Triple Negative Breast Cancer Preclinical Therapeutic Management by a Cationic Ruthenium-Based Nucleolipid Nanosystem
<p>Biological effects of the HoThyRu/DOTAP nanosystem in TNBC cells and in healthy cultures. (<b>a</b>) Cell survival index, evaluated by the MTT assay and live/dead cell ratio analysis, for TNBC MDA-MB-231 cells and for healthy primary dermal fibroblasts (HDFa) and primary epidermal follicular keratinocytes (HHFKs) following 48 h of incubation with the indicated concentration (range 1→250 µM) of AziRu loaded in the HoThyRu/DOTAP nanosystem (nanostructured AziRu) and the naked AziRu. In the same experimental conditions, cisplatin (cDPP) is used as the reference drug. Data in line graphs are expressed as percentages of untreated control cells and are reported as mean of five independent experiments ± SEM (<span class="html-italic">n</span> = 30). * <span class="html-italic">p</span> ˂ 0.05 vs. control cells; ** <span class="html-italic">p</span> < 0.01 vs. control cells; *** <span class="html-italic">p</span> < 0.001 vs. control cells. (<b>b</b>) IC<sub>50</sub> values (µM) of the HoThyRu/DOTAP liposomal formulation, the actual Ru(III) complex (AziRu) in the nanosystem, the naked AziRu complex, and cisplatin (cDDP) in the tested cell lines after 48 h of incubation in vitro. The AziRu IC<sub>50</sub> value corresponds to the effective ruthenium complex concentration (30% mol/mol) carried by the HoThyRu/DOTAP nanoformulation. IC<sub>50</sub> values are reported as mean ± SEM (<span class="html-italic">n</span> = 30).</p> "> Figure 2
<p>Colony formation assay in the experimental model of TNBC. (<b>a</b>) Representative images of MDA-MB-231 cells stained with 0.5% crystal violet at the experiment endpoint. Cells were treated or not (Ctrl) with IC<sub>50</sub> concentrations of HoThyRu/DOTAP and cisplatin (<span class="html-italic">c</span>DDP), as indicated in the experimental section. <span class="html-italic">c</span>DDP is used as a cytotoxic reference drug. (<b>b</b>) Quantification by bar graphs of the cell colonies formation after the indicated treatments. *** <span class="html-italic">p</span> < 0.001 vs. untreated cells (Ctrl).</p> "> Figure 3
<p>Intracellular ruthenium(III) complex bioaccumulation after HoThyRu/DOTAP application to MDA-MB-231 cells. Inductively coupled plasma-mass spectrometry (ICP-MS) for the analysis of ruthenium distribution between MDA-MB-231 cells and culture media after incubation for 24 h with the IC<sub>50</sub> concentration of HoThyRu/DOTAP, as well as intracellular ruthenium accumulation following cellular uptake and subcellular fractionation. In the reported fractions, ruthenium content is expressed as percentage of the total ruthenium administered during incubations in vitro. Results were derived from the average values of three independent experiments.</p> "> Figure 4
<p>Apoptosis activation in MDA-MB-231 cells by confocal microscopy in response to HoThyRu/DOTAP treatment. (<b>a</b>) Apoptotic, necrotic, and healthy cells have been monitored by confocal microscopy after incubation for 48 h with IC<sub>50</sub> concentrations of HoThyRu/DOTAP and cisplatin (cytotoxic positive control). Nuclei emit blue fluorescence (blue nuclear stain, DAPI filter, Ex/Em = 350/470 nm). Apoptotic cells have green fluorescence (FITC filter, Ex/Em = 490/525 nm) upon binding to membrane PS (phosphatidylserine). Necrotic cells are associated with nuclear red fluorescence (Cy5 filter, Ex/Em = 546/647 nm). In merged images (Merge), the fluorescent patterns from cell monolayers are overlapped. Fluorescent microphotographs (40× oil immersion objective lens) are representative of three independent experiments. (<b>b</b>) Percentage of Green Detection Reagent-positive MDA-MB-231 cells following the indicated treatments in vitro with respect to untreated control cells. *** <span class="html-italic">p</span> < 0.001 vs. control cells.</p> "> Figure 5
<p>Autophagy fluorescent detection in MDA-MB-231 cells treated with HoThyRu/DOTAP. (<b>a</b>) Autophagy detection by confocal microscopy showing nuclei (blue nuclear stain, DAPI filter, Ex/Em = 350/470 nm) and autophagic vesicles (green fluorescence signal, FITC filter, Ex/Em = 490/525 nm) in control MDA-MB-231 cells (Ctrl), or in cells treated with 10 µM Rapamycin for 48 h, and with IC<sub>50</sub> of HoThyRu/DOTAP for 48 h. In merged images (Merge), the fluorescent patterns from cell monolayers are overlapped. The shown microphotographs (40× oil immersion objective lens) are representative of three independent experiments. (<b>b</b>) Percentage of Green Detection Reagent-positive MDA-MB-231 cells following the indicated treatments in vitro with respect to untreated control cells. *** <span class="html-italic">p</span> < 0.001 vs. control cells.</p> "> Figure 6
<p>Invasion and migration ability of MDA-MB-231 cells in response to HoThyRu/DOTAP treatment. MDA-MB-231 cells were starved and treated or not with a sub-IC<sub>50</sub> concentration of HoThyRu/DOTAP (24 μM, i.e., 7.2 µM of AziRu) for the indicated times (24 and 48 h). The ability of cells to invade the matrix and then migrate through a semipermeable membrane in the Boyden chamber in response to HoThyRu/DOTAP application in vitro was analysed directly in fluorescence according to the manufacturer’s recommendations and reported in bar graphs. Data originate from the average ± SEM values of three independent experiments. * <span class="html-italic">p</span> ˂ 0.05 vs. control cells; ** <span class="html-italic">p</span> < 0.01 vs. control cells.</p> "> Figure 7
<p>Wound healing assay showed inhibitory effects of HoThyRu/DOTAP on cell migration. (<b>a</b>) Representative images by light microscopy showing MDA-MB-231 cell migration for the indicated times (0, 24, 48, 72, and 96 h), previously treated or not for 48 h with HoThyRu/DOTAP at the sub-IC<sub>50</sub> concentration of 24 µM. The scale bar represents 250 µM. (<b>b</b>) At the endpoints, migration was monitored under a phase contrast microscope (10× objective), and the percentage of wound closure depending on cell migration ability was determined by ImageJ FIJI software and reported in a line graph as the average ± SEM values of three independent experiments. ** <span class="html-italic">p</span> < 0.01 vs. control cells; *** <span class="html-italic">p</span> < 0.001 vs. control cells.</p> "> Figure 8
<p>Expression analysis of a limited panel of EMT genes by RT-qPCR following HoThyRu/DOTAP application in vitro. RT-qPCR analysis of the EMT pathway genes E-cadherin, N-cadherin, vimentin, Slug, and Snail, performed on MDA-MB-231 cells treated or not with HoThyRu/DOTAP for 48 h. The mRNA expression levels of each gene were normalized using the GAPDH as a housekeeping gene and are indicated as the fold change with respect to untreated control cultures. Values represent the mean ± SEM of three independent experiments, each performed in duplicate. ** <span class="html-italic">p</span> < 0.01 vs. control cells; *** <span class="html-italic">p</span> < 0.001 vs. control cells; **** <span class="html-italic">p</span> < 0.0001 vs. control cells. The report of RT-qPCR analysis is shown in <a href="#app1-ijms-24-06473" class="html-app">Figure S4</a>.</p> "> Figure 9
<p>Animal biological responses to HoThyRu/DOTAP administration in vivo. (<b>a</b>) Experimental protocol and therapeutic scheme based on intraperitoneal (i.p.) administrations of HoThyRu/DOTAP (15 mg/kg) once a week for 28 days. (<b>b</b>) Overall mice survival and (<b>c</b>) body weights at the end of the study (5 weeks from the start of treatments). Control group (untreated xenotransplanted, <span class="html-italic">n</span> = 5 animals); xenotransplanted treated group (HoThyRu/DOTAP, <span class="html-italic">n</span> = 5 animals). (<b>d</b>) Weight analysis of the explanted tumor masses at the end of the study and (<b>e</b>) tumour volumes evaluation over time throughout in vivo experiments. Control group (untreated xenotransplanted, <span class="html-italic">n</span> = 5 animals); xenotransplanted treated group (HoThyRu/DOTAP, <span class="html-italic">n</span> = 5 animals). (<b>f</b>) Explanted tumor masses at the end point of the study from untreated (Control) and treated (HoThyRu/DOTAP) xenotransplanted animal groups. (<b>g</b>) Representative animal photographs at the end of the preclinical study relating to untreated xenotransplanted mice (Control) and treated xenotransplanted mice (HoThyRu/DOTAP) showing tumour inhibition by HoThyRu/DOTAP administration. Statistical analysis was conducted by one-way ANOVA followed by Bonferroni’s for multiple comparisons. *** <span class="html-italic">p</span> ˂ 0.001 vs. control animal group.</p> "> Figure 10
<p>Ruthenium bioaccumulation in mice after HoThyRu/DOTAP regimen in vivo. Percentage of ruthenium amounts revealed by ICP-MS analyses and plotted in bar graph for the indicated body districts (heart, lung, spleen, kidney, and liver), including tumour lesions, at the endpoint (4 weeks) of the preclinical study. After weekly administrations of HoThyRu/DOTAP (15 mg/kg, i.p., once a week for 4 weeks), the mice were sacrificed, and organs and tissues were appropriately collected to analyze the ruthenium content (<span class="html-italic">n</span> = 5 animals).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Antiproliferative Effect In Vitro
2.2. Clonogenic Assay
2.3. Ruthenium Cellular Uptake and Intracellular Biodistribution in MDA-MB-231 Cells
2.4. Cell Death Pathways Activation
2.5. Antimetastatic Effect In Vitro
2.6. Analysis of a Limited Panel of EMT Markers by RT-qPCR
2.7. Anticancer Effect In Vivo
2.8. Ruthenium Bioaccumulation in Mice and Xenograft Tumor Lesions
3. Discussion
4. Materials and Methods
4.1. HoThyRu/DOTAP Liposome Preparation
4.2. Cell Cultures
4.3. Bioscreens In Vitro
4.4. Colony Formation Assay
4.5. Fluorescent Detection of Apoptosis, Autophagy, and Necrosis
4.6. Transwell Invasion and Migration Assay
4.7. In Vitro Wound-Healing Assay
4.8. RT-qPCR
4.9. Subcellular Fractionation
4.10. Animals and Experimental Design
4.11. Generation of Human TNBC-Derived Xenograft Models in Nude Mice
4.12. Treatments In Vivo: Experimental Protocols and Therapeutic Scheme
4.13. Tumor Volume Determination by Caliper Measurements
4.14. Animal Supervision and Monitoring throughout the Preclinical Study
4.15. Surgical Procedures, Harvest of Tumors, and Biological Samples Collection
4.16. Ruthenium Bioaccumulation by Inductively Coupled Mass Spectrometry (ICP-MS)
4.17. Statistical Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Lu, Y.; Zhu, D.; Le, Q.; Wang, Y.; Wang, W. Ruthenium-based antitumor drugs and delivery systems from monotherapy to combination therapy. Nanoscale 2022, 14, 16339–16375. [Google Scholar] [CrossRef]
- Ferraro, M.G.; Piccolo, M.; Misso, G.; Santamaria, R.; Irace, C. Bioactivity and development of small non-platinum metal-based chemotherapeutics. Pharmaceutics 2022, 14, 954. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, C.Y.; Nam, T.G. Ruthenium complexes as anticancer agents: A brief history and perspectives. Drug Des. Dev. Ther. 2020, 14, 5375–5392. [Google Scholar] [CrossRef]
- Liu, J.; Lai, H.; Xiong, Z.; Chen, B.; Chen, T. Functionalization and cancer-targeting design of ruthenium complexes for precise cancer therapy. Chem. Commun. 2019, 55, 9904–9914. [Google Scholar] [CrossRef]
- Pal, M.; Nandi, U.; Mukherjee, D. Detailed account on activation mechanisms of ruthenium coordination complexes and their role as antineoplastic agents. Eur. J. Med. Chem. 2018, 150, 419–445. [Google Scholar] [CrossRef]
- Abid, M.; Shamsi, F.; Azam, A. Ruthenium complexes: An emerging ground to the development of metallopharmaceuticals for cancer therapy. Mini Rev. Med. Chem. 2016, 16, 772–786. [Google Scholar] [CrossRef]
- Kenny, R.G.; Marmion, C.J. Toward multi-targeted platinum and ruthenium drugs-a new paradigm in cancer drug treatment regimens? Chem. Rev. 2019, 119, 1058–1137. [Google Scholar] [CrossRef]
- Ferraro, M.G.; Piccolo, M.; Misso, G.; Maione, F.; Montesarchio, D.; Caraglia, M.; Paduano, L.; Santamaria, R.; Irace, C. Breast cancer chemotherapeutic options: A general overview on the preclinical validation of a multi-target Ruthenium(III) complex lodged in nucleolipid nanosystems. Cells 2020, 9, 1412. [Google Scholar] [CrossRef]
- Riccardi, C.; Musumeci, D.; Trifuoggi, M.; Irace, C.; Paduano, L.; Montesarchio, D. Anticancer Ruthenium(III) complexes and Ru(III)-containing nanoformulations: An update on the mechanism of action and biological activity. Pharmaceuticals 2019, 12, 146. [Google Scholar] [CrossRef] [Green Version]
- Riccardi, C.; Musumeci, D.; Irace, C.; Paduano, L.; Montesarchio, D. RuIII complexes for anticancer therapy: The importance of being nucleolipidic. Eur. J. Org. Chem. 2017, 2017, 1100–1119. [Google Scholar] [CrossRef]
- Irace, C.; Misso, G.; Capuozzo, A.; Piccolo, M.; Riccardi, C.; Luchini, A.; Caraglia, M.; Paduano, L.; Montesarchio, D.; Santamaria, R. Antiproliferative effects of ruthenium-based nucleolipidic nanoaggregates in human models of breast cancer in vitro: Insights into their mode of action. Sci. Rep. 2017, 7, 45236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montesarchio, D.; Mangiapia, G.; Vitiello, G.; Musumeci, D.; Irace, C.; Santamaria, R.; D’Errico, G.; Paduano, L. A new design for nucleolipid-based Ru(III) complexes as anticancer agents. Dalton Trans. 2013, 42, 16697–16708. [Google Scholar] [CrossRef] [PubMed]
- Mangiapia, G.; D’Errico, G.; Simeone, L.; Irace, C.; Radulescu, A.; Di Pascale, A.; Colonna, A.; Montesarchio, D.; Paduano, L. Ruthenium-based complex nanocarriers for cancer therapy. Biomaterials 2012, 33, 3770–3782. [Google Scholar] [CrossRef] [PubMed]
- Simeone, L.; Mangiapia, G.; Vitiello, G.; Irace, C.; Colonna, A.; Ortona, O.; Montesarchio, D.; Paduano, L. Cholesterol-based nucleolipid-ruthenium complex stabilized by lipid aggregates for antineoplastic therapy. Bioconjug. Chem. 2012, 23, 758–770. [Google Scholar] [CrossRef]
- Mangiapia, G.; Vitiello, G.; Irace, C.; Santamaria, R.; Colonna, A.; Angelico, R.; Radulescu, A.; D’Errico, G.; Montesarchio, D.; Paduano, L. Anticancer cationic ruthenium nanovectors: From rational molecular design to cellular uptake and bioactivity. Biomacromolecules 2013, 14, 2549–2560. [Google Scholar] [CrossRef] [Green Version]
- Vitiello, G.; Luchini, A.; D’Errico, G.; Santamaria, R.; Capuozzo, A.; Irace, C.; Montesarchio, D.; Paduano, L. Cationic liposomes as efficient nanocarriers for the drug delivery of an anticancer cholesterol-based ruthenium complex. J. Mater. Chem. B 2015, 3, 3011–3023. [Google Scholar] [CrossRef]
- Piccolo, M.; Misso, G.; Ferraro, M.G.; Riccardi, C.; Capuozzo, A.; Zarone, M.R.; Maione, F.; Trifuoggi, M.; Stiuso, P.; D’Errico, G.; et al. Exploring cellular uptake, accumulation and mechanism of action of a cationic Ru-based nanosystem in human preclinical models of breast cancer. Sci. Rep. 2019, 9, 7006. [Google Scholar] [CrossRef] [Green Version]
- Piccolo, M.; Ferraro, M.G.; Raucci, F.; Riccardi, C.; Saviano, A.; Russo Krauss, I.; Trifuoggi, M.; Caraglia, M.; Paduano, L.; Montesarchio, D.; et al. Safety and efficacy evaluation in vivo of a cationic nucleolipid nanosystem for the nanodelivery of a Ruthenium(III) complex with superior anticancer bioactivity. Cancers 2021, 13, 5164. [Google Scholar] [CrossRef]
- Pareja, F.; Reis-Filho, J.S. Triple-negative breast cancers—A panoply of cancer types. Nat. Rev. Clin. Oncol 2018, 15, 347–348. [Google Scholar] [CrossRef]
- Lacroix, M.; Leclercq, G. Relevance of breast cancer cell lines as models for breast tumours: An update. Breast Cancer Res. Treat. 2004, 83, 249–289. [Google Scholar] [CrossRef]
- Yin, L.; Duan, J.J.; Bian, X.W.; Yu, S.C. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020, 22, 61. [Google Scholar] [CrossRef] [PubMed]
- Manjunath, M.; Choudhary, B. Triple-negative breast cancer: A run-through of features, classification and current therapies. Oncol. Lett. 2021, 22, 512. [Google Scholar] [CrossRef] [PubMed]
- Huppert, L.A.; Gumusay, O.; Rugo, H.S. Emerging treatment strategies for metastatic triple-negative breast cancer. Ther. Adv. Med. Oncol. 2022, 14, 17588359221086916. [Google Scholar] [CrossRef] [PubMed]
- Pandy, J.G.P.; Balolong-Garcia, J.C.; Cruz-Ordinario, M.V.B.; Que, F.V.F. Triple negative breast cancer and platinum-based systemic treatment: A meta-analysis and systematic review. BMC Cancer 2019, 19, 1065. [Google Scholar] [CrossRef] [Green Version]
- Mahtani, R.; Kittaneh, M.; Kalinsky, K.; Mamounas, E.; Badve, S.; Vogel, C.; Lower, E.; Schwartzberg, L.; Pegram, M.; Breast Cancer Therapy Expert Group (BCTEG). Advances in therapeutic approaches for triple-negative breast cancer. Clin. Breast Cancer 2021, 21, 383–390. [Google Scholar] [CrossRef]
- Ye, Q.; Kantonen, S.; Gomez-Cambronero, J. Serum deprivation confers the MDA-MB-231 breast cancer line with an EGFR/JAK3/PLD2 system that maximizes cancer cell invasion. J. Mol. Biol. 2013, 425, 755–766. [Google Scholar] [CrossRef] [Green Version]
- Rakha, E.A.; Chan, S. Metastatic triple-negative breast cancer. Clin. Oncol. 2011, 23, 587–600. [Google Scholar] [CrossRef]
- Vagia, E.; Mahalingam, D.; Cristofanilli, M. The landscape of targeted therapies in TNBC. Cancers 2020, 12, 916. [Google Scholar] [CrossRef] [Green Version]
- Landry, I.; Sumbly, V.; Vest, M. Advancements in the treatment of triple-negative breast cancer: A narrative review of the literature. Cureus 2022, 14, e21970. [Google Scholar] [CrossRef]
- Zhang, J.; Fan, M.; Xie, J.; Wang, Z.; Wang, B.; Zhang, S.; Wang, L.; Cao, J.; Tao, Z.; Li, T.; et al. Chemotherapy of metastatic triple negative breast cancer: Experience of using platinum-based chemotherapy. Oncotarget 2015, 6, 43135–43143. [Google Scholar] [CrossRef] [Green Version]
- Guan, X.; Ma, F.; Fan, Y.; Zhu, W.; Hong, R.; Xu, B. Platinum-based chemotherapy in triple-negative breast cancer: A systematic review and meta-analysis of randomized-controlled trials. Anticancer Drugs 2015, 26, 894–901. [Google Scholar] [CrossRef] [PubMed]
- Vitali, F.; Cohen, L.D.; Demartini, A.; Amato, A.; Eterno, V.; Zambelli, A.; Bellazzi, R. A network-based data integration approach to support drug repurposing and multi-target therapies in triple negative breast cancer. PLoS ONE 2016, 11, e0162407. [Google Scholar] [CrossRef] [PubMed]
- Golbaghi, G.; Castonguay, A. Rationally designed ruthenium complexes for breast cancer therapy. Molecules 2020, 25, 265. [Google Scholar] [CrossRef] [Green Version]
- Ran, S.; Downes, A.; Thorpe, P.E. Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res. 2002, 62, 6132–6140. [Google Scholar] [PubMed]
- Han, H.D.; Byeon, Y.; Jeon, H.N.; Shin, B.C. Enhanced localization of anticancer drug in tumor tissue using polyethylenimine-conjugated cationic liposomes. Nanoscale Res. Lett. 2014, 9, 209. [Google Scholar] [CrossRef] [Green Version]
- Schröder-Borm, H.; Bakalova, R.; Andrä, J. The NK-lysin derived peptide NK-2 preferentially kills cancer cells with increased surface levels of negatively charged phosphatidylserine. FEBS Lett. 2005, 579, 6128–6134. [Google Scholar] [CrossRef] [Green Version]
- Hilchie, A.L.; Gill, E.E.; Coombs, M.R.P.; Falsafi, R.; Hancock, R.E.W.; Hoskin, D.W. MDA-MB-231 breast cancer cells resistant to pleurocidin-family lytic peptides are chemosensitive and exhibit reduced tumor-forming capacity. Biomolecules 2020, 10, 1220. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Mohammadinejad, R.; Tavakol, S.; Ahmadi, Z.; Sahebkar, A. New Insight into triple-negative breast cancer therapy: The potential roles of endoplasmic reticulum stress and autophagy mechanisms. Anticancer Agents Med. Chem. 2021, 21, 679–691. [Google Scholar] [CrossRef]
- Chen, Z.F.; Orvig, C.; Liang, H. Multi-target metal-based anticancer agents. Curr. Top. Med. Chem. 2017, 17, 3131–3145. [Google Scholar] [CrossRef]
- Liu, K.; Newbury, P.A.; Glicksberg, B.S.; Zeng, W.Z.D.; Paithankar, S.; Andrechek, E.R.; Chen, B. Evaluating cell lines as models for metastatic breast cancer through integrative analysis of genomic data. Nat. Commun. 2019, 10, 2138. [Google Scholar] [CrossRef] [Green Version]
- Loh, C.Y.; Chai, J.Y.; Tang, T.F.; Wong, W.F.; Sethi, G.; Shanmugam, M.K.; Chong, P.P.; Looi, C.Y. The E-Cadherin and N-Cadherin switch in epithelial-to-mesenchymal transition: Signaling, therapeutic implications, and challenges. Cells 2019, 8, 1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaszak, I.; Witkowska-Piłaszewicz, O.; Niewiadomska, Z.; Dworecka-Kaszak, B.; Ngosa Toka, F.; Jurka, P. Role of cadherins in cancer—A review. Int. J. Mol. Sci. 2020, 21, 7624. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Wang, Y.; Wei, C.; Chen, Y.; Ji, Z. The anti-migration and anti-invasion effects of Bruceine D in human triple-negative breast cancer MDA-MB-231 cells. Exp. Ther. Med. 2020, 273–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, S.; Kuperwasser, C. SLUG: Critical regulator of epithelial cell identity in breast development and cancer. Cell Adh. Migr. 2014, 8, 578–587. [Google Scholar] [CrossRef] [Green Version]
- Sterneck, E.; Poria, D.K.; Balamurugan, K. Slug and E-Cadherin: Stealth accomplices? Front. Mol. Biosci. 2020, 7, 138. [Google Scholar] [CrossRef]
- Velders, A.H.; Bergamo, A.; Alessio, E.; Zangrando, E.; Haasnoot, J.G.; Casarsa, C.; Cocchietto, M.; Zorzet, S.; Sava, G. Synthesis and chemical-pharmacological characterization of the antimetastatic NAMI-A-type Ru(III) complexes (Hdmtp)[trans-RuCl4(dmso-S)(dmtp)], (Na)[trans-RuCl4(dmso-S)(dmtp)], and [mer-RuCl3(H2O)(dmso-S)(dmtp)] (dmtp = 5,7-dimethyl[1,2,4]triazolo[1,5-a]pyrimidine). J. Med. Chem. 2004, 47, 1110–1121. [Google Scholar] [CrossRef]
- Alessio, E.; Messori, L. NAMI-A and KP1019/1339, two iconic ruthenium anticancer drug candidates face-to-face: A case story in medicinal inorganic chemistry. Molecules 2019, 24, 1995. [Google Scholar] [CrossRef] [Green Version]
- Bergamo, A.; Gava, B.; Alessio, E.; Mestroni, G.; Serli, B.; Cocchietto, M.; Zorzet, S.; Sava, G. Ruthenium-based NAMI-A type complexes with in vivo selective metastasis reduction and in vitro invasion inhibition unrelated to cell cytotoxicity. Int. J. Oncol. 2002, 21, 1331–1338. [Google Scholar] [CrossRef]
- Sava, G.; Zorzet, S.; Turrin, C.; Vita, F.; Soranzo, M.; Zabucchi, G.; Cocchietto, M.; Bergamo, A.; DiGiovine, S.; Pezzoni, G.; et al. Dual Action of NAMI-A in inhibition of solid tumor metastasis: Selective targeting of metastatic cells and binding to collagen. Clin. Cancer Res. 2003, 9, 1898–1905. [Google Scholar]
- Cao, W.; Zheng, W.; Chen, T. Ruthenium polypyridyl complex inhibits growth and metastasis of breast cancer cells by suppressing FAK signaling with enhancement of TRAIL-induced apoptosis. Sci. Rep. 2015, 5, 9157. [Google Scholar] [CrossRef] [Green Version]
- Gurgul, I.; Mazuryk, O.; Stachyra, K.; Olszanecki, R.; Lekka, M.; Łomzik, M.; Suzenet, F.; Gros, P.C.; Brindell, M. Impact of polypyridyl Ru complexes on angiogenesis-contribution to their antimetastatic activity. Int. J. Mol. Sci. 2022, 23, 7708. [Google Scholar] [CrossRef]
- Gurgul, I.; Janczy-Cempa, E.; Mazuryk, O.; Lekka, M.; Łomzik, M.; Suzenet, F.; Gros, P.C.; Brindell, M. Inhibition of metastasis by polypyridyl Ru(II) complexes through modification of cancer cell adhesion—In Vitro functional and molecular studies. J. Med. Chem. 2022, 65, 10459–10470. [Google Scholar] [CrossRef]
- Cuccioloni, M.; Bonfili, L.; Cecarini, V.; Nabissi, M.; Pettinari, R.; Marchetti, F.; Petrelli, R.; Cappellacci, L.; Angeletti, M.; Eleuteri, A.M. Exploring the molecular mechanisms underlying the in vitro anticancer effects of multitarget-directed hydrazone Ruthenium(II)-arene complexes. ChemMedChem 2020, 15, 105–113. [Google Scholar] [CrossRef]
- Rademaker-Lakhai, J.M.; van den Bongard, D.; Pluim, D.; Beijnen, J.H.; Schellens, J.H. A Phase I and pharmacological study with imidazolium-trans-DMSO-imidazole-tetrachlororuthenate, a novel ruthenium anticancer agent. Clin. Cancer Res. 2004, 10, 3717–3727. [Google Scholar] [CrossRef] [Green Version]
- Hartinger, C.G.; Jakupec, M.A.; Zorbas-Seifried, S.; Groessl, M.; Egger, A.; Berger, W.; Zorbas, H.; Dyson, P.J.; Keppler, B.K. KP1019, a new redox-active anticancer agent--preclinical development and results of a clinical phase I study in tumor patients. Chem. Biodivers. 2008, 5, 2140–2155. [Google Scholar] [CrossRef]
- Lentz, F.; Drescher, A.; Lindauer, A.; Henke, M.; Hilger, R.A.; Hartinger, C.G.; Scheulen, M.E.; Dittrich, C.; Keppler, B.K.; Central European Society for Anticancer Drug Research-EWIV; et al. Pharmacokinetics of a novel anticancer ruthenium complex (KP1019, FFC14A) in a phase I dose-escalation study. Anticancer Drugs 2009, 20, 97–103. [Google Scholar] [CrossRef]
- Park, B.J.; Raha, P.; Pankovich, J.; Bazett, M. Utilization of cancer cell line screening to elucidate the anticancer activity and biological pathways related to the ruthenium-based therapeutic BOLD-100. Cancers 2022, 15, 28. [Google Scholar] [CrossRef]
- Riccardi, C.; Piccolo, M.; Ferraro, M.G.; Graziano, R.; Musumeci, D.; Trifuoggi, M.; Irace, C.; Montesarchio, D. Bioengineered lipophilic Ru(III) complexes as potential anticancer agents. Biomater. Adv. 2022, 139, 213016. [Google Scholar] [CrossRef]
- Piccolo, M.; Ferraro, M.G.; Maione, F.; Maisto, M.; Stornaiuolo, M.; Tenore, G.C.; Santamaria, R.; Irace, C.; Novellino, E. Induction of hair keratins expression by an annurca apple-based nutraceutical formulation in human follicular cells. Nutrients 2019, 11, 3041. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferraro, M.G.; Bocchetti, M.; Riccardi, C.; Trifuoggi, M.; Paduano, L.; Montesarchio, D.; Misso, G.; Santamaria, R.; Piccolo, M.; Irace, C. Triple Negative Breast Cancer Preclinical Therapeutic Management by a Cationic Ruthenium-Based Nucleolipid Nanosystem. Int. J. Mol. Sci. 2023, 24, 6473. https://doi.org/10.3390/ijms24076473
Ferraro MG, Bocchetti M, Riccardi C, Trifuoggi M, Paduano L, Montesarchio D, Misso G, Santamaria R, Piccolo M, Irace C. Triple Negative Breast Cancer Preclinical Therapeutic Management by a Cationic Ruthenium-Based Nucleolipid Nanosystem. International Journal of Molecular Sciences. 2023; 24(7):6473. https://doi.org/10.3390/ijms24076473
Chicago/Turabian StyleFerraro, Maria Grazia, Marco Bocchetti, Claudia Riccardi, Marco Trifuoggi, Luigi Paduano, Daniela Montesarchio, Gabriella Misso, Rita Santamaria, Marialuisa Piccolo, and Carlo Irace. 2023. "Triple Negative Breast Cancer Preclinical Therapeutic Management by a Cationic Ruthenium-Based Nucleolipid Nanosystem" International Journal of Molecular Sciences 24, no. 7: 6473. https://doi.org/10.3390/ijms24076473
APA StyleFerraro, M. G., Bocchetti, M., Riccardi, C., Trifuoggi, M., Paduano, L., Montesarchio, D., Misso, G., Santamaria, R., Piccolo, M., & Irace, C. (2023). Triple Negative Breast Cancer Preclinical Therapeutic Management by a Cationic Ruthenium-Based Nucleolipid Nanosystem. International Journal of Molecular Sciences, 24(7), 6473. https://doi.org/10.3390/ijms24076473