Characterization and Co-Adsorption Mechanism of Magnetic Clay-Biochar Composite for De-Risking Cd(II) and Methyl Orange Contaminated Water
<p>SEM images of BC (<b>a</b>), BNT-BC (<b>b</b>), and BNT-MBC (<b>c</b>).</p> "> Figure 2
<p>(<b>a</b>) FTIR spectra of BC, BNT-BC, and BNT-MBC; (<b>b</b>) Raman spectra of BC and BNT-MBC; (<b>c</b>) XRD of biochar of BC, BNT-BC, and BNT-MBC; (<b>d</b>) Hysteresis loop of BNT-MBC before and after adsorption.</p> "> Figure 3
<p>Adsorption capacity of Cd(II) and MO by different types of adsorbents (adsorbent dose 20 mg, contaminant solution 10 mL, pH 6, constant temperature 25 °C, and reaction time 24 h).</p> "> Figure 4
<p>Fitting of adsorption isotherms of Cd(II) (<b>a</b>) and MO (<b>b</b>); Fitting of adsorption kinetics of Cd(II) (<b>c</b>) and MO (<b>d</b>); Fitting of intra-particle diffusion models of Cd(II) (<b>e</b>) and MO (<b>f</b>) by BNT-MBC (adsorbent dose 20 mg, contaminant solution 10 mL, pH 6, constant temperature 25 °C, and reaction time 24 h).</p> "> Figure 5
<p>Experiment of desorption–adsorption cycle of BNT-MBC on (<b>a</b>) Cd(II) and (<b>b</b>) MO.</p> "> Figure 6
<p>The adsorption of Cd(II) and MO in binary system by BNT-MBC: the influence of different initial concentrations on adsorption capacity (<b>a</b>) and R<sub>q</sub> (<b>c</b>) of Cd(II), on adsorption capacity (<b>b</b>) and R<sub>q</sub> (<b>d</b>) of MO (adsorbent dose 20 mg, contaminant solution 10 mL, pH 6, constant temperature 25 °C, and reaction time 24 h).</p> "> Figure 7
<p>Hypothesis mechanism of co-adsorption of MO and Cd(II) by bentonite−biochar composite.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Adsorbent Characteriazation
2.1.1. Adsorbent Surface Morphology
2.1.2. The FTIR Spectrum Analysis
2.1.3. The Raman Analysis
2.1.4. The XRD Analysis
2.1.5. Magnetic Properties of Modified Biochar
2.2. Adsorption Experiments
2.2.1. Adsorption under Different Preparation Conditions
2.2.2. Adsorption Isotherms
2.2.3. Adsorption Kinetics
2.2.4. Experiment of Desorption–Adsorption Cycle
2.3. Study on Cd(II)-MO Binary System Adsorption
2.4. Co-Adsorption Mechanisms Analysis
3. Materials and Methods
3.1. Materials and Reagents
3.2. Preparation of Magnetic Clay-Biochar Composites
3.3. Adsorbent Characterization
3.4. Adsorption Experiments
3.5. Adsorption Data Analysis Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- López-Rodríguez, D.; Micó-Vicent, B.; Jordán-Núñez, J.; Bonet-Aracil, M.; Bou-Belda, E. Uses of Nanoclays and Adsorbents for Dye Recovery: A Textile Industry Review. Appl. Sci. 2021, 11, 11422. [Google Scholar] [CrossRef]
- Ewuzie, U.; Saliu, O.D.; Dulta, K.; Ogunniyi, S.; Bajeh, A.O.; Iwuozor, K.O.; Ighalo, J.O. A review on treatment technologies for printing and dyeing wastewater (PDW). J. Water Process Eng. 2022, 50, 103273. [Google Scholar] [CrossRef]
- Tu, Y.; Shao, G.; Zhang, W.; Chen, J.; Qu, Y.; Zhang, F.; Tian, S.; Zhou, Z.; Ren, Z. The degradation of printing and dyeing wastewater by manganese-based catalysts. Sci. Total Environ. 2022, 828, 154390. [Google Scholar] [CrossRef] [PubMed]
- Javaid, R.; Qazi, U.Y.; Ikhlaq, A.; Zahid, M.; Alazmi, A. Subcritical and supercritical water oxidation for dye decomposition. J. Environ. Manag. 2021, 290, 112605. [Google Scholar] [CrossRef] [PubMed]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Chen, P.; Liang, Y.; Xu, Y.; Zhao, Y.; Song, S. Synchronous photosensitized degradation of methyl orange and methylene blue in water by visible-light irradiation. J. Mol. Liq. 2021, 334, 116159. [Google Scholar] [CrossRef]
- Meng, L.; Wu, M.; Chen, H.; Xi, Y.; Huang, M.; Luo, X. Rejection of antimony in dyeing and printing wastewater by forward osmosis. Sci. Total Environ. 2020, 745, 141015. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, S.; Tian, Z.; Duan, G.; Pan, H.; Yue, Y.; Li, S.; Jian, S.; Yang, W.; Liu, K.; et al. MOFs meet wood: Reusable magnetic hydrophilic composites toward efficient water treatment with super-high dye adsorption capacity at high dye concentration. Chem. Eng. J. 2022, 446, 136851. [Google Scholar] [CrossRef]
- Hajipour, N.; Ghorbanpour, M.; Safajou-Jahankhanemlou, M. Safajou-jahankhanemlou, Synthesis and characterization of solid-state Fe-exchanged nano-bentonite and evaluation of methyl orange adsorption. Environ. Sci. Pollut. Res. 2022, 29, 49898–49907. [Google Scholar] [CrossRef]
- Al-Amrani, W.A.; Hanafiah, M.; Mohammed, A.-H. A comprehensive review of anionic azo dyes adsorption on surface-functionalised silicas. Environ. Sci. Pollut. Res. 2022, 29, 76565–76610. [Google Scholar] [CrossRef]
- Rather, L.J.; Shabbir, M.; Bukhari, M.N.; Shahid, M.; Khan, M.A.; Mohammad, F. Ecological dyeing of Woolen yarn with Adhatoda vasica natural dye in the presence of biomordants as an alternative copartner to metal mordants. J. Environ. Chem. Eng. 2016, 4, 3041–3049. [Google Scholar] [CrossRef]
- Du, H.; Yue, M.; Huang, X.; Duan, G.; Yang, Z.; Huang, W.; Shen, W.; Yin, X. Preparation, Application and Enhancement Dyeing Properties of ZnO Nanoparticles in Silk Fabrics Dyed with Natural Dyes. Nanomaterials 2022, 12, 3953. [Google Scholar] [CrossRef]
- Ma, J.; Xiong, Y.; Dai, X.; Yu, F. Coadsorption behavior and mechanism of ciprofloxacin and Cu(II) on graphene hydrogel wetted surface. Chem. Eng. J. 2020, 380, 122387. [Google Scholar] [CrossRef]
- Ciesielczyk, F.; Bartczak, P.; Klapiszewski, Ł.; Jesionowski, T. Treatment of model and galvanic waste solutions of copper(II) ions using a lignin/inorganic oxide hybrid as an effective sorbent. J. Hazard. Mater. 2017, 328, 150–159. [Google Scholar] [CrossRef]
- Shrestha, R.; Ban, S.; Devkota, S.; Sharma, S.; Joshi, R.; Tiwari, A.P.; Kim, H.Y.; Joshi, M.K. Technological trends in heavy metals removal from industrial wastewater: A review. J. Environ. Chem. Eng. 2021, 9, 105688. [Google Scholar] [CrossRef]
- Graham, D.W.; Olivares-Rieumont, S.; Knapp, C.W.; Lima, L.; Werner, D.; Bowen, E. Antibiotic Resistance Gene Abundances Associated with Waste Discharges to the Almendares River near Havana, Cuba. Environ. Sci. Technol. 2011, 45, 418–424. [Google Scholar] [CrossRef]
- Liu, J.-J.; Diao, Z.-H.; Liu, C.-M.; Jiang, D.; Kong, L.-J.; Xu, X.-R. Synergistic reduction of copper (II) and oxidation of norfloxacin over a novel sewage sludge-derived char-based catalyst: Performance, fate and mechanism. J. Clean. Prod. 2018, 182, 794–804. [Google Scholar] [CrossRef]
- Alsukaibi, A.K.D. Various Approaches for the Detoxification of Toxic Dyes in Wastewater. Processes 2022, 10, 1968. [Google Scholar] [CrossRef]
- Moharm, A.E.; Naeem, G.A.; Soliman, H.M.A.; Abdelhamid, A.I.; Elbardan, A.A.; Kassem, T.S.; Nayl, A.A.; Brase, S. Fabrication and Characterization of Effective Biochar Biosorbent Derived from Agricultural Waste to Remove Cationic Dyes from Wastewater. Polymers 2022, 14, 2587. [Google Scholar] [CrossRef]
- Aryee, A.A.; Mpatani, F.M.; Han, R.; Shi, X.; Qu, L. A review on adsorbents for the remediation of wastewater: Antibacterial and adsorption study. J. Environ. Chem. Eng. 2021, 9, 106907. [Google Scholar] [CrossRef]
- Huang, D.C.N.; Dai, W.; Zheng, M.; Wang, M.; Qian, Y.; Xu, P. Preparation and adsorption properties of aminated magnetic carbon nanotubes. J. For. Eng. 2022, 7, 100–106. [Google Scholar]
- Luo, D.; Wang, L.; Nan, H.; Cao, Y.; Wang, H.; Kumar, T.V.; Wang, C. Phosphorus adsorption by functionalized biochar: A review. Environ. Chem. Lett. 2022, 21, 497–524. [Google Scholar] [CrossRef]
- Jjagwe, J.; Olupot, P.W.; Menya, E.; Kalibbala, H.M. Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Review. J. Bioresour. Bioprod. 2021, 6, 292–322. [Google Scholar] [CrossRef]
- Zhao, F.; Shan, R.; Gu, J.; Zhang, Y.; Yuan, H.; Chen, Y. Magnetically Recyclable Loofah Biochar by KMnO4 Modification for Adsorption of Cu(II) from Aqueous Solutions. ACS Omega 2022, 7, 8844–8853. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Bhattacharya, T.; Shaikh, W.A.; Chakraborty, S.; Sarkar, D.; Biswas, J.K. Biochar Modification Methods for Augmenting Sorption of Contaminants. Curr. Pollut. Rep. 2022, 8, 519–555. [Google Scholar] [CrossRef]
- Premarathna, K.S.D.; Rajapaksha, A.U.; Adassoriya, N.; Sarkar, B.; Sirimuthu, N.M.; Cooray, A.; Ok, Y.S.; Vithanage, M. Clay-biochar composites for sorptive removal of tetracycline antibiotic in aqueous media. J. Environ. Manag. 2019, 238, 315–322. [Google Scholar] [CrossRef]
- Qhubu, M.C.; Mgidlana, L.G.; Madikizela, L.M.; Pakade, V.E. Preparation, characterization and application of activated clay biochar composite for removal of Cr(VI) in water: Isotherms, kinetics and thermodynamics. Mater. Chem. Phys. 2021, 260, 124165. [Google Scholar] [CrossRef]
- Mesboua, N.; Benyounes, K.; Benmounah, A. Study of the impact of bentonite on the physico-mechanical and flow properties of cement grout. Cogent Eng. 2018, 5, 1446252. [Google Scholar] [CrossRef]
- Modabberi, S.; Namayandeh, A.; Setti, M.; López-Galindo, A. Genesis of the Eastern Iranian bentonite deposits. Appl. Clay Sci. 2019, 168, 56–67. [Google Scholar] [CrossRef]
- Gao, L.; Goldfarb, J.L. Characterization and adsorption applications of composite biochars of clay minerals and biomass. Environ. Sci. Pollut. Res. 2021, 28, 44277–44287. [Google Scholar] [CrossRef]
- Ramola, S.; Belwal, T.; Li, C.J.; Wang, Y.Y.; Lu, H.H.; Yang, S.M.; Zhou, C.H. Improved lead removal from aqueous solution using novel porous bentonite- and calcite-biochar composite. Sci. Total Environ. 2020, 709, 136171. [Google Scholar] [CrossRef]
- Liu, L.; Li, X.; Wang, X.; Wang, Y.; Shao, Z.; Liu, X.; Shan, D.; Liu, Z.; Dai, Y. Metolachlor adsorption using walnut shell biochar modified by soil minerals. Environ. Pollut. 2022, 308, 119610. [Google Scholar] [CrossRef]
- Yu, J.; Wu, Z.; An, X.; Tian, F.; Yu, B. Trace metal elements mediated co-pyrolysis of biomass and bentonite for the synthesis of biochar with high stability. Sci. Total Environ. 2021, 774, 145611. [Google Scholar] [CrossRef]
- Mutahir, S.; Irfan, T.; Nadeem, N.; Humayun, M.; Khan, M.A.; Refat, M.S.; Wang, C.; Sheikh, T.A. Synthesis and Micromechanistic Studies of Sensitized Bentonite for Methyl Orange and Rhodamine-B Adsorption from Wastewater: Experimental and DFT-Based Analysis. Molecules 2022, 27, 5567. [Google Scholar] [CrossRef]
- Phuong, D.T.; Loc, N.X. Rice Straw Biochar and Magnetic Rice Straw Biochar for Safranin O Adsorption from Aqueous Solution. Water 2022, 14, 186. [Google Scholar] [CrossRef]
- Trakal, L.; Veselská, V.; Šafařík, I.; Vítková, M.; Číhalová, S.; Komárek, M. Lead and cadmium sorption mechanisms on magnetically modified biochars. Bioresour. Technol. 2016, 203, 318–324. [Google Scholar] [CrossRef]
- Chen, L.; Chen, X.L.; Zhou, C.H.; Yang, H.M.; Ji, S.F.; Tong, D.S.; Zhong, Z.K.; Yu, W.H.; Chu, M.Q. Environmental-friendly montmorillonite-biochar composites: Facile production and tunable adsorption-release of ammonium and phosphate. J. Clean. Prod. 2017, 156, 648–659. [Google Scholar] [CrossRef]
- Yu, J.; Jiang, C.; Guan, Q.; Ning, P.; Gu, J.; Chen, Q.; Zhang, J.; Miao, R. Enhanced removal of Cr(VI) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth. Chemosphere 2018, 195, 632–640. [Google Scholar] [CrossRef]
- Liang, G.; Wang, Z.; Yang, X.; Qin, T.; Xie, X.; Zhao, J.; Li, S. Efficient removal of oxytetracycline from aqueous solution using magnetic montmorillonite-biochar composite prepared by one step pyrolysis. Sci. Total Environ. 2019, 695, 133800. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, B.; Fang, J.; Zhang, M.; Chen, H.; Zhou, Y.; Creamer, A.E.; Sun, Y.; Yang, L. Characterization and environmental applications of clay–biochar composites. Chem. Eng. J. 2014, 242, 136–143. [Google Scholar] [CrossRef]
- Ashiq, A.; Adassooriya, N.M.; Sarkar, B.; Rajapaksha, A.U.; Ok, Y.S.; Vithanage, M. Municipal solid waste biochar-bentonite composite for the removal of antibiotic ciprofloxacin from aqueous media. J. Environ. Manag. 2019, 236, 428–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Lagtah, N.M.A.; Al-Muhtaseb, A.H.; Ahmad, M.N.; Salameh, Y. Chemical and physical characteristics of optimal synthesised activated carbons from grass-derived sulfonated lignin versus commercial activated carbons. Microporous Mesoporous Mater. 2016, 225, 504–514. [Google Scholar] [CrossRef]
- Dehkhoda, A.M.; Ellis, N.; Gyenge, E. Effect of activated biochar porous structure on the capacitive deionization of NaCl and ZnCl2 solutions. Microporous Mesoporous Mater. 2016, 224, 217–228. [Google Scholar] [CrossRef]
- Zhou, Y.; Gao, B.; Zimmerman, A.R.; Chen, H.; Zhang, M.; Cao, X. Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions. Bioresour. Technol. 2014, 152, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Meng, Z.; Song, E.; Sun, X.; Hu, X.; Li, W.; Liu, Z.; Gao, S.; Song, B. Co-adsorption capabilities and mechanisms of bentonite enhanced sludge biochar for de-risking norfloxacin and Cu2+ contaminated water. Chemosphere 2022, 299, 134414. [Google Scholar] [CrossRef]
- Kumari, U.; Behera, S.K.; Meikap, B. A novel acid modified alumina adsorbent with enhanced defluoridation property: Kinetics, isotherm study and applicability on industrial wastewater. J. Hazard. Mater. 2019, 365, 868–882. [Google Scholar] [CrossRef]
- Guan Ying, L.H.; Chen, Y.; Zha, Y.; Gao, H. Study on Congo red adsorption property of activated carbon from bamboo leaf residue. J. For. Eng. 2022, 7, 84–90. [Google Scholar]
- Wei, J.H.H.; Hou, H.; Chen, C.; Wang, S.; Min, D. Removal of lead ions from wastewater by amine-modified wood chips. J. For. Eng. 2022, 7, 107–113. [Google Scholar]
- Cheung, W.; Szeto, Y.; McKay, G. Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresour. Technol. 2007, 98, 2897–2904. [Google Scholar] [CrossRef]
- Shan, R.; Shi, Y.; Gu, J.; Bi, J.; Yuan, H.; Luo, B.; Chen, Y. Aqueous Cr(VI) removal by biochar derived from waste mangosteen shells: Role of pyrolysis and modification on its absorption process. J. Environ. Chem. Eng. 2020, 8, 103885. [Google Scholar] [CrossRef]
- Tovar-Gómez, R.; Rivera-Ramírez, D.; Hernández-Montoya, V.; Bonilla-Petriciolet, A.; Durán-Valle, C.J.; Montes-Moran, M.A. Synergic adsorption in the simultaneous removal of acid blue 25 and heavy metals from water using a Ca(PO3)2-modified carbon. J. Hazard. Mater. 2012, 199–200, 290–300. [Google Scholar] [CrossRef]
- Lee, H.-S.; Shin, H.-S. Competitive adsorption of heavy metals onto modified biochars: Comparison of biochar properties and modification methods. J. Environ. Manag. 2021, 299, 113651. [Google Scholar] [CrossRef]
- Li, H.; Dong, X.; da Silva, E.B.; de Oliveira, L.M.; Chen, Y.; Ma, L.Q. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 2017, 178, 466–478. [Google Scholar] [CrossRef]
- Wang, S.; Kwak, J.-H.; Islam, S.; Naeth, M.A.; El-Din, M.G.; Chang, S.X. Biochar surface complexation and Ni(II), Cu(II), and Cd(II) adsorption in aqueous solutions depend on feedstock type. Sci. Total Environ. 2020, 712, 136538. [Google Scholar] [CrossRef]
- Sewu, D.D.; Boakye, P.; Jung, H.; Woo, S.H. Synergistic dye adsorption by biochar from co-pyrolysis of spent mushroom substrate and Saccharina japonica. Bioresour. Technol. 2017, 244, 1142–1149. [Google Scholar] [CrossRef]
Adsorbent | SBET (m2/g) | Micropore Area (m2/g) | Vtot (cm3/g) | Pore Width (nm) |
---|---|---|---|---|
BC | 5.42 | 0.30 | 0.0144 | 10.61 |
BNT-BC | 249.33 | 225.78 | 0.1294 | 2.05 |
BNT-MBC | 264.03 | 227.46 | 0.1423 | 2.14 |
Adsorbents | Element Composition (%) | |||||
---|---|---|---|---|---|---|
C | O | Fe | Al | Si | K | |
BC | 83.82 | 14.02 | - | - | 0.31 | 0.74 |
BNT-BC | 84.35 | 13.55 | - | 0.77 | 0.87 | 0.1 |
BNT-MBC | 54.73 | 26.88 | 12.23 | 3.12 | 2.86 | 0.19 |
Adsorbate | Freundlich | Langmuir | ||||
---|---|---|---|---|---|---|
kF | n | R2 | qm (mg/g) | kL | R2 | |
Cd(II) | 3.57146 | 0.54228 | 0.98445 | 33.49100 | 0.00148 | 0.86204 |
MO | 19.83155 | 0.18022 | 0.99132 | 18.87579 | 1.00028 | 0.94847 |
Adsorbate | PFO | PSO | ||||
---|---|---|---|---|---|---|
qe (mg/g) | k1 | R2 | qe (mg/g) | k2 | R2 | |
Cd(II) | 24.55506 | 0.0298 | 0.94869 | 26.22295 | 0.00162 | 0.98733 |
MO | 59.88354 | 0.04021 | 0.86677 | 63.33823 | 9.76543 | 0.98181 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, F.; Shan, R.; Li, S.; Yuan, H.; Chen, Y. Characterization and Co-Adsorption Mechanism of Magnetic Clay-Biochar Composite for De-Risking Cd(II) and Methyl Orange Contaminated Water. Int. J. Mol. Sci. 2023, 24, 5755. https://doi.org/10.3390/ijms24065755
Zhao F, Shan R, Li S, Yuan H, Chen Y. Characterization and Co-Adsorption Mechanism of Magnetic Clay-Biochar Composite for De-Risking Cd(II) and Methyl Orange Contaminated Water. International Journal of Molecular Sciences. 2023; 24(6):5755. https://doi.org/10.3390/ijms24065755
Chicago/Turabian StyleZhao, Fengxiao, Rui Shan, Shuang Li, Haoran Yuan, and Yong Chen. 2023. "Characterization and Co-Adsorption Mechanism of Magnetic Clay-Biochar Composite for De-Risking Cd(II) and Methyl Orange Contaminated Water" International Journal of Molecular Sciences 24, no. 6: 5755. https://doi.org/10.3390/ijms24065755
APA StyleZhao, F., Shan, R., Li, S., Yuan, H., & Chen, Y. (2023). Characterization and Co-Adsorption Mechanism of Magnetic Clay-Biochar Composite for De-Risking Cd(II) and Methyl Orange Contaminated Water. International Journal of Molecular Sciences, 24(6), 5755. https://doi.org/10.3390/ijms24065755