur. J. Med. Chem. 2018, 146, 139–146. [Google Scholar] [CrossRef]
- Hersperger, R.; Dawson, J.; Mueller, T. Synthesis of 4-(8-Benzo[1,2,5]Oxadiazol-5-Yl-[1,7]Naphthyridine-6-Yl)-Benzoic Acid: A Potent and Selective Phosphodiesterase Type 4D Inhibitor. Bioorg. Med. Chem. Lett. 2002, 12, 233–235. [Google Scholar] [CrossRef]
- Press, N.J.; Taylor, R.J.; Fullerton, J.D.; Tranter, P.; McCarthy, C.; Keller, T.H.; Arnold, N.; Beer, D.; Brown, L.; Cheung, R.; et al. Solubility-Driven Optimization of Phosphodiesterase-4 Inhibitors Leading to a Clinical Candidate. J. Med. Chem. 2012, 55, 7472–7479. [Google Scholar] [CrossRef]
- Press, N.J.; Taylor, R.J.; Fullerton, J.D.; Tranter, P.; McCarthy, C.; Keller, T.H.; Arnold, N.; Beer, D.; Brown, L.; Cheung, R.; et al. Discovery and Optimization of 4-(8-(3-Fluorophenyl)-1,7-Naphthyridin-6-Yl)Transcyclohexanecarboxylic Acid, an Improved PDE4 Inhibitor for the Treatment of Chronic Obstructive Pulmonary Disease (COPD). J. Med. Chem. 2015, 58, 6747–6752. [Google Scholar] [CrossRef] [PubMed]
- Giembycz, M.A. Life after PDE4: Overcoming Adverse Events with Dual-Specificity Phosphodiesterase Inhibitors. Curr. Opin. Pharmacol. 2005, 5, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Muo, I.M.; Park, S.-J.; Smith, A.; Springer, D.A.; Allen, M.D.; Hagen, T.J.; Chung, J.H. Compound D159687, a Phosphodiesterase 4D Inhibitor, Induces Weight and Fat Mass Loss in Aged Mice without Changing Lean Mass, Physical and Cognitive Function. Biochem. Biophys. Res. Commun. 2018, 506, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Jino, K.; Miyamoto, K.; Kanbara, T.; Unemura, C.; Horiguchi, N.; Ago, Y. Allosteric Inhibition of Phosphodiesterase 4D Induces Biphasic Memory-Enhancing Effects Associated with Learning-Activated Signaling Pathways. Psychopharmacology 2024, 241, 805–816. [Google Scholar] [CrossRef] [PubMed]
- Gewald, R.; Grunwald, C.; Egerland, U. Discovery of Triazines as Potent, Selective and Orally Active PDE4 Inhibitors. Bioorg. Med. Chem. Lett. 2013, 23, 4308–4314. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, O.; Mizukami, K.; Etori, M.; Sogawa, Y.; Takagi, N.; Tsuchida, H.; Morimoto, K.; Goto, T.; Yoshino, T.; Mikkaichi, T.; et al. Evaluation of the Therapeutic Index of a Novel Phosphodiesterase 4B–Selective Inhibitor Over Phosphodiesterase 4D in Mice. J. Pharmacol. Sci. 2013, 123, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Burkovetskaya, M.E.; Liu, Q.; Vadukoot, A.K.; Gautam, N.; Alnouti, Y.; Kumar, S.; Miczek, K.; Buch, S.; Hopkins, C.R.; Guo, M. KVA-D-88, a Novel Preferable Phosphodiesterase 4B Inhibitor, Decreases Cocaine-Mediated Reward Properties in vivo. ACS Chem. Neurosci. 2020, 11, 2231–2242. [Google Scholar] [CrossRef] [PubMed]
- Larsen, J.; Lambert, M.; Pettersson, H.; Vifian, T.; Larsen, M.; Ollerstam, A.; Hegardt, P.; Eskilsson, C.; Laursen, S.; Soehoel, A.; et al. Discovery and Early Clinical Development of Isobutyl 1-[8-Methoxy-5-(1-Oxo-3 H -Isobenzofuran-5-Yl)-[1,2,4]Triazolo[1,5- a ]Pyridin-2-Yl]Cyclopropanecarboxylate (LEO 39652), a Novel “Dual-Soft” PDE4 Inhibitor for Topical Treatment of Atopic Dermatitis. J. Med. Chem. 2020, 63, 14502–14521. [Google Scholar] [CrossRef] [PubMed]
- Thirupataiah, B.; Mounika, G.; Reddy, G.S.; Kumar, J.S.; Hossain, K.A.; Medishetti, R.; Samarpita, S.; Rasool, M.; Mudgal, J.; Mathew, J.E.; et al. PdCl2-Catalyzed Synthesis of a New Class of Isocoumarin Derivatives Containing Aminosulfonyl/Aminocarboxamide Moiety: First Identification of a Isocoumarin Based PDE4 Inhibitor. Eur. J. Med. Chem. 2021, 221, 113514. [Google Scholar] [CrossRef]
- Ishii, H.; Kobayashi, J.-I.; Ishikawa, T. Toddacoumalone, a Novel Mixed Dimer of Coumarin and Quinolone from Toddalia asiatica (L.) Lam. (T. aculeata Pers.). Tetrahedron Lett. 1991, 32, 6907–6910. [Google Scholar] [CrossRef]
- Lin, T.-T.; Huang, Y.-Y.; Tang, G.-H.; Cheng, Z.-B.; Liu, X.; Luo, H.-B.; Yin, S. Prenylated Coumarins: Natural Phosphodiesterase-4 Inhibitors from Toddalia asiatica. J. Nat. Prod. 2014, 77, 955–962. [Google Scholar] [CrossRef]
- Song, Z.; Huang, Y.-Y.; Hou, K.-Q.; Liu, L.; Zhou, F.; Huang, Y.; Wan, G.; Luo, H.-B.; Xiong, X.-F. Discovery and Structural Optimization of Toddacoumalone Derivatives as Novel PDE4 Inhibitors for the Topical Treatment of Psoriasis. J. Med. Chem. 2022, 65, 4238–4254. [Google Scholar] [CrossRef]
- Chen, S.-K.; Zhao, P.; Shao, Y.-X.; Li, Z.; Zhang, C.; Liu, P.; He, X.; Luo, H.-B.; Hu, X. Moracin M from Morus alba L. Is a Natural Phosphodiesterase-4 Inhibitor. Bioorg. Med. Chem. Lett. 2012, 22, 3261–3264. [Google Scholar] [CrossRef]
- Guo, Y.-Q.; Tang, G.-H.; Lou, L.-L.; Li, W.; Zhang, B.; Liu, B.; Yin, S. Prenylated Flavonoids as Potent Phosphodiesterase-4 Inhibitors from Morus alba: Isolation, Modification, and Structure-Activity Relationship Study. Eur. J. Med. Chem. 2018, 144, 758–766. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.-H.; Guo, Y.; Li, Z.; Wu, D.; Li, X.; Zhang, H.; Yang, J.; Lu, H.; Sun, Z.; Luo, H.-B.; et al. Discovery and Modelling Studies of Natural Ingredients from Gaultheria Yunnanensi s (FRANCH.) against Phosphodiesterase-4. Eur. J. Med. Chem. 2016, 114, 134–140. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, X.; Wu, D.; Tang, G.; Lai, Z.; Zheng, X.; Yin, S.; Luo, H.-B. The Discovery, Complex Crystal Structure, and Recognition Mechanism of a Novel Natural PDE4 Inhibitor from Selaginella pulvinata. Biochem. Pharmacol. 2017, 130, 51–59. [Google Scholar] [CrossRef]
- Hsu, Y.-M.; Wu, T.-Y.; Du, Y.-C.; El-Shazly, M.; Beerhues, L.; Thang, T.D.; Van Luu, H.; Hwang, T.-L.; Chang, F.-R.; Wu, Y.-C. 3-Methyl-4,5-Dihydro-Oxepine, Polyoxygenated Seco-Cyclohexenes and Cyclohexenes from Uvaria flexuosa and Their Anti-Inflammatory Activity. Phytochemistry 2016, 122, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.-F.; Chu, T.-C.; Chang, W.-Y.; Wu, Y.-C.; Chang, F.-R.; Yang, S.-C.; Wu, T.-Y.; Hsu, Y.-M.; Chen, C.-Y.; Chang, S.-H.; et al. 6-Hydroxy-5,7-Dimethoxy-Flavone Suppresses the Neutrophil Respiratory Burst via Selective PDE4 Inhibition to Ameliorate Acute Lung Injury. Free. Radic. Biol. Med. 2017, 106, 379–392. [Google Scholar] [CrossRef] [PubMed]
- Ee, G.C.L.; Daud, S.; Taufiq-Yap, Y.H.; Ismail, N.H.; Rahmani, M. Xanthones from Garcinia mangostana (Guttiferae). Nat. Prod. Res. 2006, 20, 1067–1073. [Google Scholar] [CrossRef]
- Liang, J.; Huang, Y.-Y.; Zhou, Q.; Gao, Y.; Li, Z.; Wu, D.; Yu, S.; Guo, L.; Chen, Z.; Huang, L.; et al. Discovery and Optimization of α-Mangostin Derivatives as Novel PDE4 Inhibitors for the Treatment of Vascular Dementia. J. Med. Chem. 2020, 63, 3370–3380. [Google Scholar] [CrossRef]
- Huang, Y.-Y.; Deng, J.; Tian, Y.-J.; Liang, J.; Xie, X.; Huang, Y.; Zhu, J.; Zhu, Z.; Zhou, Q.; He, X.; et al. Mangostanin Derivatives as Novel and Orally Active Phosphodiesterase 4 Inhibitors for the Treatment of Idiopathic Pulmonary Fibrosis with Improved Safety. J. Med. Chem. 2021, 64, 13736–13751. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Q.; Huang, Y.; Deng, J.; Xie, X.; Zhu, J.; Yuan, Y.; He, Y.-M.; Huang, Y.-Y.; Luo, H.-B.; et al. Discovery of Novel PDE4 Inhibitors Targeting the M-Pocket from Natural Mangostanin with Improved Safety for the Treatment of Inflammatory Bowel Diseases. Eur. J. Med. Chem. 2022, 242, 114631. [Google Scholar] [CrossRef]
PDE Family | PDE Subtype | Localization in Brain Regions * |
---|---|---|
PDE1 | B | Frontal cortex, parietal cortex, temporal cortex, hippocampus, striatum |
C | Frontal cortex, parietal cortex, hippocampus | |
PDE2 | A | Frontal cortex, parietal cortex, hippocampus, striatum |
PDE4 | A | Cerebellum, frontal cortex, parietal cortex, temporal cortex |
B | Cerebellum, frontal cortex, parietal cortex, hippocampus, thalamus, hypothalamus, striatum | |
D | Cerebellum, frontal cortex, parietal cortex, hippocampus, thalamus, hypothalamus, nucleus accumbens | |
PDE8 | B | Frontal cortex, parietal cortex, temporal cortex, hippocampus |
PDE9 | A | Cerebellum, frontal cortex, hippocampus, striatum |
PDE10 | A | Caudate nucleus |
Compound | Structure | Condition or Disease | IC50 | Literature Data |
---|---|---|---|---|
Roflumilast (Daxas) 3-(cyclopropylmethoxy)-N-(3,5-dichloropyridin-4-yl)-4-(difluoromethoxy)benzamide | COPD | PDE4B = 0.84 nM PDE4D = 0.68 nM | [71] | |
Apremilast (Otezla) (S)-N-(2-(1-(3-ethoxy-4-methoxyphenyl)-2-(methylsulfonyl)ethyl)-1,3-dioxoisoindolin-4-yl)acetamide | Psoriatic arthritis | PDE4 = 74 nM | [68,69] | |
Eucrisa (Crisaborole) 4-((1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-5-yl)oxy)benzonitrile | Atopic dermatitis | PDE4 = 490 nM | [68] | |
Ibudilast (MN-166) 1-(2-isopropylpyrazolo[1,5-a]pyridin-3-yl)-2-methylpropan-1-one | Rare childhood disease, Krabbe disease, bronchial asthma | PDE4A = 54 nM PDE4B = 65 nM | [67,68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lusardi, M.; Rapetti, F.; Spallarossa, A.; Brullo, C. PDE4D: A Multipurpose Pharmacological Target. Int. J. Mol. Sci. 2024, 25, 8052. https://doi.org/10.3390/ijms25158052
Lusardi M, Rapetti F, Spallarossa A, Brullo C. PDE4D: A Multipurpose Pharmacological Target. International Journal of Molecular Sciences. 2024; 25(15):8052. https://doi.org/10.3390/ijms25158052
Chicago/Turabian StyleLusardi, Matteo, Federica Rapetti, Andrea Spallarossa, and Chiara Brullo. 2024. "PDE4D: A Multipurpose Pharmacological Target" International Journal of Molecular Sciences 25, no. 15: 8052. https://doi.org/10.3390/ijms25158052
APA StyleLusardi, M., Rapetti, F., Spallarossa, A., & Brullo, C. (2024). PDE4D: A Multipurpose Pharmacological Target. International Journal of Molecular Sciences, 25(15), 8052. https://doi.org/10.3390/ijms25158052