Antioxidant, Anti-Inflammatory and Pro-Differentiative Effects of Chlorogenic Acid on M03-13 Human Oligodendrocyte-like Cells
<p>Chemical structure of 5-caffeoylquinic acid (5CQA).</p> "> Figure 2
<p>Cell viability according to trypan blue assay in M03-13 cells. The cells were starved for 18 h in 0.2% FBS medium in the absence (CTR) and in the presence of CGA (10, 25, 100, 250, 500 and 1000 µM); the data are reported as percentage variation compared to control. The graph shows the mean ± SEM of the values from three independent experiments. * <span class="html-italic">p</span> < 0.05 vs. CTR.</p> "> Figure 3
<p>CGA reduces intracellular superoxide ion and mitochondrial ROS levels. Cells were starved for 18 h with 0.2% FBS medium in the absence (CTR) and in the presence of CGA (10, 25, 100 μM). (<b>A</b>,<b>B</b>) Fluorescence microscopy images of M03-13 cells incubated with 10 μM fluorescent probe DHE (<b>A</b>) and 1 μM MitoSOX (<b>B</b>) for staining intracellular superoxide ions and mitochondrial ROS, respectively. The histograms (<b>A</b>,<b>B</b>) show the mean ± SEM total corrected cellular fluorescence (TCCF) values, obtained via quantitative analysis of 50 cells for each sample from three independent experiments performed in triplicate. * <span class="html-italic">p</span> ≤ 0.05 vs. CTR. ** <span class="html-italic">p</span> ≤ 0.001 vs. CTR. Scale bar is 50 µm.</p> "> Figure 3 Cont.
<p>CGA reduces intracellular superoxide ion and mitochondrial ROS levels. Cells were starved for 18 h with 0.2% FBS medium in the absence (CTR) and in the presence of CGA (10, 25, 100 μM). (<b>A</b>,<b>B</b>) Fluorescence microscopy images of M03-13 cells incubated with 10 μM fluorescent probe DHE (<b>A</b>) and 1 μM MitoSOX (<b>B</b>) for staining intracellular superoxide ions and mitochondrial ROS, respectively. The histograms (<b>A</b>,<b>B</b>) show the mean ± SEM total corrected cellular fluorescence (TCCF) values, obtained via quantitative analysis of 50 cells for each sample from three independent experiments performed in triplicate. * <span class="html-italic">p</span> ≤ 0.05 vs. CTR. ** <span class="html-italic">p</span> ≤ 0.001 vs. CTR. Scale bar is 50 µm.</p> "> Figure 4
<p>CGA reduces NADPH oxidase levels. Western blotting analysis for NOX3 (<b>A</b>), NOX5 (<b>B</b>) and DUOX2; (<b>C</b>) protein levels in M03-13 cells incubated with 0.2% FBS medium for 18 h in the absence (CTR) and in the presence of CGA (10, 25, 100 μM). The histograms show the values (means ± SEM) relative to the control (CTR), obtained via densitometric analysis of protein bands normalized to α-Tubulin of three independent experiments. * <span class="html-italic">p</span> ≤ 0.05 vs. CTR; ** <span class="html-italic">p</span> ≤ 0.001 vs. CTR.</p> "> Figure 5
<p>NADPHox-dependent ROS are involved in TNFα-induced pro-inflammatory/proapoptotic pathways. M03-13 were incubated with 0.2% FBS medium for 18 h with 10 µM TNFα in the absence and in the presence of 10 µM AEBSF, and then, incubated with 10 μM of the superoxide probe DHE (<b>A</b>). Intracellular superoxide ion levels were measured via fluorometric analysis. The graph shows the mean ± SEM values from three independent experiments (<b>A</b>), scale bar is 50 µm. Western blot analysis for IkB⍺ (<b>B</b>), pERK (<b>C</b>) and the cleaved form of PARP; (<b>D</b>) protein levels in M03-13 cells treated with 10 µM TNFα in the presence and absence of 10 µM AEBSF. The histograms show the values (means ± SEM) relative to the control (CTR), obtained via densitometric analysis of protein bands normalized to α-Tubulin of three independent experiments. * <span class="html-italic">p</span> ≤ 0.05 vs. CTR; ** <span class="html-italic">p</span> ≤ 0.001 vs. CTR; § <span class="html-italic">p</span> ≤ 0.05 vs. TNFα 10′; # <span class="html-italic">p</span> ≤ 0.05 vs. TNFα 1 h; ## <span class="html-italic">p</span> ≤ 0.001 vs. TNFα 1 h; ° <span class="html-italic">p</span> ≤ 0.05 vs. TNFα 4 h; °° <span class="html-italic">p</span> ≤ 0.001 vs. TNFα 4 h.</p> "> Figure 5 Cont.
<p>NADPHox-dependent ROS are involved in TNFα-induced pro-inflammatory/proapoptotic pathways. M03-13 were incubated with 0.2% FBS medium for 18 h with 10 µM TNFα in the absence and in the presence of 10 µM AEBSF, and then, incubated with 10 μM of the superoxide probe DHE (<b>A</b>). Intracellular superoxide ion levels were measured via fluorometric analysis. The graph shows the mean ± SEM values from three independent experiments (<b>A</b>), scale bar is 50 µm. Western blot analysis for IkB⍺ (<b>B</b>), pERK (<b>C</b>) and the cleaved form of PARP; (<b>D</b>) protein levels in M03-13 cells treated with 10 µM TNFα in the presence and absence of 10 µM AEBSF. The histograms show the values (means ± SEM) relative to the control (CTR), obtained via densitometric analysis of protein bands normalized to α-Tubulin of three independent experiments. * <span class="html-italic">p</span> ≤ 0.05 vs. CTR; ** <span class="html-italic">p</span> ≤ 0.001 vs. CTR; § <span class="html-italic">p</span> ≤ 0.05 vs. TNFα 10′; # <span class="html-italic">p</span> ≤ 0.05 vs. TNFα 1 h; ## <span class="html-italic">p</span> ≤ 0.001 vs. TNFα 1 h; ° <span class="html-italic">p</span> ≤ 0.05 vs. TNFα 4 h; °° <span class="html-italic">p</span> ≤ 0.001 vs. TNFα 4 h.</p> "> Figure 6
<p>TNF⍺ induces increase in intracellular superoxide levels, measured via DHE fluorescence (<b>A</b>). M03-13 cells were preincubated with CGA 100 µM for 18 h and subsequently stimulated with TNFα 10 µM at increasing times (10 min, 1 h and 4 h) in the absence and in the presence of 10 µM AEBSF; then, the cells were incubated with 10 μM DHE and, superoxide levels were measured via fluorometric analysis (scale bar is 50 µm). The graph shows the mean ± SEM values from three independent experiments. Western blot analysis for NOX3 (<b>B</b>), NOX5 (<b>C</b>) and DUOX2 (<b>D</b>). M03-13 cells were incubated with 10 µM TNFα at increasing times (10 min, 1 h and 4 h) in the absence and presence of 100 µM CGA. The histograms show the values (means ± SEM) relative to the control (CTR), obtained via densitometric analysis of protein bands normalized to α-Tubulin of three independent experiments. * <span class="html-italic">p</span> ≤ 0.05 vs. CTR; ** <span class="html-italic">p</span> ≤ 0.001 vs. CTR; § <span class="html-italic">p</span> ≤ 0.05 vs. TNFα 10′; # <span class="html-italic">p</span> ≤ 0.05 vs. TNFα 1 h; ## <span class="html-italic">p</span> ≤ 0.001 vs. TNFα 1 h; ° <span class="html-italic">p</span> ≤ 0.05 vs. TNFα 4 h; °° <span class="html-italic">p</span> ≤ 0.001 vs. TNFα 4 h.</p> "> Figure 6 Cont.
<p>TNF⍺ induces increase in intracellular superoxide levels, measured via DHE fluorescence (<b>A</b>). M03-13 cells were preincubated with CGA 100 µM for 18 h and subsequently stimulated with TNFα 10 µM at increasing times (10 min, 1 h and 4 h) in the absence and in the presence of 10 µM AEBSF; then, the cells were incubated with 10 μM DHE and, superoxide levels were measured via fluorometric analysis (scale bar is 50 µm). The graph shows the mean ± SEM values from three independent experiments. Western blot analysis for NOX3 (<b>B</b>), NOX5 (<b>C</b>) and DUOX2 (<b>D</b>). M03-13 cells were incubated with 10 µM TNFα at increasing times (10 min, 1 h and 4 h) in the absence and presence of 100 µM CGA. The histograms show the values (means ± SEM) relative to the control (CTR), obtained via densitometric analysis of protein bands normalized to α-Tubulin of three independent experiments. * <span class="html-italic">p</span> ≤ 0.05 vs. CTR; ** <span class="html-italic">p</span> ≤ 0.001 vs. CTR; § <span class="html-italic">p</span> ≤ 0.05 vs. TNFα 10′; # <span class="html-italic">p</span> ≤ 0.05 vs. TNFα 1 h; ## <span class="html-italic">p</span> ≤ 0.001 vs. TNFα 1 h; ° <span class="html-italic">p</span> ≤ 0.05 vs. TNFα 4 h; °° <span class="html-italic">p</span> ≤ 0.001 vs. TNFα 4 h.</p> "> Figure 7
<p>CGA blocks the pro-inflammatory and pro-apoptotic pathways activated by TNF⍺. Western blot analysis for IκBα (<b>A</b>), pERK (<b>B</b>), caspase 8 (<b>C</b>) and cleaved PARP (<b>D</b>). M03-13 cells were treated with TNFα 10 µM for 10 min, 1 h, 4 h and 15 h in the absence and/or presence of 100 µM CGA. The histograms show the values (means ± SEM) relative to the control (CTR), obtained via densitometric analysis of protein bands normalized to α-Tubulin of three independent experiments. * <span class="html-italic">p</span> ≤ 0.05 vs. CTR; ** <span class="html-italic">p</span> ≤ 0.001 vs. CTR; § <span class="html-italic">p</span> ≤ 0.05 vs. TNFα 10′; # <span class="html-italic">p</span> ≤ 0.05 vs. TNFα 1 h; ° <span class="html-italic">p</span> ≤ 0.05 vs. TNFα 4 h; ^ <span class="html-italic">p</span> ≤ 0.05 vs. TNFα 15 h.</p> "> Figure 7 Cont.
<p>CGA blocks the pro-inflammatory and pro-apoptotic pathways activated by TNF⍺. Western blot analysis for IκBα (<b>A</b>), pERK (<b>B</b>), caspase 8 (<b>C</b>) and cleaved PARP (<b>D</b>). M03-13 cells were treated with TNFα 10 µM for 10 min, 1 h, 4 h and 15 h in the absence and/or presence of 100 µM CGA. The histograms show the values (means ± SEM) relative to the control (CTR), obtained via densitometric analysis of protein bands normalized to α-Tubulin of three independent experiments. * <span class="html-italic">p</span> ≤ 0.05 vs. CTR; ** <span class="html-italic">p</span> ≤ 0.001 vs. CTR; § <span class="html-italic">p</span> ≤ 0.05 vs. TNFα 10′; # <span class="html-italic">p</span> ≤ 0.05 vs. TNFα 1 h; ° <span class="html-italic">p</span> ≤ 0.05 vs. TNFα 4 h; ^ <span class="html-italic">p</span> ≤ 0.05 vs. TNFα 15 h.</p> "> Figure 8
<p>CGA inhibits proliferation and leads to a cell cycle block in M03-13 cells. (<b>A</b>) M03-13 cells were incubated for 30 min with CFSE dye and grown in complete medium. A total of 1 × 10<sup>6</sup> cells per point were analyzed via flow cytofluorimetry after 24 h incubation with the fluorescent dye. Cells were treated with or without CGA 25 µM and 100 µM in the presence of CFSE. The histograms show the means ± SEM of three independent experiments. The graphs of the representative experiments are also shown (<b>B</b>). For the cell cycle analysis, the M03-13 cells were treated with CGA for 24 h, and then, treated with propidium iodide (PI) for 30 min; 230.000 cells were analyzed via cytofluorimetry. The histograms show the means ± SEM of three independent experiments, and graphs of the representative experiments are also shown. * <span class="html-italic">p</span> ≤ 0.05 vs. GROW (G0/G1); ** <span class="html-italic">p</span> ≤ 0.001 vs. GROW 24 h; # <span class="html-italic">p</span> ≤ 0.05 vs. GROW (S); ° <span class="html-italic">p</span> ≤ 0.05 vs. GROW (G2/M).</p> "> Figure 9
<p>M03-13 cells differentiate in the presence of 100 µM CGA. Crystal Violet staining images of M03-13, to highlight cellular morphological changes, were obtained using a Leica DMI1 microscope. The cells were grown in complete medium for 1 day (CTR) and in serum-free medium in the presence of 100 nM PMA or 100 µM CGA for 4 days (scale bar 100 µm).</p> "> Figure 10
<p>CGA induces an increase in MBP and PLP mRNA levels in M03-13 cells. The M03-13 cells were grown in complete medium for 4 days in the absence (GROW) and in the presence of 25 and 100 µM CGA. PMA 4d indicates differentiated cells grown in serum-free medium in the presence of 100 nM PMA for 4 days. mRNA from treated cells was extracted, and MBP (<b>A</b>) and PLP (<b>B</b>) mRNA levels were analyzed via real-time PCR. The histograms show the mean ± SEM values of three independent experiments. * <span class="html-italic">p</span> ≤ 0.05 vs. GROW; ** <span class="html-italic">p</span> ≤ 0.001 vs. GROW.</p> "> Figure 11
<p>Schematic diagram showing antioxidant, anti-inflammatory and pro-differentiative effects of CGA in OLs. In the presence of CGA, basal levels of ROS and the proinflammatory and pro-apoptotic effects induced by TNFα are reduced. CGA increases mRNA levels of MBP and PLP, major markers of mature OLs. The image was partially created by using BioRender.com.</p> ">
Abstract
:1. Introduction
2. Results
2.1. CGA Reduces Superoxide Ions, Mitochondrial ROS and NADPHox Protein Levels
2.2. CGA Inhibits TNFα-Induced Pro-Inflammatory/Proapoptotic Pathways
2.3. CGA Exerts Inhibitory Effects on M03-13 Cell Proliferation, Blocking the Cell Cycle in the G0/G1 Phase
2.4. Effects of CGA on M03-13 Cell Differentiation
3. Discussion
4. Materials and Methods
4.1. Cell Cultures
4.2. Cell Viability Assay
4.3. Western Blotting Analysis
4.4. DHE (Dihydroethidium) and MitoSOXTM Red Analysis
4.5. Cell Cycle Analysis
4.6. CFSE Assay
4.7. Crystal Violet Staining Assay for Cell Morphology Evaluation
4.8. RNA Extraction and RT-PCR
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- La Rosa, G.; Lonardo, M.S.; Cacciapuoti, N.; Muscariello, E.; Guida, B.; Faraonio, R.; Santillo, M.; Damiano, S. Dietary Polyphenols, Microbiome, and Multiple Sclerosis: From Molecular Anti-Inflammatory and Neuroprotective Mechanisms to Clinical Evidence. Int. J. Mol. Sci. 2023, 24, 7247. [Google Scholar] [CrossRef] [PubMed]
- D’Archivio, M.; Filesi, C.; Di Benedetto, R.; Gargiulo, R.; Giovannini, C.; Masella, R. Polyphenols, dietary sources and bioavailability. Ann. Ist. Super. Sanita 2007, 43, 348–361. [Google Scholar] [PubMed]
- Wang, S.; Moustaid-Moussa, N.; Chen, L.; Mo, H.; Shastri, A.; Su, R.; Bapat, P.; Kwun, I.; Shen, C.L. Novel insights of dietary polyphenols and obesity. J. Nutr. Biochem. 2014, 25, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Behl, T.; Rana, T.; Alotaibi, G.H.; Shamsuzzaman, M.; Naqvi, M.; Sehgal, A.; Singh, S.; Sharma, N.; Almoshari, Y.; Abdellatif, A.A.H.; et al. Polyphenols inhibiting MAPK signalling pathway mediated oxidative stress and inflammation in depression. Biomed. Pharmacother. 2022, 146, 112545. [Google Scholar] [CrossRef] [PubMed]
- De Felice, B.; Damiano, S.; Montanino, C.; Del Buono, A.; La Rosa, G.; Guida, B.; Santillo, M. Effect of beta- and alpha-glucans on immune modulating factors expression in enterocyte-like Caco-2 and goblet-like LS 174T cells. Int. J. Biol. Macromol. 2020, 153, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Damiano, S.; Sasso, A.; De Felice, B.; Di Gregorio, I.; La Rosa, G.; Lupoli, G.A.; Belfiore, A.; Mondola, P.; Santillo, M. Quercetin Increases MUC2 and MUC5AC Gene Expression and Secretion in Intestinal Goblet Cell-Like LS174T via PLC/PKCα/ERK1-2 Pathway. Front. Physiol. 2018, 9, 357. [Google Scholar] [CrossRef] [PubMed]
- Haskell, C.F.; Kennedy, D.O.; Milne, A.L.; Wesnes, K.A.; Scholey, A.B. The effects of L-theanine, caffeine and their combination on cognition and mood. Biol. Psychol. 2008, 77, 113–122. [Google Scholar] [CrossRef]
- Haskell, C.F.; Kennedy, D.O.; Wesnes, K.A.; Scholey, A.B. Cognitive and mood improvements of caffeine in habitual consumers and habitual non-consumers of caffeine. Psychopharmacology 2005, 179, 813–825. [Google Scholar] [CrossRef]
- Rees, K.; Allen, D.; Lader, M. The influences of age and caffeine on psychomotor and cognitive function. Psychopharmacology 1999, 145, 181–188. [Google Scholar] [CrossRef]
- Park, T.H.; Lee, H.J.; Kwon, R.W.; Lee, I.H.; Lee, S.J.; Park, J.I.; Choo, E.A.; Lee, J.B. Effects of caffeine ingestion and thermotherapy on blood orexin circulation in humans. Food Sci. Biotechnol. 2022, 31, 1207–1212. [Google Scholar] [CrossRef]
- Abrankó, L.; Clifford, M.N. An Unambiguous Nomenclature for the Acyl-quinic Acids Commonly Known as Chlorogenic Acids. J. Agric. Food Chem. 2017, 65, 3602–3608. [Google Scholar] [CrossRef] [PubMed]
- Tajik, N.; Tajik, M.; Mack, I.; Enck, P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature. Eur. J. Nutr. 2017, 56, 2215–2244. [Google Scholar] [CrossRef] [PubMed]
- Renouf, M.; Guy, P.A.; Marmet, C.; Fraering, A.L.; Longet, K.; Moulin, J.; Enslen, M.; Barron, D.; Dionisi, F.; Cavin, C.; et al. Measurement of caffeic and ferulic acid equivalents in plasma after coffee consumption: Small intestine and colon are key sites for coffee metabolism. Mol. Nutr. Food Res. 2010, 54, 760–766. [Google Scholar] [CrossRef] [PubMed]
- Grujić-Letić, N.; Rakić, B.; Sefer, E.; Rakić, D.; Nedeljković, I.; Kladar, N.; Božin, B. Determination of 5-caffeoylquinic acid (5-CQA) as one of the major classes of chlorogenic acid in commercial tea and coffee samples. Vojnosanit. Pregl. 2015, 72, 1018–1023. [Google Scholar] [CrossRef]
- Bakalbassis, E.G.; Chatzopoulou, A.; Melissas, V.S.; Tsimidou, M.; Tsolaki, M.; Vafiadis, A. Ab initio and density functional theory studies for the explanation of the antioxidant activity of certain phenolic acids. Lipids 2001, 36, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Leopoldini, M.; Chiodo, S.G.; Russo, N.; Toscano, M. Detailed Investigation of the OH Radical Quenching by Natural Antioxidant Caffeic Acid Studied by Quantum Mechanical Models. J. Chem. Theory Comput. 2011, 7, 4218–4233. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, S.F.; Tejada, S.; Setzer, W.N.; Gortzi, O.; Sureda, A.; Braidy, N.; Daglia, M.; Manayi, A.; Nabavi, S.M. Chlorogenic Acid and Mental Diseases: From Chemistry to Medicine. Curr. Neuropharmacol. 2017, 15, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Moslehi, A.; Komeili-Movahhed, T.; Ahmadian, M.; Ghoddoosi, M.; Heidari, F. Chlorogenic acid attenuates liver apoptosis and inflammation in endoplasmic reticulum stress-induced mice. Iran. J. Basic Med. Sci. 2023, 26, 478–485. [Google Scholar]
- Gao, W.; Wang, C.; Yu, L.; Sheng, T.; Wu, Z.; Wang, X.; Zhang, D.; Lin, Y.; Gong, Y. Chlorogenic Acid Attenuates Dextran Sodium Sulfate-Induced Ulcerative Colitis in Mice through MAPK/ERK/JNK Pathway. Biomed. Res. Int. 2019, 2019, 6769789. [Google Scholar] [CrossRef]
- Solleiro-Villavicencio, H.; Rivas-Arancibia, S. Effect of Chronic Oxidative Stress on Neuroinflammatory Response Mediated by CD4(+)T Cells in Neurodegenerative Diseases. Front. Cell. Neurosci. 2018, 12, 114. [Google Scholar] [CrossRef]
- Bakunina, N.; Pariante, C.M.; Zunszain, P.A. Immune mechanisms linked to depression via oxidative stress and neuroprogression. Immunology 2015, 144, 365–373. [Google Scholar] [CrossRef]
- Damiano, S.; Morano, A.; Ucci, V.; Accetta, R.; Mondola, P.; Paternò, R.; Avvedimento, V.E.; Santillo, M. Dual oxidase 2 generated reactive oxygen species selectively mediate the induction of mucins by epidermal growth factor in enterocytes. Int. J. Biochem. Cell Biol. 2015, 60, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Accetta, R.; Damiano, S.; Morano, A.; Mondola, P.; Paternò, R.; Avvedimento, E.V.; Santillo, M. Reactive Oxygen Species Derived from NOX3 and NOX5 Drive Differentiation of Human Oligodendrocytes. Front. Cell. Neurosci. 2016, 10, 146. [Google Scholar] [CrossRef] [PubMed]
- Secondo, A.; De Mizio, M.; Zirpoli, L.; Santillo, M.; Mondola, P. The Cu-Zn superoxide dismutase (SOD1) inhibits ERK phosphorylation by muscarinic receptor modulation in rat pituitary GH3 cells. Biochem. Biophys. Res. Commun. 2008, 376, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Viggiano, A.; Serù, R.; Damiano, S.; De Luca, B.; Santillo, M.; Mondola, P. Inhibition of long-term potentiation by CuZn superoxide dismutase injection in rat dentate gyrus: Involvement of muscarinic M1 receptor. J. Cell. Physiol. 2012, 227, 3111–3115. [Google Scholar] [CrossRef] [PubMed]
- Rani, V.; Deep, G.; Singh, R.K.; Palle, K.; Yadav, U.C. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci. 2016, 148, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Block, M.L.; Calderón-Garcidueñas, L. Air pollution: Mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 2009, 32, 506–516. [Google Scholar] [CrossRef]
- Sivandzade, F.; Prasad, S.; Bhalerao, A.; Cucullo, L. NRF2 and NF-қB interplay in cerebrovascular and neurodegenerative disorders: Molecular mechanisms and possible therapeutic approaches. Redox Biol. 2019, 21, 101059. [Google Scholar] [CrossRef]
- Simpson, D.S.A.; Oliver, P.L. ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease. Antioxidants 2020, 9, 743. [Google Scholar] [CrossRef]
- Damiano, S.; Sasso, A.; Accetta, R.; Monda, M.; De Luca, B.; Pavone, L.M.; Belfiore, A.; Santillo, M.; Mondola, P. Effect of Mutated Cu, Zn Superoxide Dismutase (SOD1(G93A)) on Modulation of Transductional Pathway Mediated by M1 Muscarinic Receptor in SK-N-BE and NSC-34 Cells. Front. Physiol. 2018, 9, 611. [Google Scholar] [CrossRef]
- Kuhn, S.; Gritti, L.; Crooks, D.; Dombrowski, Y. Oligodendrocytes in Development, Myelin Generation and Beyond. Cells 2019, 8, 1424. [Google Scholar] [CrossRef] [PubMed]
- Damiano, S.; La Rosa, G.; Sozio, C.; Cavaliere, G.; Trinchese, G.; Raia, M.; Paternò, R.; Mollica, M.P.; Avvedimento, V.E.; Santillo, M. 5-Hydroxytryptamine Modulates Maturation and Mitochondria Function of Human Oligodendrocyte Progenitor M03-13 Cells. Int. J. Mol. Sci. 2021, 22, 2621. [Google Scholar] [CrossRef]
- Káradóttir, R.; Attwell, D. Neurotransmitter receptors in the life and death of oligodendrocytes. Neuroscience 2007, 145, 1426–1438. [Google Scholar] [CrossRef]
- Maes, M.; Mihaylova, I.; Kubera, M.; Leunis, J.C.; Geffard, M. IgM-mediated autoimmune responses directed against multiple neoepitopes in depression: New pathways that underpin the inflammatory and neuroprogressive pathophysiology. J. Affect. Disord. 2011, 135, 414–418. [Google Scholar] [CrossRef] [PubMed]
- di Penta, A.; Moreno, B.; Reix, S.; Fernandez-Diez, B.; Villanueva, M.; Errea, O.; Escala, N.; Vandenbroeck, K.; Comella, J.X.; Villoslada, P. Oxidative stress and proinflammatory cytokines contribute to demyelination and axonal damage in a cerebellar culture model of neuroinflammation. PLoS ONE 2013, 8, e54722. [Google Scholar] [CrossRef] [PubMed]
- Damiano, S.; Sasso, A.; De Felice, B.; Terrazzano, G.; Bresciamorra, V.; Carotenuto, A.; Orefice, N.S.; Orefice, G.; Vacca, G.; Belfiore, A.; et al. The IFN-β 1b effect on Cu Zn superoxide dismutase (SOD1) in peripheral mononuclear blood cells of relapsing-remitting multiple sclerosis patients and in neuroblastoma SK-N-BE cells. Brain Res. Bull. 2015, 118, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Couvineau, A.; Voisin, T.; Nicole, P.; Gratio, V.; Abad, C.; Tan, Y.V. Orexins as Novel Therapeutic Targets in Inflammatory and Neurodegenerative Diseases. Front. Endocrinol. 2019, 10, 709. [Google Scholar] [CrossRef]
- Lu, H.; Tian, Z.; Cui, Y.; Liu, Z.; Ma, X. Chlorogenic acid: A comprehensive review of the dietary sources, processing effects, bioavailability, beneficial properties, mechanisms of action, and future directions. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3130–3158. [Google Scholar] [CrossRef]
- Heitman, E.; Ingram, D.K. Cognitive and neuroprotective effects of chlorogenic acid. Nutr. Neurosci. 2017, 20, 32–39. [Google Scholar] [CrossRef]
- Bai, C.; Zhou, X.; Yu, L.; Wu, A.; Yang, L.; Chen, J.; Tang, X.; Zou, W.; Wu, J.; Zhu, L. A Rapid and Sensitive UHPLC-MS/MS Method for Determination of Chlorogenic Acid and Its Application to Distribution and Neuroprotection in Rat Brain. Pharmaceuticals 2023, 16, 178. [Google Scholar] [CrossRef]
- Ito, H.; Sun, X.L.; Watanabe, M.; Okamoto, M.; Hatano, T. Chlorogenic acid and its metabolite m-coumaric acid evoke neurite outgrowth in hippocampal neuronal cells. Biosci. Biotechnol. Biochem. 2008, 72, 885–888. [Google Scholar] [CrossRef]
- Shehat, M.G.; Tigno-Aranjuez, J. Flow Cytometric Measurement Of ROS Production In Macrophages In Response To FcγR Cross-linking. J. Vis. Exp. 2019. [Google Scholar] [CrossRef] [PubMed]
- Breitenbach, M.; Rinnerthaler, M.; Weber, M.; Breitenbach-Koller, H.; Karl, T.; Cullen, P.; Basu, S.; Haskova, D.; Hasek, J. The defense and signaling role of NADPH oxidases in eukaryotic cells: Review. Wien. Med. Wochenschr. 2018, 168, 286–299. [Google Scholar] [CrossRef] [PubMed]
- Akira, S.; Takeda, K.; Kaisho, T. Toll-like receptors: Critical proteins linking innate and acquired immunity. Nat. Immunol. 2001, 2, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Akira, S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol. Med. 2007, 13, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Ojha, D.; Mukherjee, H.; Mondal, S.; Jena, A.; Dwivedi, V.P.; Mondal, K.C.; Malhotra, B.; Samanta, A.; Chattopadhyay, D. Anti-inflammatory activity of Odina wodier Roxb, an Indian folk remedy, through inhibition of toll-like receptor 4 signaling pathway. PLoS ONE 2014, 9, e104939. [Google Scholar] [CrossRef]
- Katoh, S.; Mitsui, Y.; Kitani, K.; Suzuki, T. Hyperoxia induces the differentiated neuronal phenotype of PC12 cells by producing reactive oxygen species. Biochem. Biophys. Res. Commun. 1997, 241, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Cavaliere, F.; Benito-Muñoz, M.; Panicker, M.; Matute, C. NMDA modulates oligodendrocyte differentiation of subventricular zone cells through PKC activation. Front. Cell. Neurosci. 2013, 7, 261. [Google Scholar] [CrossRef]
- Zeis, T.; Schaeren-Wiemers, N. Lame ducks or fierce creatures? The role of oligodendrocytes in multiple sclerosis. J. Mol. Neurosci. 2008, 35, 91–100. [Google Scholar] [CrossRef]
- Steudler, J.; Ecott, T.; Ivan, D.C.; Bouillet, E.; Walthert, S.; Berve, K.; Dick, T.P.; Engelhardt, B.; Locatelli, G. Autoimmune neuroinflammation triggers mitochondrial oxidation in oligodendrocytes. Glia 2022, 70, 2045–2061. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, C.; Yang, T.; Feng, G.; Tan, H.; Piao, X.; Chen, D.; Zhang, Y.; Jiao, W.; Chen, Y.; et al. Chlorogenic Acid Alleviates Chronic Stress-Induced Intestinal Damage by Inhibiting the P38MAPK/NF-κB Pathway. J. Agric. Food Chem. 2023, 71, 9381–9390. [Google Scholar] [CrossRef] [PubMed]
- Cicek, B.; Hacimuftuoglu, A.; Yeni, Y.; Danisman, B.; Ozkaraca, M.; Mokhtare, B.; Kantarci, M.; Spanakis, M.; Nikitovic, D.; Lazopoulos, G.; et al. Chlorogenic Acid Attenuates Doxorubicin-Induced Oxidative Stress and Markers of Apoptosis in Cardiomyocytes via Nrf2/HO-1 and Dityrosine Signaling. J. Pers. Med. 2023, 13, 649. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Deng, S.; Liu, M.; Yang, M.; Li, J.; Liu, T.; Zhang, T.; Zhao, Y.; He, M.; Wu, D.; et al. Novel recombinant protein flagellin A N/C attenuates experimental autoimmune encephalomyelitis by suppressing the ROS/NF-κB/NLRP3 signaling pathway. Front. Pharmacol. 2022, 13, 956402. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients 2021, 13, 273. [Google Scholar] [CrossRef] [PubMed]
- Vesely, O.; Baldovska, S.; Kolesarova, A. Enhancing Bioavailability of Nutraceutically Used Resveratrol and Other Stilbenoids. Nutrients 2021, 13, 3095. [Google Scholar] [CrossRef] [PubMed]
- Kiernan, B.W.; Ffrench-Constant, C. Oligodendrocyte precursor (O-2A progenitor cell) migration; a model system for the study of cell migration in the developing central nervous system. Dev. Suppl. 1993, 119, 219–225. [Google Scholar] [CrossRef]
- Barres, B.A.; Raff, M.C. Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature 1993, 361, 258–260. [Google Scholar] [CrossRef]
- Baron, W.; de Jonge, J.C.; de Vries, H.; Hoekstra, D. Regulation of oligodendrocyte differentiation: Protein kinase C activation prevents differentiation of O2A progenitor cells toward oligodendrocytes. Glia 1998, 22, 121–129. [Google Scholar] [CrossRef]
- Shen, H.Y.; Huang, N.; Reemmer, J.; Xiao, L. Adenosine Actions on Oligodendroglia and Myelination in Autism Spectrum Disorder. Front. Cell. Neurosci. 2018, 12, 482. [Google Scholar] [CrossRef]
- Klotz, L.; Antel, J.; Kuhlmann, T. Inflammation in multiple sclerosis: Consequences for remyelination and disease progression. Nat. Rev. Neurol. 2023, 19, 305–320. [Google Scholar] [CrossRef]
- Roelofs, B.A.; Ge, S.X.; Studlack, P.E.; Polster, B.M. Low micromolar concentrations of the superoxide probe MitoSOX uncouple neural mitochondria and inhibit complex IV. Free Radic. Biol. Med. 2015, 86, 250–258. [Google Scholar] [CrossRef]
- McCloy, R.A.; Rogers, S.; Caldon, C.E.; Lorca, T.; Castro, A.; Burgess, A. Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events. Cell Cycle 2014, 13, 1400–1412. [Google Scholar] [CrossRef]
Gene | Forward Primer 5′ → 3′ | Reverse Primer 3′ → 5′ |
---|---|---|
MBP | CGAAGGCCAGAGACCAGGAT | CATGGGTGATCCAGAGCGACT |
PLP | ATGGAATGCTTTCCCTGGCA | GTAAGTGGCAGCAATCATGA |
18S | GCGCTACACTGACTGGCTC | CATCCAATCGGTAGTAGCGAC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
La Rosa, G.; Sozio, C.; Pipicelli, L.; Raia, M.; Palmiero, A.; Santillo, M.; Damiano, S. Antioxidant, Anti-Inflammatory and Pro-Differentiative Effects of Chlorogenic Acid on M03-13 Human Oligodendrocyte-like Cells. Int. J. Mol. Sci. 2023, 24, 16731. https://doi.org/10.3390/ijms242316731
La Rosa G, Sozio C, Pipicelli L, Raia M, Palmiero A, Santillo M, Damiano S. Antioxidant, Anti-Inflammatory and Pro-Differentiative Effects of Chlorogenic Acid on M03-13 Human Oligodendrocyte-like Cells. International Journal of Molecular Sciences. 2023; 24(23):16731. https://doi.org/10.3390/ijms242316731
Chicago/Turabian StyleLa Rosa, Giuliana, Concetta Sozio, Luca Pipicelli, Maddalena Raia, Anna Palmiero, Mariarosaria Santillo, and Simona Damiano. 2023. "Antioxidant, Anti-Inflammatory and Pro-Differentiative Effects of Chlorogenic Acid on M03-13 Human Oligodendrocyte-like Cells" International Journal of Molecular Sciences 24, no. 23: 16731. https://doi.org/10.3390/ijms242316731
APA StyleLa Rosa, G., Sozio, C., Pipicelli, L., Raia, M., Palmiero, A., Santillo, M., & Damiano, S. (2023). Antioxidant, Anti-Inflammatory and Pro-Differentiative Effects of Chlorogenic Acid on M03-13 Human Oligodendrocyte-like Cells. International Journal of Molecular Sciences, 24(23), 16731. https://doi.org/10.3390/ijms242316731