Increased IL-12p70 and IL-8 Produced by Monocytes in Response to Streptococcus spp. and Actinomyces spp. Causals of Endodontic Primary Infections
<p>Percent of CD14<sup>+</sup> cells after stimulation with endodontic microorganisms. The culturing of PBMC and endodontic bacteria was performed at different times, and staining was performed with flow cytometry analysis, as indicated in the <a href="#sec4-ijms-24-16853" class="html-sec">Section 4</a>. (<b>A</b>) Representative dot plots of a healthy subject (control) at 0 and 48 h of stimulation with endodontic microorganisms, showing the histograms corresponding to CD14<sup>+</sup> cells stained with isothiocyanate of fluorescein (FITC). (<b>B</b>) Percentages of CD14<sup>+</sup> cells in controls and patients with primary infections, stimulated with <span class="html-italic">Actinomyces</span> spp. at 0, 48, 72, and 96 h of culture. (<b>C</b>) Percentage of CD14<sup>+</sup> cells in controls and patients with primary infections, stimulated with <span class="html-italic">Streptococcus</span> spp. at 0, 48, 72, and 96 h of culture. (<b>D</b>) Comparison of percentage of CD14<sup>+</sup> cells in controls and patients with primary infections stimulated with <span class="html-italic">Actinomyces</span> spp. and <span class="html-italic">Streptococcus</span> spp. at all the tested incubation times. (<b>E</b>) Percent of CD14<sup>lo</sup> cells in controls and patients with primary infections, stimulated with <span class="html-italic">Actinomyces</span> spp. at 0, 48, 72, and 96 h of culture. (<b>F</b>) Percent of CD14<sup>lo</sup> cells in controls and patients with primary infections, stimulated with <span class="html-italic">Streptococcus</span> spp. at 0, 48, 72, and 96 h of culture. (<b>B</b>–<b>F</b>) Data correspond to the median and interquartile range, <span class="html-italic">n</span> = 25, * <span class="html-italic">p</span> < 0.05. ** <span class="html-italic">p</span> < 0.01. *** <span class="html-italic">p</span> < 0.001.</p> "> Figure 2
<p>Percent of CD4<sup>+</sup> and CD8<sup>+</sup> lymphocytes after stimulation with endodontic microorganisms. The PBMC and endodontic bacteria cultures were performed at several incubation times and stained by flow cytometry analysis, as indicated in the <a href="#sec4-ijms-24-16853" class="html-sec">Section 4</a>. (<b>A</b>) Representative dot plots of a healthy subject (control) stimulated with endodontic microorganisms, showing CD4<sup>+</sup> lymphocytes stained with allophycocyanin Cy7 (APC-Cy7) and CD8<sup>+</sup> lymphocytes stained with allophycocyanin (APC). (<b>B</b>) Percent of CD4<sup>+</sup> cells in controls and patients from primary infections, stimulated with <span class="html-italic">Actinomyces</span> spp. at 0-, 48-, 72-, and 96-h incubation. (<b>C</b>) Percent of CD4<sup>+</sup> cells in controls and patients from primary infections, stimulated with <span class="html-italic">Streptococcus</span> spp. at 0, 48, 72, and 96 h of culture. (<b>D</b>) Percent of CD8<sup>+</sup> cells in controls and patients from primary infections, stimulated with <span class="html-italic">Actinomyces</span> spp. at 0, 48, 72, and 96 h of culture. (<b>E</b>) Percent of CD8<sup>+</sup> cells in controls and patients from primary infections, stimulated with <span class="html-italic">Streptococcus</span> spp. at 0, 48, 72, and 96 h of culture. Data correspond to the median and interquartile range, <span class="html-italic">n</span> = 25, * <span class="html-italic">p</span> < 0.05. *** <span class="html-italic">p</span> < 0.001.</p> "> Figure 3
<p>CD19<sup>+</sup> B lymphocytes after stimulation with endodontic microorganisms. The PBMC and endodontic bacteria cultures were performed over several incubation times and stained as part of the flow cytometry analysis, as indicated in the <a href="#sec4-ijms-24-16853" class="html-sec">Section 4</a>. (<b>A</b>) Representative dot plots of a healthy subject (control) stimulated with endodontic microorganisms, where CD19<sup>+</sup> lymphocytes stained with phycoerythrin (PE) are shown. (<b>B</b>) Percent of CD19<sup>+</sup> cells in controls and patients with primary infections, stimulated with <span class="html-italic">Actinomyces</span> spp. at 0, 48, 72, and 96 h of culture. (<b>C</b>) CD4<sup>+</sup> cells in controls and patients with primary infections, stimulated with <span class="html-italic">Streptococcus</span> spp. at 0, 48, 72, and 96 h of culture. Data correspond to the median and interquartile range, <span class="html-italic">n</span> = 25, * <span class="html-italic">p</span> < 0.05.</p> "> Figure 4
<p>Percent of Foxp3<sup>+</sup> T regulatory cells after stimulation with endodontic microorganisms. The PBMC and endodontic bacteria cultures were assessed over several durations of incubation and stained via flow cytometry analysis, as indicated in the <a href="#sec4-ijms-24-16853" class="html-sec">Section 4</a>. (<b>A</b>) Representative dot plots of a healthy subject (control) stimulated with endodontic microorganisms, where CD19<sup>+</sup> lymphocytes stained with phycoerythrin Cy 7 (PE-Cy7) are shown. (<b>B</b>) Percent of Foxp3<sup>+</sup> T regulatory cells in controls and patients with primary infections, stimulated with <span class="html-italic">Actinomyces</span> spp. at 0, 48, 72, and 96 h of incubation. (<b>C</b>) Percent of Foxp3<sup>+</sup> T regulatory cells in controls and patients with primary infections, stimulated with <span class="html-italic">Streptococcus</span> spp. at 0, 48, 72, and 96 h of incubation. Data correspond to the median and interquartile range, <span class="html-italic">n</span> = 25, * <span class="html-italic">p</span> < 0.05.</p> "> Figure 5
<p>Levels of inflammatory cytokines released in PBMC from patients with primary infections, after stimulation with endodontic microorganisms. Supernatants of PBMC culture in the presence of endodontic bacteria were obtained and assayed for the presence of the indicated cytokines under flow cytometry analysis, as indicated in the <a href="#sec4-ijms-24-16853" class="html-sec">Section 4</a>. (<b>A</b>) Concentration of IL-12p70 in pg/mL under specific cell culture conditions. (<b>B</b>) Concentration of IL-8 in pg/mL under specific cell culture conditions. (<b>C</b>) Concentration of IL-8 in pg/mL under specific cell culture conditions. Data correspond to the mean and standard deviation, <span class="html-italic">n</span> = 10, * <span class="html-italic">p</span> < 0.05. *** <span class="html-italic">p</span> < 0.001.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Levels of CD14+ Monocytes in the Endodontic Bacteria from Controls and Endodontic Primary Infection Patients
2.2. Levels of CD4+ and CD8+ Lymphocytes in the Presence of Endodontic Bacteria from Controls and Endodontic Primary Infections Patients
2.3. Levels of CD19+ B Lymphocytes in the Presence of Endodontic Bacteria from Controls and Endodontic Primary Infection Patients
2.4. Levels of Foxp3+ T Regulatory Cells in the Presence of Endodontic Bacteria from Controls and Endodontic Primary Infection Patients
2.5. Quantification of Proinflammatory Cytokines in Supernatant of Cellular Cultures
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Samples
4.3. Isolation and Microorganisms’ Identification
4.4. Phagocytosis Assays
4.5. Cellular Cultures
4.6. Cellular Staining and Flow Cytometry Analysis
4.7. Quantification of Inflammatory Cytokines
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zanini, M.; Meyer, E.; Simon, S. Pulp Inflammation Diagnosis from Clinical to Inflammatory Mediators: A Systematic Review. J. Endod. 2017, 43, 1033–1051. [Google Scholar] [CrossRef]
- Yu, C.; Abbott, P.V. An overview of the dental pulp: Its functions and responses injury. Aust. Dent. J. 2007, 52, 4–16. [Google Scholar] [CrossRef]
- Siqueira, J.F.; Rôças, I.N., Jr. Present status and future directions: Microbiology of endodontics infections. Int. Endod. J. 2022, 55, 512–530. [Google Scholar] [CrossRef]
- Tennert, C.; Fuhrmann, M.; Wittmer, A.; Karygianni, L.; Altenburger, M.J.; Pelz, K.; Hellwig, E.; Al-Ahmad, A. New bacterial composition in primary and persistent/secondary endodontic infections with respect to clinical and radiographic findings. J. Endod. 2014, 40, 670–677. [Google Scholar] [CrossRef]
- Siqueira, J.F.; RôÇas, I.N. Distinctive features of the microbiota associated with different forms of apical periodontitis. J. Oral Microbiol. 2009, 1, 1–13. [Google Scholar] [CrossRef]
- Farges, J.C.; Alliot-Licht, B.; Renard, E.; Ducret, M.; Gaudin, A.; Smith, A.J.; Cooper, P.R. Dental Pulp Defense and Repair Mechanisms in Dental Caries. Mediators Inflamm. 2015, 2015, 230251. [Google Scholar] [CrossRef]
- Gaudin, A.; Renard, E.; Hill, M.; Bouchet-Delbos, L.; Bienvenu-Louvet, G.; Farges, J.C.; Cuturi, M.C.; Alliot-Licht, B. Phenotypic analysis of immunocompetent cells in health human dental pulp. J. Endod. 2015, 41, 621–627. [Google Scholar] [CrossRef]
- Rôças, I.N.; Siqueira, J.F. Root canal microbiota of teeth with chronic apical periodontitis. J. Clin. Microbiol. 2008, 46, 3599–3606. [Google Scholar] [CrossRef]
- Jontell, M.; Gunraj, M.N.; Bergenholtz, G. Immunocompetent cells in the normal dental pulp. J. Dent. Res. 1987, 66, 1149–1153. [Google Scholar] [CrossRef]
- Fujiwara, N.; Kobayashi, K. Macrophages in inflammation. Curr. Drug Targets. Inflamm Allergy 2005, 4, 281–286. [Google Scholar] [CrossRef]
- Yoshiba, N.; Edanami, N.; Ohkura, N.; Maekawa, T.; Takanashi, M.; Tohma, A.; Izumi, K.; Maeda, T.; Hosoya, A.; Nakamura, H.; et al. M2 Phenotype macrophages colocalize with Schwann cells in human dental pulp. J. Dent. Res. 2020, 99, 329–338. [Google Scholar] [CrossRef]
- Iwasaki, Y.; Otsuka, H.; Yanagisawa, N.; Hisamitsu, H.; Manabe, A.; Nonaka, N.; Nakamura, M. In situ proliferation and differentiation of macrophages in dental pulp. Iwasaki Cell Tissue Res. 2011, 346, 99–109. [Google Scholar] [CrossRef]
- Renard, E.; Gaudin, A.; Bienvenu, G.; Amiaud, J.; Farges, J.C.; Cuturi, M.C.; Moreau, A.; Alliot-Licht, B. Immune cells and molecular networks in experimentally induced pulpitis. Dent. Res. 2016, 95, 196–205. [Google Scholar] [CrossRef]
- Hahn, C.L.; Best, A.M.; Tew, J.G. Comparison of type 1 and type 2 cytokine production by mononuclear cells cultured with streptococcus mutans and selected other caries bacteria. J. Endod. 2004, 30, 333–338. [Google Scholar] [CrossRef]
- Clanchy, F.I.L.; Holloway, A.C.; Lari, R.; Cameron, P.U.; Hamilton, J.A. Detection and properties of the human proliferative monocyte subpopulation. J. Leukoc. Biol. 2006, 79, 757–766. [Google Scholar] [CrossRef]
- Xia, T.; Baumgartner, J.C. Occurrence of Actinomyces in infections of endodontic origin. J. Endod. 2003, 29, 549–552. [Google Scholar] [CrossRef]
- Hahn, C.L.; Best, A.M.; Tew, J.G. Cytokine induction by Streptococcus mutans and pulpal pathogenesis. Infect Immun. 2000, 68, 6785–6789. [Google Scholar] [CrossRef]
- Hahn, C.L.; Liewehr, F.R. update on the adaptive immune responses of the dental pulp. J. Endod. 2007, 33, 773–781. [Google Scholar] [CrossRef]
- Zaky, S.H.; Shehabeldin, M.; Ray, H.; Sfeir, C. The role of inflammation modulation in dental pulp regeneration. Eur. Cell Mater. 2021, 41, 184–193. [Google Scholar] [CrossRef]
- Georgiou, A.C.; van der Waal, S.V.; Buijs, M.J.; Crielaard, W.; Zaura, E.; Brandt, B.W. Host-microbiome interactions in apical periodontitis: The endodontic microbiome in relation to circulatory immunologic markers. Int. Endod. J. 2023, 56, 748–764. [Google Scholar] [CrossRef]
- AlShwaimi, E.; Purcell, P.; Kawai, T.; Sasaki, H.; Oukka, M.; Campos-Neto, A.; Stashenko, P. Regulatory T Cells in Mouse Periapical Lesions. J. Endod. 2009, 35, 1229–1233. [Google Scholar] [CrossRef]
- Nakajima, T.; Ueki-Maruyama, K.; Oda, T.; Ohsowa, Y.; Ito, H.; Seymour, G.J.; Yamazaki, K. Regulatory T-cells infiltrate periodontal disease tissues. J. Dent. Res. 2005, 84, 639–643. [Google Scholar] [CrossRef]
- Sehrawat, S.; Rouse, B. Interplay of Regulatory T Cell and Th17 Cells during Infectious Diseases in Humans and Animals. Front. Immunol. 2017, 8, 341. [Google Scholar] [CrossRef]
- Lavagna, A.; Auger, J.P.; Dumesnil, A.; Roy, D.; Girardin, S.E.; Gisch, N.; Segura, M.; Gottschalk, M. Interleukin-1 signaling induced by Streptococcus suis serotype 2 is strain-dependent and contributes to bacterial clearance and inflammation during systemic disease in a mouse model of infection. Vet. Res. 2019, 50, 52. [Google Scholar] [CrossRef]
- Van den Bogert, B.; Meijerink, M.; Zoetendal, E.G.; Wells, J.M.; Kleerebezem, M. Immunomodulatory properties of Streptococcus and Veillonell isolates from the human small intestine microbiota. PLoS ONE 2014, 9, e114277. [Google Scholar] [CrossRef]
- Spelmink, L.; Sender, V.; Hentrich, K.; Kuri, T.; Plant, L.; Henriques-Normark, B. Toll-like Receptor 3/TRIF-Dependent IL-12p70 Secretion Mediated by Streptococcus pneumoniae RNA and Its Priming by Influenza A Virus Coinfection in Human Dendritic Cells. mBio 2016, 7, e00168-16. [Google Scholar] [CrossRef]
- Trinchieri, G.; Pflanz, S.; Kastelein, R.A. The IL-12 family of heterodimeric cytokines: New players in the regulation of T cell responses. Immunity 2003, 19, 641–644. [Google Scholar] [CrossRef]
- Schurich, A.; Raine, C.; Morris, V.; Ciurtin, C. The role of IL-12/23 in T cell-related chronic inflammation: Implications of immunodeficiency and therapeutic blockade. Rheumatology 2018, 57, 246–254. [Google Scholar] [CrossRef]
- Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 2003, 3, 133–146. [Google Scholar] [CrossRef]
- Stadler, A.F.; Angst, P.D.; Arce, R.M.; Gomes, S.C.; Oppermann, R.V.; Susin, C. Gingival crevicular fluid levels of cytokines/chemokines in chronic periodontitis: A meta-analysis. J. Clin. Periodontol. 2016, 43, 727–745. [Google Scholar] [CrossRef]
- Issaranggun, N.; Ayuthaya, B.; Everts, V.; Pavasant, P. The immunopathogenic and immunomodulatory effects of interleukin-12 in periodontal disease. Eur. J. Oral Sci. 2018, 126, 75–83. [Google Scholar] [CrossRef]
- Fokkema, S.J.; Loos, B.G.; de Slegte, C.; Burger, W.; Piscaer, M.; IJzerman, Y.; Van der Velden, U. Increased release of IL-12p70 by monocytes after periodontal therapy. J. Clin. Periodontol. 2003, 30, 1091–1106. [Google Scholar] [CrossRef]
- Horwood, N.J.; Elliott, J.; Martin, T.J.; Gillespie, M.T. IL-12 alone and in synergy with IL-18 inhibits osteoclast formation in vitro. J. Immunol. 2001, 166, 4915–4921. [Google Scholar] [CrossRef]
- Colić, M.; Lukić, A.; Vucević, D.; Milosavljević, P.; Majstorović, I.; Marjanović, M.; Dimitrijević, J. Correlation between phenotypic characteristics of mononuclear cells isolated from human periapical lesions and their in vitro production of Th1 and Th2 cytokines. Arch. Oral Biol. 2006, 51, 1120–1130. [Google Scholar] [CrossRef]
- Vickerman, M.M.; Brossard, K.A.; Funk, D.B.; Jesionowski, A.M.; Gill, S.R. Phylogenetic analysis of bacterial and archaeal species in symptomatic and asymptomatic endodontic infections. J. Med. Microbiol. 2007, 56, 110–118. [Google Scholar] [CrossRef]
- Bosch, I.; Xhaja, K.; Estevez, L.; Raines, G.; Melichar, H.; Warke, R.V.; Fournier, M.V.; Ennis, F.A.; Rothman, A.L. Increased production of interleukin-8 in primary human monocytes and in human epithelial and endothelial cell lines after dengue virus challenge. J. Virol. 2002, 76, 5588–5597. [Google Scholar] [CrossRef]
- Arnold, R.; König, B.; Galatti, H.; Werchau, H.; König, W. Cytokine (IL-8, IL-6, TNF-alpha) and soluble TNF receptor-I release from human peripheral blood mononuclear cells after respiratory syncytial virus infection. Immunology 1995, 85, 364–372. [Google Scholar]
- Yunna, C.; Mengru, H.; Lei, W.; Weidong, C. Macrophage M1/M2 polarization. Eur. J. Pharmacol. 2020, 877, 173090. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Gutiérrez, R.; Araujo-Pérez, J.; Alvarado-Hernández, D.L.; González-Amaro, A.M.; Méndez-González, V.; Rivas-Santiago, B.; González-Amaro, R.; Pozos-Guillén, A.; Vitales-Noyola, M. Increased IL-12p70 and IL-8 Produced by Monocytes in Response to Streptococcus spp. and Actinomyces spp. Causals of Endodontic Primary Infections. Int. J. Mol. Sci. 2023, 24, 16853. https://doi.org/10.3390/ijms242316853
Sánchez-Gutiérrez R, Araujo-Pérez J, Alvarado-Hernández DL, González-Amaro AM, Méndez-González V, Rivas-Santiago B, González-Amaro R, Pozos-Guillén A, Vitales-Noyola M. Increased IL-12p70 and IL-8 Produced by Monocytes in Response to Streptococcus spp. and Actinomyces spp. Causals of Endodontic Primary Infections. International Journal of Molecular Sciences. 2023; 24(23):16853. https://doi.org/10.3390/ijms242316853
Chicago/Turabian StyleSánchez-Gutiérrez, Raquel, Janeth Araujo-Pérez, Diana Lorena Alvarado-Hernández, Ana María González-Amaro, Verónica Méndez-González, Bruno Rivas-Santiago, Roberto González-Amaro, Amaury Pozos-Guillén, and Marlen Vitales-Noyola. 2023. "Increased IL-12p70 and IL-8 Produced by Monocytes in Response to Streptococcus spp. and Actinomyces spp. Causals of Endodontic Primary Infections" International Journal of Molecular Sciences 24, no. 23: 16853. https://doi.org/10.3390/ijms242316853
APA StyleSánchez-Gutiérrez, R., Araujo-Pérez, J., Alvarado-Hernández, D. L., González-Amaro, A. M., Méndez-González, V., Rivas-Santiago, B., González-Amaro, R., Pozos-Guillén, A., & Vitales-Noyola, M. (2023). Increased IL-12p70 and IL-8 Produced by Monocytes in Response to Streptococcus spp. and Actinomyces spp. Causals of Endodontic Primary Infections. International Journal of Molecular Sciences, 24(23), 16853. https://doi.org/10.3390/ijms242316853