Elucidating the Role of Wildtype and Variant FGFR2 Structural Dynamics in (Dys)Function and Disorder
<p>Structures of inactive and active forms of FGFR2-TKD. Panel (<b>a</b>) displays inactive FGFR2-TKD, highlighting the structural readiness of the kinase for activation, including the kinase activation loop and key unphosphorylated tyrosine residues. Color coding identifies the various known functional regions (see <a href="#ijms-25-04523-t001" class="html-table">Table 1</a>: nucleotide binding loop in gray, Alpha C helix in pink, kinase hinge in purple, kinase insert in blue, catalytic pocket in black, and activation loop in yellow). Panel (<b>b</b>) shows the active and phosphorylated FGFR2-TKD. The active structure is shown to accompany phosphorylation, enhancing substrate recognition and catalytic activity. The activation loop is distinct in the inactive and active structures, colored in yellow. The transition from an inactive to an active state is fundamental in various cellular processes, including growth and tissue repair.</p> "> Figure 2
<p>The cumulative variance analysis shows that PCA is effective for FGFR2 structural variation. The plot stops after the top 7 PCs, as 6 PCs already capture more than 90% of the variance.</p> "> Figure 3
<p>This plot shows the RMSD between the original CA trace (subjected to the PCA analysis) and the corresponding reconstructed CA trace as a function of including more PCS. RMSD values range from zero to one in the plot, which accounts for the relatively smaller variations observed. We observe that 3CLY and 6V6Q exhibit distinct characteristics compared to the other structures.</p> "> Figure 4
<p>We map out the magnitude of dynamics over the amino acids for each of the top three PCs. The top panel shows displacements along PC1; the middle panel does so along PC2, and the bottom panel shows displacements along PC3. Each of the PCs effectively highlight the activation loop, a pivotal structural element influencing FGFR2’s status and function, as expected. Furthermore, while PC1 shows less prominence for regions like the kinase hinge and nucleotide binding loop, PC2 and PC3 capture them well. Residues between 700 and 750, lacking a specific functional role, are prominently featured due to their inherently unstable coil-like structure, leading to distinctive variations across structures. The catalytic pocket is not adequately captured. This limitation comes from the fact that we have only one structure, PDB ID 3B2T, with a mutation in this region, making it challenging to draw robust conclusions about its behavior.</p> "> Figure 5
<p>The 2D (PC1-PC2) embedding of tertiary structures of wildtype and variant FGFR2-TKD is labeled based on functional regions (colors) and activation status (shapes). All active forms are well co-localized in the 2D embedding. Red arrowed lines are added to improve visibility by better associating PDB IDs with the color-coded markers. Several interesting clustering patterns emerge, as detailed in the main text.</p> "> Figure 6
<p>The Isomap-obtained 2D embedding reveals notable shifts in the positioning of PDB IDs 3RI1 and 2PSQ relative to the reference structure 1GJO. Specifically, 2PSQ, despite its activation loop resembling a phosphorylated state, largely mirrors an unphosphorylated structure, leading to its placement near the inactive wildtype cluster. Conversely, 3RI1, characterized as an unphosphorylated FGFR2 kinase domain, is displayed in an auto-inhibited state. This finding is significant for identifying potential targets for selective inhibitors. Isomap effectively isolates distinct structures such as 3CLY and 6V6Q from the rest. Moreover, it categorizes structures with the prefixes “4”, “5”, and “2”, elucidating their interrelationships and contributing to our understanding of structural variations.</p> "> Figure 7
<p>Eleven tertiary structures of FGFR2-TKD with known disease classifications are projected onto the top two PCs. The disease classifications consist of cervical and endometrial cancers, LADD syndrome, and unclassified cranial synostosis syndrome, in addition to Crouzon and Pfeiffer syndromes.</p> "> Figure 8
<p>Eleven tertiary structures of FGFR2-TKD with known disease classifications are projected onto the top two Isomap components. The disease classifications consist of cervical and endometrial cancers, LADD syndrome, and unclassified cranial synostosis syndrome, in addition to Crouzon and Pfeiffer syndromes.</p> "> Figure 9
<p>The RMSD between the known and predicted structure is shown here for each of the three methods (SWISS-MODEL, AlphaFold2, AlphaMissense) on 13 single-nucleotide variants. Compared to all methods, SWISS-MODEL has a lower RMSD per structure, no higher than <math display="inline"><semantics> <mrow> <mn>0.4</mn> </mrow> </semantics></math> Å.</p> "> Figure 10
<p>We zoom in here on the known tertiary structure with PDB ID 2PZ5 and its predicted structure from each of the three methods; pink color indicates the original structure 2PZ5, purple the SWISS-MODEL structure, yellow the AlphaMissense, and cyan the AlphaFold2 structure. The differences in modeling accuracy are made evident, particularly in three specific coil regions of the protein. (<b>a</b>) Insert Region: here, the models exhibit reduced effectiveness, which can be attributed to the complexity inherent in kinase insert regions, a lack of diverse data, and the challenges associated with integrating comprehensive bioactivity data. (<b>b</b>) Activation Loop: This section focuses on the coil areas of the protein, underscoring the limitations of AlphaFold2 and AlphaMissense in these dynamic regions. These limitations stem from biases in their training algorithms and their inability to adequately capture structural variations, especially when compared to the results of homology modeling. (<b>c</b>) Predictive Model Effectiveness: The effectiveness of predictive models is generally lower in the N-terminus region. This is due to various factors, including the inherent flexibility of these regions and so lack of agreement in training data.</p> "> Figure 11
<p>PC1-PC2 embedding of known and computed structures. Colors indicate functional regions, and shapes indicate state. ’X’ is reserved to indicate the computed structures.</p> "> Figure 12
<p>PC1-PC2 embedding of known and computed structures. Color-coding indicates disease classifications.</p> ">
Abstract
:1. Introduction
Symbol | Region Name | Region Range |
---|---|---|
B | Nucleotide-binding loop | 480–490 |
N | Alpha C helix at the kinase N-lobe | 525–539 |
G | Gate keeper | 564 |
H | Kinase hinge and its vicinity | 566–571, 549, 565 |
K | Kinase insert | 579–599 |
C | Catalytic pocket | 620–630 |
T | Alpha-C tether | 650 |
A | Activation loop | 643–649, 651–664 |
O | Others | - |
PDB ID (No. of Residue) | Status | Chains Removed |
---|---|---|
1GJO (316) | Inactive/WT | - |
1OEC (316) | Inactive/WT | - |
2PSQ (370) | Inactive/WT | - |
2PVF (334) | Active/WT | - |
3RI1 (313) | Inactive/WT | - |
2PVY (324) | K659N/Active/A | removed, Missing residue 659 |
2PWL (324) | N549H/Active/K | - |
2PY3 (324) | E565G/Active/K | - |
2PZ5 (324) | N549T/Active/K | - |
2PZP (324) | K526E/Active/N | - |
2PZR (324) | K641R/Active/K | - |
2Q0B (324) | E565A/Active/K | - |
3B2T (311) | A628T/Active/C | - |
3CLY (334) | C491A/Unknown/O | - |
4J95 (324) | K659N/Active/A | removed, Missing residue 654, 659 |
4J96 (324) | K659M/Active/A | - |
4J97 (324) | K659E/Active/A | - |
4J98 (324) | K659Q/Active/A | - |
4J99 (324) | K659T/Active/A | removed, Missing residue 653 |
5EG3 (334) | Multiple/Unknown/O | - |
5UGL (324) | D650V/Active/T | removed, Missing residue 659 |
5UGX (324) | E565A/D650V/Active/HT | removed, Missing residue 659 |
5UHN (324) | E565A/N549H/Active/H | removed, Missing residue 659 |
5UI0 (324) | E565A/K659M/Active/HA | - |
6LVK (313) | Unknown/WT | - |
6LVL (313) | Unknown/WT | - |
6V6Q (411) | Multiple/Intermediate/O | removed, Missing residue 659 |
7KIA (308) | V564F/Unknown/G | - |
7KIE (308) | V564F/Unknown/G | - |
7OZY | 2cMissing .PDB file | |
8E1X | The reference paper information does not match with PDB structure. |
2. Results
2.1. From Structure to Function to Disease Linking Structure to Function to Disease for FGFR2 Variants with Known Structural Characterization
2.1.1. Extracting Structural Dynamics
2.1.2. Linking Structural to Functional Variation
2.1.3. Linking Structural Variation to Disease Implication
2.2. Extending the Analysis with Computational Models of Variants with No Structural Characterization
3. Discussion
Methodological Considerations
4. Methods and Materials
4.1. Data Collection and Preparation
4.2. Characterization of Structural Dynamics Present in Experimentally Resolved Tertiary Structures
4.2.1. PCA for Characterization of Linear Structural Dynamics
4.2.2. Isomap for Characterization of Nonlinear Dynamics
4.3. Computational Modeling to Predict Novel Tertiary Structures In Silico
4.3.1. Structure Prediction
SWISS-MODEL
AlphaFold2
AlphaMissense
Structure Completion and Energetic Refinement
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CA | Main-chain, Alpha Carbon Atom |
FGFR2 | Fibroblast Growth Factor Receptor 2 |
FGFR2-TKD | FGFR2 Tyrosine Kinase Domain |
MDS | Multidimensional Scaling |
PDB | Protein Data Bank |
PCA | Principal Component Analysis |
PC | Principal Component |
RMSD | Root-Mean-Square Deviation |
RTK | Receptor Tyrosoine Kinases |
3D | Three-dimensional |
References
- Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 2010, 141, 1117–1134. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Lovly, C.M. Mechanisms of receptor tyrosine kinase activation in cancer. Mol. Cancer 2018, 17, 58. [Google Scholar] [CrossRef] [PubMed]
- Youngblood, V.M.; Kim, L.C.; Edwards, D.N.; Hwang, Y.; Santapuram, P.R.; Stirdivant, S.M.; Lu, P.; Ye, F.; Brantley-Sieders, D.M.; Chen, J. The ephrin-A1/EPHA2 signaling axis regulates glutamine metabolism in HER2-positive breast cancer. Cancer Res. 2016, 76, 1825–1836. [Google Scholar] [CrossRef] [PubMed]
- O’sullivan, M.J.; Lindsay, A.J. The endosomal recycling pathway—At the crossroads of the cell. Int. J. Mol. Sci. 2020, 21, 6074. [Google Scholar] [CrossRef] [PubMed]
- Yarden, Y.; Pines, G. The ERBB network: At last, cancer therapy meets systems biology. Nat. Rev. Cancer 2012, 12, 553–563. [Google Scholar] [CrossRef]
- Sargin, B.; Choudhary, C.; Crosetto, N.; Schmidt, M.H.; Grundler, R.; Rensinghoff, M.; Thiessen, C.; Tickenbrock, L.; Schwäble, J.; Brandts, C.; et al. Flt3-dependent transformation by inactivating c-Cbl mutations in AML. Blood J. Am. Soc. Hematol. 2007, 110, 1004–1012. [Google Scholar] [CrossRef] [PubMed]
- Butti, R.; Das, S.; Gunasekaran, V.P.; Yadav, A.S.; Kumar, D.; Kundu, G.C. Receptor tyrosine kinases (RTKs) in breast cancer: Signaling, therapeutic implications and challenges. Mol. Cancer 2018, 17, 34. [Google Scholar] [CrossRef] [PubMed]
- Andrechek, E.R.; Muller, W.J. Tyrosine kinase signalling in breast cancer: Tyrosine kinase-mediated signal transduction in transgenic mouse models of human breast cancer. Breast Cancer Res. 2000, 2, 211. [Google Scholar] [CrossRef] [PubMed]
- Casaletto, J.B.; McClatchey, A.I. Spatial regulation of receptor tyrosine kinases in development and cancer. Nat. Rev. Cancer 2012, 12, 387–400. [Google Scholar] [CrossRef]
- Alexandru, O.; Horescu, C.; Sevastre, A.S.; Cioc, C.; Baloi, C.; Oprita, A.; Dricu, A. Receptor tyrosine kinase targeting in glioblastoma: Performance, limitations and future approaches. Contemp. Oncol. Onkol. 2020, 24, 55–66. [Google Scholar] [CrossRef]
- Regad, T. Targeting RTK signaling pathways in cancer. Cancers 2015, 7, 1758–1784. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Wu, H.; Cao, J.; Ye, J. Hepatocyte growth factor activator inhibitor type-1 in cancer: Advances and perspectives. Mol. Med. Rep. 2014, 10, 2779–2785. [Google Scholar] [CrossRef] [PubMed]
- Valiathan, R.R.; Marco, M.; Leitinger, B.; Kleer, C.G.; Fridman, R. Discoidin domain receptor tyrosine kinases: New players in cancer progression. Cancer Metastasis Rev. 2012, 31, 295–321. [Google Scholar] [CrossRef] [PubMed]
- Kunii, K.; Davis, L.; Gorenstein, J.; Hatch, H.; Yashiro, M.; Di Bacco, A.; Elbi, C.; Lutterbach, B. FGFR2-amplified gastric cancer cell lines require FGFR2 and Erbb3 signaling for growth and survival. Cancer Res. 2008, 68, 2340–2348. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Yang, J.; Guo, Q.; Zhang, M. Clinical assessment and FGFR2 mutation analysis in a Chinese family with Crouzon syndrome: A case report. Medicine 2021, 100, e24991. [Google Scholar] [CrossRef] [PubMed]
- Rouzier, C.; Soler, C.; Hofman, P.; Brennetot, C.; Bieth, E.; Pedeutour, F. Ovarian dysgerminoma and Apert syndrome. Pediatr. Blood Cancer 2008, 50, 696–698. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Dubrovska, A.; Salamone, R.J.; Walker, J.R.; Grandinetti, K.B.; Bonamy, G.M.; Orth, A.P.; Elliott, J.; Porta, D.G.; Garcia-Echeverria, C.; et al. FGFR2 promotes breast tumorigenicity through maintenance of breast tumor-initiating cells. PLoS ONE 2013, 8, e51671. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Su, X.; Zhang, L.; Yin, X.; Tang, L.; Zhang, X.; Xu, Y.; Gao, Z.; Liu, K.; Zhou, M.; et al. FGFR2 gene amplification in gastric cancer predicts sensitivity to the selective FGFR inhibitor AZD4547. Clin. Cancer Res. 2013, 19, 2572–2583. [Google Scholar] [CrossRef] [PubMed]
- Gatius, S.; Velasco, A.; Azueta, A.; Santacana, M.; Pallares, J.; Valls, J.; Dolcet, X.; Prat, J.; Matias-Guiu, X. FGFR2 alterations in endometrial carcinoma. Mod. Pathol. 2011, 24, 1500–1510. [Google Scholar] [CrossRef]
- Sommer, A.; Kopitz, C.; Schatz, C.A.; Nising, C.F.; Mahlert, C.; Lerchen, H.G.; Stelte-Ludwig, B.; Hammer, S.; Greven, S.; Schuhmacher, J.; et al. Preclinical efficacy of the auristatin-based antibody–drug conjugate BAY 1187982 for the treatment of FGFR2-positive solid tumors. Cancer Res. 2016, 76, 6331–6339. [Google Scholar] [CrossRef]
- Nomura, S.; Yoshitomi, H.; Takano, S.; Shida, T.; Kobayashi, S.; Ohtsuka, M.; Kimura, F.; Shimizu, H.; Yoshidome, H.; Kato, A.; et al. FGF10/FGFR2 signal induces cell migration and invasion in pancreatic cancer. Br. J. Cancer 2008, 99, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.H.; Lee, M.H.; Miao, K.; Huang, Z.; Yao, Z.; Zhang, A.; Xu, J.; Zhao, M.; Huang, Z.; Zhang, X.; et al. Activation of FGFR2 Signaling Suppresses BRCA1 and Drives Triple-Negative Mammary Tumorigenesis That is Sensitive to Immunotherapy. Adv. Sci. 2021, 8, 2100974. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.M.; Ekert, P.G.; Fleuren, E.D.G. Biological and clinical implications of FGFR aberrations in paediatric and young adult cancers. Oncogene 2023, 42, 1875–1888. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.M.; Henrick, K.; Nakamura, H. Announcing the worldwide Protein Data Bank. Nat. Struct. Biol. 2003, 10, 980. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yasen, M.; Lu, S.; Ma, D.N.; Chai, Z. Decoding the Conformational Selective Mechanism of FGFR Isoforms: A Comparative Molecular Dynamics Simulation. Molecules 2023, 28, 2709. [Google Scholar] [CrossRef] [PubMed]
- Henzler-Wildman, K.; Kern, D. Dynamic personalities of proteins. Nature 2007, 450, 964–972. [Google Scholar] [CrossRef] [PubMed]
- Boehr, D.D.; Nussinov, R.; Wright, P.E. The role of dynamic conformational ensembles in biomolecular recognition. Nat. Chem. Biol. 2009, 5, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Nussinov, R.; Wolynes, P.G. A second molecular biology revolution? The energy landscapes of biomolecular function. Phys. Chem. Chem. Phys. 2014, 16, 6321–6322. [Google Scholar] [CrossRef]
- Clausen, R.; Shehu, A. A Multiscale Hybrid Evolutionary Algorithm to Obtain Sample-based Representations of Multi-basin Protein Energy Landscapes. In Proceedings of the ACM Conf on Bioinf and Comp Biol (BCB), Newport Beach, CA, USA, 20–23 September 2014; pp. 269–278. [Google Scholar]
- Clausen, R.; Ma, B.; Nussinov, R.; Shehu, A. Mapping the Conformation Space of Wildtype and Mutant H-Ras with a Memetic, Cellular, and Multiscale Evolutionary Algorithm. PLoS Comput. Biol. 2015, 11, e1004470. [Google Scholar] [CrossRef]
- Clausen, R.; Shehu, A. A Data-driven Evolutionary Algorithm for Mapping Multi-basin Protein Energy Landscapes. J. Comp. Biol. 2015, 22, 844–860. [Google Scholar] [CrossRef]
- Maximova, T.; Plaku, E.; Shehu, A. Structure-guided Protein Transition Modeling with a Probabilistic Roadmap Algorithm. IEEE/ACM Trans. Comput. Biol. Bioinf. 2018, 15, 1783–1796. [Google Scholar] [CrossRef]
- Sapin, E.; De Jong, K.A.; Shehu, A. From Optimization to Mapping: An Evolutionary Algorithm for Protein Energy Landscapes. IEEE/ACM Trans. Comput. Biol. Bioinf. 2018, 15, 719–731. [Google Scholar] [CrossRef]
- Sapin, E.; Carr, D.B.; De Jong, K.A.; Shehu, A. Computing energy landscape maps and structural excursions of proteins. BMC Genom. 2016, 17, 456. [Google Scholar] [CrossRef] [PubMed]
- Zaman, A.; Shehu, A. Balancing multiple objectives in conformation sampling to control decoy diversity in template-free protein structure prediction. BMC Bioinform. 2019, 20, 211. [Google Scholar] [CrossRef] [PubMed]
- Zaman, A.; Inan, T.T.; De Jong, K.A.; Shehu, A. Adaptive Stochastic Optimization to Improve Protein Conformation Sampling. IEEE/ACM Trans. Comput. Biol. Bioinform. 2021. epub ahead of print. [Google Scholar] [CrossRef]
- Chen, H.; Marsiglia, W.M.; Cho, M.K.; Huang, Z.; Deng, J.; Blais, S.P.; Gai, W.; Bhattacharya, S.; Neubert, T.A.; Traaseth, N.J.; et al. Elucidation of a four-site allosteric network in fibroblast growth factor receptor tyrosine kinases. eLife 2017, 6, e21137. [Google Scholar] [CrossRef]
- Chen, H.; Ma, J.; Li, W.; Eliseenkova, A.V.; Xu, C.; Neubert, T.A.; Miller, W.T.; Mohammadi, M. A molecular brake in the kinase hinge region regulates the activity of receptor tyrosine kinases. Mol. Cell 2007, 27, 717–730. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Huang, Z.; Dutta, K.; Blais, S.; Neubert, T.A.; Li, X.; Cowburn, D.; Traaseth, N.J.; Mohammadi, M. Cracking the molecular origin of intrinsic tyrosine kinase activity through analysis of pathogenic gain-of-function mutations. Cell Rep. 2013, 4, 376–384. [Google Scholar] [CrossRef]
- Kan, S.H.; Elanko, N.; Johnson, D.; Cornejo-Roldan, L.; Cook, J.; Reich, E.W.; Tomkins, S.; Verloes, A.; Twigg, S.R.; Rannan-Eliya, S.; et al. Genomic Screening of Fibroblast Growth-Factor Receptor 2 Reveals a Wide Spectrum of Mutations in Patients with Syndromic Craniosynostosis. Am. J. Hum. Genet. 2002, 70, 472–486. [Google Scholar] [CrossRef] [PubMed]
- Lew, E.D.; Bae, J.H.; Rohmann, E.; Schlessinger, J. Structural basis for reduced FGFR2 activity in LADD syndrome: Implications for FGFR autoinhibition and activation. Proc. Natl. Acad. Sci. USA 2007, 104, 19802–19807. [Google Scholar] [CrossRef]
- Nakamura, I.T.; Kohsaka, S.; Ikegami, M.; Ikeuchi, H.; Ueno, T.; Li, K.; Beyett, T.S.; Koyama, T.; Shimizu, T.; Yamamoto, N.; et al. Comprehensive functional evaluation of variants of fibroblast growth factor receptor genes in cancer. NPJ Precis. Oncol. 2021, 5, 66. [Google Scholar] [CrossRef]
- Grasso, D.; Galderisi, S.; Santucci, A.; Bernini, A. Pharmacological Chaperones and Protein Conformational Diseases. Int. J. Mol. Sci. 2023, 24, 5819. [Google Scholar] [CrossRef] [PubMed]
- McLachlan, A.D. A mathematical procedure for superimposing atomic coordinates of proteins. Acta Cryst. A 1972, 26, 656–657. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Tenenbaum, J.B.; Silva, V.d.; Langford, J.C. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290, 2319–2323. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Amadei, A.; Linssen, A.B.; Berendsen, H.J. Essential dynamics of proteins. Proteins Struct. Funct. Bioinform. 1993, 17, 412–425. [Google Scholar] [CrossRef] [PubMed]
- Maiorov, V.N.; Crippen, G.M. Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. J. Mol. Biol. 1994, 235, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Kitao, A.; Go, N. Investigating protein dynamics in collective coordinate space. Curr. Opin. Struct. Biol. 1999, 9, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Novati, G.; Pan, J.; Bycroft, C.; Žemgulytė, A.; Applebaum, T.; Pritzel, A.; Wong, L.H.; Zielinski, M.; Sargeant, T.; et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 2023, 381, eadg7492. [Google Scholar] [CrossRef] [PubMed]
- Krivov, G.G.; Shapovalov, M.V.; Dunbrack, R.L., Jr. Improved prediction of protein side-chain conformations with SCWRL4. Proteins Struct. Funct. Bioinform. 2009, 77, 778–795. [Google Scholar] [CrossRef]
- Kalé, L.; Skeel, R.; Bhandarkar, M.; Brunner, R.; Gursoy, A.; Krawetz, N.; Phillips, J.; Shinozaki, A.; Varadarajan, K.; Schulten, K. NAMD2: Greater scalability for parallel molecular dynamics. J. Comput. Phys. 1999, 151, 283–312. [Google Scholar] [CrossRef]
Cytoplasmic Region (399–821) | |||
Genetic/Development Disorders | Craniofacial Syndromes | Crouzon Syndrome | R678G |
2PWL, 2PZP | |||
Pfeiffer Syndrome | G663E | ||
2PY3, 2PZR | |||
2PZ5, 2Q0B | |||
UCS | 2PVY, 4J95 | ||
Syndromes with Multiple System Involvement | LADD1 | 3B2T | |
A648T | |||
Cancers | Gynecological Cancers | Cervical Cancer | 4J96 |
Endometrial Cancer | 4J97 | ||
Respiratory System Cancer | Lung Cancer | R612T |
PDB ID (Model) | Mutation Position | Region Name | Status | Disease |
---|---|---|---|---|
1GJO | WT | - | Inactive | - |
1OEC | WT | - | Inactive | - |
2PSQ | WT | - | Inactive | - |
2PVF | WT | - | Active | - |
3RI1 | WT | - | Inactive | - |
2PVY | K659N | Activation Loop | Active | UCS |
2PWL | N549H | Kinase Insert | Active | CS |
2PY3 | E565G | Kinase Insert | Active | PS |
2PZ5 | N549T | Kinase Insert | Active | PS |
2PZP | K526E | Alpha C helix at N-lobe | Active | CS |
2PZR | K641R | Kinase Insert | Active | PS |
2Q0B | E565A | Kinase Insert | Active | PS |
3B2T | A628T | Catalytic Pocket | Active | LADD1 |
3CLY | C491A | - | Unclear | - |
4J95 | K659N | Activation Loop | Active | UCS |
4J96 | K659M | Activation Loop | Active | CC |
4J97 | K659E | Activation Loop | Active | EC |
4J98 | K659Q | Activation Loop | Active | - |
4J99 | K659T | Activation Loop | Active | - |
5EG3 | Multiple | Activation Loop | Active | - |
5UGL | D650V | Alpha-C tether | Active | - |
5UGX | E565A/D650V | Kinase Hinge/Alpha-C tether | Active | PS |
5UHN | E565A/N549H | Kinase Hinge | Active | PS/CS |
5UI0 | E565A/K659M | Kinase Hinge/Activation Loop | Active | PS/CC |
6LVK | - | WT | Unclear | - |
6LVL | - | WT | Unclear | - |
6V6Q | Multiple | - | Intermediate | - |
7KIA | V564F | Gate Keeper | Unclear | - |
7KIE | V564F | Gate Keeper | Unclear | - |
Model | R612T | - | Unclear | LC |
Model | A648T | Activation Loop | Unclear | LADD1 |
Model | G663E | Activation Loop | Unclear | PS |
Model | R678G | - | Unclear | CS |
Mutation Position | Pathogenic Score | Disease Type | Hit |
---|---|---|---|
K659N (2PVY, 4J95) | 0.998 (likely pathogenic) | UCS | 1 |
N549H (2PWL) | 0.742 (likely pathogenic) | Crouzon Syndrome | 1 |
E565G (2PY3) | 0.982 (likely pathogenic) | Pfeiffer Syndrome | 1 |
N549T (2PZ5) | 0.805 (likely pathogenic) | Pfeiffer Syndrome | 1 |
K526E (2PZP) | 0.967 (likely pathogenic) | Crouzon Syndrome | 1 |
K641R (2PZR) | 0.828 (likely pathogenic) | Pfeiffer Syndrome | 1 |
E565A (2Q0B) | 0.982 (likely pathogenic) | Pfeiffer Syndrome | 1 |
A628T (3B2T) | 0.998 (likely pathogenic) | LADD1 | 1 |
K659M (4J96) | 0.994 (likely pathogenic) | Cervical Cancer | 1 |
K659E (4J97) | 0.999 (likely pathogenic) | Endometrial Cancer | 1 |
K659Q (4J98) | 0.994 (likely pathogenic) | - | 0 |
K659T (4J99) | 0.996 (likely pathogenic) | - | 0 |
R612T | 0.97 (likely pathogenic) | Lung Cancer | 1 |
A648T | 0.976 (likely pathogenic) | LADD1 | 1 |
G663E | 0.999 (likely pathogenic) | Pfeiffer Syndrome | 1 |
R678G | 0.971 (likely pathogenic) | Crouzon Syndrome | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lian, Y.; Bodian, D.; Shehu, A. Elucidating the Role of Wildtype and Variant FGFR2 Structural Dynamics in (Dys)Function and Disorder. Int. J. Mol. Sci. 2024, 25, 4523. https://doi.org/10.3390/ijms25084523
Lian Y, Bodian D, Shehu A. Elucidating the Role of Wildtype and Variant FGFR2 Structural Dynamics in (Dys)Function and Disorder. International Journal of Molecular Sciences. 2024; 25(8):4523. https://doi.org/10.3390/ijms25084523
Chicago/Turabian StyleLian, Yiyang, Dale Bodian, and Amarda Shehu. 2024. "Elucidating the Role of Wildtype and Variant FGFR2 Structural Dynamics in (Dys)Function and Disorder" International Journal of Molecular Sciences 25, no. 8: 4523. https://doi.org/10.3390/ijms25084523
APA StyleLian, Y., Bodian, D., & Shehu, A. (2024). Elucidating the Role of Wildtype and Variant FGFR2 Structural Dynamics in (Dys)Function and Disorder. International Journal of Molecular Sciences, 25(8), 4523. https://doi.org/10.3390/ijms25084523