PTTH–Torso Signaling System Controls Developmental Timing, Body Size, and Reproduction through Regulating Ecdysone Homeostasis in the Brown Planthopper, Nilaparvata lugens
<p>Sequence analyses of NlPTTH and NlTorso proteins. (<b>A</b>) Schematic of NlPTTH domains and sequence alignment. It is hypothesized that processing of the precursors leads to the release of mature C-terminal peptides, which subsequently assemble into cysteine knot-type structures. Cysteines are highlighted in yellow and numbered 1 to 6, conserved residues are blue, conservative substitutions are light blue, and low similar residues are gray. (<b>B</b>,<b>C</b>) Phylogenetic analysis of PTTH and Torso orthologues across various species was conducted utilizing amino acid sequences. <span class="html-italic">Nl</span>, <span class="html-italic">N. lugens</span>; <span class="html-italic">Tc</span>, <span class="html-italic">Tribolium castaneum</span>; <span class="html-italic">Bm</span>, <span class="html-italic">B. mori</span>; <span class="html-italic">Dm</span>, <span class="html-italic">D. melanogaster</span>; <span class="html-italic">Rp</span>, <span class="html-italic">R. prolixus</span>; <span class="html-italic">Ms</span>, <span class="html-italic">M. sexta</span>; <span class="html-italic">Dc</span>, <span class="html-italic">Diaphorina citri</span>; <span class="html-italic">Ap</span>, <span class="html-italic">Acyrthosiphon pisum</span>; <span class="html-italic">Cf</span>, <span class="html-italic">Camponotus floridanus</span>; <span class="html-italic">Cc</span>, <span class="html-italic">Ceratitis capitata</span>; <span class="html-italic">Ag</span>, <span class="html-italic">Anopheles gambiae</span>; <span class="html-italic">Aa</span>, <span class="html-italic">Aedes aegypti</span>. The phylogenetic tree, constructed with 1000 bootstrap replicates, was generated using the maximum-likelihood method in MEGA 11.</p> "> Figure 2
<p>Spatiotemporal expression and in situ HCR. (<b>A</b>,<b>B</b>) Temporal expression patterns of <span class="html-italic">NlPTTH</span> and <span class="html-italic">NlTorso</span> throughout all developmental stages. (<b>C</b>,<b>D</b>) Tissue-specific expression profiles of <span class="html-italic">NlPTTH</span> and <span class="html-italic">NlTorso</span> in optic lobes (Ol), central brain (CR), gnathal ganglia (GNG), ventral nerve cord (VNC), salivary glands (Sg), midgut (Mg), Malpighian tubules (Mt), integument (In), fat body (Fb), ovaries (Ov) and testis (Te). (<b>E</b>) Expression of <span class="html-italic">NlPTTH</span> in 96 h BPH embryos. (<b>F</b>) Expression of <span class="html-italic">NlPTTH</span> in the cerebral ganglia (CRG) of fifth-instar BPH nymphs. Statistical analyses in (<b>A</b>–<b>D</b>) were performed using one-way ANOVA. Different lowercase letters mean significant differences (<span class="html-italic">p</span> < 0.05).</p> "> Figure 3
<p>Establishment of homozygous <span class="html-italic">NlPTTH</span> (<span class="html-italic">NlPTTH<sup>−/−</sup></span>) and <span class="html-italic">NlTorso</span> (<span class="html-italic">NlTorso<sup>−/−</sup></span>) mutant lines. (<b>A</b>) Schematic representation of the specific sgRNA target sites within exon 1 and exon 10 of <span class="html-italic">NlPTTH</span> and <span class="html-italic">NlTorso</span>, respectively. The exons encompassing the CDS of <span class="html-italic">NlPTTH</span> and <span class="html-italic">NlTorso</span> are indicated by numerical values. The target sequences used to generate mutations in <span class="html-italic">NlPTTH</span> and <span class="html-italic">NlTorso</span> are highlighted in red. (<b>B</b>) Sanger sequencing to confirm <span class="html-italic">NlPTTH<sup>−/−</sup></span> and <span class="html-italic">NlTorso<sup>−/−</sup></span> mutants. The genomic DNA covering the target sites of <span class="html-italic">Wt</span>, <span class="html-italic">NlPTTH<sup>−/−</sup></span> and <span class="html-italic">NlTorso<sup>−/−</sup></span> mutants were subjected to PCR amplification followed by Sanger sequencing. The sequence chromatograms show a 1 bp insertion (indicated by dashes) in exon 1 and a 10 bp deletion (also indicated by dashes) in exon 10 in <span class="html-italic">NlPTTH<sup>−/−</sup></span> and <span class="html-italic">NlTorso<sup>−/−</sup></span> mutants, separately compared to <span class="html-italic">Wt</span> controls. Color waves represent base calls.</p> "> Figure 4
<p><span class="html-italic">NlPTTH<sup>−/−</sup></span> and <span class="html-italic">NlTorso<sup>−/−</sup></span> mutants exhibit prolonged nymphal duration and increased body size. (<b>A</b>) Duration of embryos and nymphs across <span class="html-italic">Wt</span>, <span class="html-italic">NlPTTH<sup>−/−</sup></span> and <span class="html-italic">NlTorso<sup>−/−</sup></span> mutants. (<b>B</b>) Body weight across <span class="html-italic">Wt</span>, <span class="html-italic">NlPTTH<sup>−/−</sup></span> and <span class="html-italic">NlTorso<sup>−/−</sup></span> mutants. (<b>C</b>) Body size of both female and male adults across <span class="html-italic">Wt</span>, <span class="html-italic">NlPTTH<sup>−/−</sup></span> and <span class="html-italic">NlTorso<sup>−/−</sup></span> mutants. (<b>D</b>) Femur length of both female and male adults across <span class="html-italic">Wt</span>, <span class="html-italic">NlPTTH<sup>−/−</sup></span> and <span class="html-italic">NlTorso<sup>−/−</sup></span> mutants. (<b>E</b>) 20E titers were measured in fifth-instar nymphs at 24, 48, and 72 h post-ecdysis for <span class="html-italic">Wt</span>, <span class="html-italic">NlPTTH<sup>−/−</sup></span> and <span class="html-italic">NlTorso<sup>−/−</sup></span> mutants. Statistical analyses in (<b>A</b>,<b>D</b>) were performed using two-tailed Student’s <span class="html-italic">t</span>-test (ns indicates no significant difference between two groups; * indicates significant difference between two groups at <span class="html-italic">p</span> < 0.05; **** indicates significant difference between two groups at <span class="html-italic">p</span> < 0.0001). Statistical analysis in (<b>B</b>,<b>E</b>) were performed using two-way ANOVA (ns indicates no significant difference between two groups; ** indicates significant difference between two groups at <span class="html-italic">p</span> < 0.005; *** indicates significant difference between two groups at <span class="html-italic">p</span> < 0.001; **** indicates significant difference between two groups at <span class="html-italic">p</span> < 0.0001).</p> "> Figure 5
<p>Depletion of <span class="html-italic">NlPTTH</span> and <span class="html-italic">NlTorso</span> impairs adult physiology in BPH. (<b>A</b>) Longevity of <span class="html-italic">Wt</span>, <span class="html-italic">NlPTTH<sup>−/−</sup></span> and <span class="html-italic">NlTorso<sup>−/−</sup></span> mutants. (<b>B</b>) Numbers of eggs deposited by <span class="html-italic">Wt</span>, <span class="html-italic">NlPTTH<sup>−/−</sup></span> and <span class="html-italic">NlTorso<sup>−/−</sup></span> mutants over a period of 10 days. (<b>C</b>) Hatching rate of eggs deposited by <span class="html-italic">Wt</span>, <span class="html-italic">NlPTTH<sup>−/−</sup></span> and <span class="html-italic">NlTorso<sup>−/−</sup></span> mutants. Statistical analysis in (<b>A</b>) was performed with the log-rank Mantel–Cox test. Statistical analyses in (<b>B</b>,<b>C</b>) employed two-tailed Student’s <span class="html-italic">t</span>-test (* indicates significant difference between two groups at <span class="html-italic">p</span> < 0.05; ** indicates significant difference between two groups at <span class="html-italic">p</span> < 0.005; *** indicates significant difference between two groups at <span class="html-italic">p</span> < 0.001; **** indicates significant difference between two groups at <span class="html-italic">p</span> < 0.0001).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Identification and Sequence Analysis of NlPTTH and NlTorso
2.2. Spatiotemporal Expression and In Situ Hybridization Chain Reaction (HCR)
2.3. Establishment of Homozygous NlPTTH and NlTorso Mutant Lines
2.4. NlPTTH−/− and NlTorso−/− Mutants Exhibit Prolonged Nymphal Duration and Increased Body Size
2.5. Depletion of NlPTTH and NlTorso Impairs Adult Physiology in BPH
3. Discussion
4. Materials and Methods
4.1. Insect Rearing
4.2. Amplification and Analysis of the Sequence
4.3. Spatiotemporal Expression of NlPTTH and NlTorso in Wt BPHs
4.4. In Vitro Synthesis of Cas9 mRNA and Single Guide RNA (sgRNA)
4.5. Homozygous Mutant Line Screening
4.6. In Situ Amplifiers Based on the Hybridization Chain Reaction (HCR) Mechanism
4.7. Determination of 20-Hydroxyecdysone (20E)
4.8. Body Weight, Duration of Embryonic and Nymphal Stages and Adult Lifespan
4.9. Fecundity and Hatching Rate Analysis
4.10. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kawakami, A.; Kataoka, H.; Oka, T.; Mizoguchi, A.; Kimura-Kawakami, M.; Adachi, T.; Iwami, M.; Nagasawa, H.; Suzuki, A.; Ishizaki, H. Molecular cloning of the Bombyx mori prothoracicotropic hormone. Science 1990, 247, 1333–1335. [Google Scholar] [CrossRef] [PubMed]
- McBrayer, Z.; Ono, H.; Shimell, M.; Parvy, J.P.; Beckstead, R.B.; Warren, J.T.; Thummel, C.S.; Dauphin-Villemant, C.; Gilbert, L.I.; O’Connor, M.B. Prothoracicotropic hormone regulates developmental timing and body size in Drosophila. Dev. Cell 2007, 13, 857–871. [Google Scholar] [CrossRef]
- Gu, S.H.; Chow, Y.S. Analysis of ecdysteroidogenic activity of the prothoracic glands during the last larval instar of the silkworm, Bombyx mori. Arch. Insect Biochem. Physiol. 2005, 58, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Scieuzo, C.; Nardiello, M.; Salvia, R.; Pezzi, M.; Chicca, M.; Leis, M.; Bufo, S.A.; Vinson, S.B.; Rao, A.; Vogel, H.; et al. Ecdysteroidogenesis and development in Heliothis virescens (Lepidoptera: Noctuidae): Focus on PTTH-stimulated pathways. J. Insect Physiol. 2018, 107, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Rybczynski, R.; Snyder, C.A.; Hartmann, J.; Gilbert, L.I.; Sakurai, S. Manduca sexta prothoracicotropic hormone: Evidence for a role beyond steroidogenesis. Arch. Insect Biochem. Physiol. 2009, 70, 217–229. [Google Scholar] [CrossRef]
- Kataoka, H.; Nagasawa, H.; Isogai, A.; Ishizaki, H.; Suzuki, A. Prothoracicotropic hormone of the silkworm, Bombyx mori: Amino acid sequence and dimeric structure. Agric. Biol. Chem. 1991, 55, 73–86. [Google Scholar] [CrossRef]
- Mizoguchi, A.; Oka, T.; Kataoka, H.; Nagasawa, H.; Suzuki, A.; Ishizaki, H. Immunohistochemical Localization of Prothoracicotropic Hormone-Producing Neurosecretory Cells in the Brain of Bombyx mori: (prothoracicotropic hormone/Bombyx mori/monoclonal antibody/brain neurosecretory cell/neurohaemal organ). Dev. Growth Differ. 1990, 32, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Agui, N.; Granger, N.A.; Gilbert, L.I.; Bollenbacher, W.E. Cellular localization of the insect prothoracicotropic hormone: In vitro assay of a single neurosecretory cell. Proc. Natl. Acad. Sci. USA 1979, 76, 5694–5698. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.D.; Mizoguchi, A.; Gilbert, L.I. Immunoreactivity of neurosecretory granules in the brain-retrocerebral complex of Manduca sexta to heterologous antibodies against Bombyx prothoracicotropic hormone and bombyxin. Invertebr. Reprod. Dev. 1994, 26, 187–196. [Google Scholar] [CrossRef]
- Rybczynski, R.; Bell, S.C.; Gilbert, L.I. Activation of an extracellular signal-regulated kinase (ERK) by the insect prothoracicotropic hormone. Mol. Cell. Endocrinol. 2001, 184, 1–11. [Google Scholar] [CrossRef]
- Rybczynski, R.; Gilbert, L.I. Prothoracicotropic hormone stimulated extracellular signal-regulated kinase (ERK) activity: The changing roles of Ca2+- and cAMP-dependent mechanisms in the insect prothoracic glands during metamorphosis. Mol. Cell. Endocrinol. 2003, 205, 159–168. [Google Scholar] [CrossRef]
- Lin, J.L.; Gu, S.H. In vitro and in vivo stimulation of extracellular signal-regulated kinase (ERK) by the prothoracicotropic hormone in prothoracic gland cells and its developmental regulation in the silkworm, Bombyx mori. J. Insect Physiol. 2007, 53, 622–631. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, N.; Marqués, G.; O’Connor, M.B. Vesicle-Mediated Steroid Hormone Secretion in Drosophila melanogaster. Cell 2015, 163, 907–919. [Google Scholar] [CrossRef]
- Rewitz, K.F.; Yamanaka, N.; Gilbert, L.I.; O’Connor, M.B. The insect neuropeptide PTTH activates receptor tyrosine kinase torso to initiate metamorphosis. Science 2009, 326, 1403–1405. [Google Scholar] [CrossRef] [PubMed]
- Petryk, A.; Warren, J.T.; Marqués, G.; Jarcho, M.P.; Gilbert, L.I.; Kahler, J.; Parvy, J.P.; Li, Y.; Dauphin-Villemant, C.; O’Connor, M.B. Shade is the Drosophila P450 enzyme that mediates the hydroxylation of ecdysone to the steroid insect molting hormone 20-hydroxyecdysone. Proc. Natl. Acad. Sci. USA 2003, 100, 13773–13778. [Google Scholar] [CrossRef]
- Rewitz, K.F.; O’Connor, M.B.; Gilbert, L.I. Molecular evolution of the insect Halloween family of cytochrome P450s: Phylogeny, gene organization and functional conservation. Insect Biochem. Mol. Biol. 2007, 37, 741–753. [Google Scholar] [CrossRef]
- Yamanaka, N.; Rewitz, K.F.; O’Connor, M.B. Ecdysone control of developmental transitions: Lessons from Drosophila research. Annu. Rev. Entomol. 2013, 58, 497–516. [Google Scholar] [CrossRef] [PubMed]
- Nijhout, H.F.; Williams, C.M. Control of moulting and metamorphosis in the tobacco hornworm, Manduca sexta (L.): Growth of the last-instar larva and the decision to pupate. J. Exp. Biol. 1974, 61, 481–491. [Google Scholar] [CrossRef] [PubMed]
- Uchibori-Asano, M.; Kayukawa, T.; Sezutsu, H.; Shinoda, T.; Daimon, T. Severe developmental timing defects in the prothoracicotropic hormone (PTTH)-deficient silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 2017, 87, 14–25. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Liu, X.J.; Yu, Y.; Yang, F.Y.; Li, K. The receptor tyrosine kinase torso regulates ecdysone homeostasis to control developmental timing in Bombyx mori. Insect Sci. 2021, 28, 1582–1590. [Google Scholar] [CrossRef]
- Tanaka, Y.; Suetsugu, Y.; Yamamoto, K.; Noda, H.; Shinoda, T. Transcriptome analysis of neuropeptides and G-protein coupled receptors (GPCRs) for neuropeptides in the brown planthopper Nilaparvata lugens. Peptides 2014, 53, 125–133. [Google Scholar] [CrossRef]
- Vafopoulou, X.; Donaldson, L.W.; Steel, C. The prothoracicotropic hormone (PTTH) of Rhodnius prolixus (Hemiptera) is noggin-like: Molecular characterisation, functional analysis and evolutionary implications. Gen. Comp. Endocrinol. 2023, 332, 114184. [Google Scholar] [CrossRef]
- Wei, Z.; Hu, W.; Lin, Q.; Cheng, X.; Tong, M.; Zhu, L.; Chen, R.; He, G. Understanding rice plant resistance to the Brown Planthopper (Nilaparvata lugens): A proteomic approach. Proteomics 2009, 9, 2798–2808. [Google Scholar] [CrossRef]
- Rybczynski, R. “The prothoracicotropic hormone” in Comprehensive Molecular Insect Science, Oxford; Elsevier Press: Oxford, UK, 2005; pp. 61–123. [Google Scholar]
- Gilbert, L.I.; Rybczynski, R.; Warren, J.T. Control and biochemical nature of the ecdysteroidogenic pathway. Annu. Rev. Entomol. 2002, 47, 883–916. [Google Scholar] [CrossRef] [PubMed]
- Noguti, T.; Adachi-Yamada, T.; Katagiri, T.; Kawakami, A.; Iwami, M.; Ishibashi, J.; Kataoka, H.; Suzuki, A.; Go, M.; Ishizaki, H. Insect prothoracicotropic hormone: A new member of the vertebrate growth factor superfamily. FEBS Lett. 1995, 376, 251–256. [Google Scholar] [CrossRef]
- Gilbert, L.I.; Song, Q.; Rybczynski, R. Control of ecdysteroidogenesis: Activation and inhibition of prothoracic gland activity. Invert. Neurosci. 1997, 3, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Agui, N.; Bollenbacher, W.E.; Granger, N.A.; Gilbert, L.I. Corpus allatum is release site for insect prothoracicotropic hormone. Nature 1980, 285, 669–670. [Google Scholar] [CrossRef]
- Namiki, T.; Niwa, R.; Sakudoh, T.; Shirai, K.; Takeuchi, H.; Kataoka, H. Cytochrome P450 CYP307A1/Spook: A regulator for ecdysone synthesis in insects. Biochem. Biophys. Res. Commun. 2005, 337, 367–374. [Google Scholar] [CrossRef]
- Niwa, R.; Sakudoh, T.; Namiki, T.; Saida, K.; Fujimoto, Y.; Kataoka, H. The ecdysteroidogenic P450 Cyp302a1/disembodied from the silkworm, Bombyx mori, is transcriptionally regulated by prothoracicotropic hormone. Insect Mol. Biol. 2005, 14, 563–571. [Google Scholar] [CrossRef]
- Yamanaka, N.; Honda, N.; Osato, N.; Niwa, R.; Mizoguchi, A.; Kataoka, H. Differential regulation of ecdysteroidogenic P450 gene expression in the silkworm, Bombyx mori. Biosci. Biotechnol. Biochem. 2007, 71, 2808–2814. [Google Scholar] [CrossRef]
- Huang, X.; Warren, J.T.; Gilbert, L.I. New players in the regulation of ecdysone biosynthesis. J. Genet. Genom. 2008, 35, 1–10. [Google Scholar] [CrossRef]
- Salvia, R.; Nardiello, M.; Scieuzo, C.; Scala, A.; Bufo, S.A.; Rao, A.; Vogel, H.; Falabella, P. Novel Factors of Viral Origin Inhibit TOR Pathway Gene Expression. Front. Physiol. 2018, 9, 1678. [Google Scholar] [CrossRef]
- Shimell, M.; Pan, X.; Martin, F.A.; Ghosh, A.C.; Leopold, P.; O’Connor, M.B.; Romero, N.M. Prothoracicotropic hormone modulates environmental adaptive plasticity through the control of developmental timing. Development 2018, 145, 159699. [Google Scholar] [CrossRef] [PubMed]
- Kang, P.; Liu, P.; Kim, J.; Bolton, M.; Kumar, A.; Miao, T.; Shimell, M.; O’Connor, M.B.; Powell-Coffman, J.; Bai, H. Ptth regulates lifespan through innate immunity pathway in Drosophila. bioRxiv 2023. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Shen, B.; Zhang, C.; Huang, X.; Zhang, Y. sgRNAcas9: A software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS ONE 2014, 9, e100448. [Google Scholar] [CrossRef]
- Xue, W.H.; Xu, N.; Yuan, X.B.; Chen, H.H.; Zhang, J.L.; Fu, S.J.; Zhang, C.X.; Xu, H.J. CRISPR/Cas9-mediated knockout of two eye pigmentation genes in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Insect Biochem. Mol. Biol. 2018, 93, 19–26. [Google Scholar] [CrossRef]
- Nakaoka, T.; Iga, M.; Yamada, T.; Koujima, I.; Takeshima, M.; Zhou, X.; Suzuki, Y.; Ogihara, M.H.; Kataoka, H. Deep sequencing of the prothoracic gland transcriptome reveals new players in insect ecdysteroidogenesis. PLoS ONE 2017, 12, e172951. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, X.; Zhang, J.; Zhang, C.; Zhou, N. PTTH–Torso Signaling System Controls Developmental Timing, Body Size, and Reproduction through Regulating Ecdysone Homeostasis in the Brown Planthopper, Nilaparvata lugens. Int. J. Mol. Sci. 2024, 25, 5138. https://doi.org/10.3390/ijms25105138
Luo X, Zhang J, Zhang C, Zhou N. PTTH–Torso Signaling System Controls Developmental Timing, Body Size, and Reproduction through Regulating Ecdysone Homeostasis in the Brown Planthopper, Nilaparvata lugens. International Journal of Molecular Sciences. 2024; 25(10):5138. https://doi.org/10.3390/ijms25105138
Chicago/Turabian StyleLuo, Xumei, Jinli Zhang, Chuanxi Zhang, and Naiming Zhou. 2024. "PTTH–Torso Signaling System Controls Developmental Timing, Body Size, and Reproduction through Regulating Ecdysone Homeostasis in the Brown Planthopper, Nilaparvata lugens" International Journal of Molecular Sciences 25, no. 10: 5138. https://doi.org/10.3390/ijms25105138
APA StyleLuo, X., Zhang, J., Zhang, C., & Zhou, N. (2024). PTTH–Torso Signaling System Controls Developmental Timing, Body Size, and Reproduction through Regulating Ecdysone Homeostasis in the Brown Planthopper, Nilaparvata lugens. International Journal of Molecular Sciences, 25(10), 5138. https://doi.org/10.3390/ijms25105138