Transcriptome Sequencing Reveals the Mechanism behind Chemically Induced Oral Mucositis in a 3D Cell Culture Model
<p>3D human oral tissue model, untreated and treated with everolimus and stained with H and E at different time points. The pink color shows the epithelium which consists of keratinocytes. The top part of the epithelium is the stratum corneum (flat horizontal cells), followed by the stratum spinosum and stratum basalis at the bottom of the epithelium. (<b>a</b>) H and E staining of an untreated oral mucosa model (24 h), (<b>b</b>) H and E staining of an untreated oral mucosal tissue model (60 h), (<b>c</b>) H and E staining of an oral mucosal tissue model treated with 32 ng/mL everolimus (60 h), and (<b>d</b>) H and E staining of an oral mucosal tissue model treated with 64 ng/mL everolimus (60 h). The magnification factor for (<b>a</b>–<b>d</b>) was 40×.</p> "> Figure 2
<p>Effect of everolimus treatment on cell differentiation. (<b>a</b>) GO enrichment analysis for biological processes showing the fifteen most significantly changed pathways sorted according to significance (<span class="html-italic">y</span>-axis). The number of differentially expressed genes is shown on the <span class="html-italic">x</span>-axis. (<b>b</b>) Selection of tissue-specific keratin expression in adult tissues (adapted from Ho et al., 2022 [<a href="#B13-ijms-24-05058" class="html-bibr">13</a>]). (<b>c</b>) Heatmap illustrating RNA-Seq differential expression data for genes associated with keratinization (GO:0031424). (<b>d</b>) Heatmap showing differential expression data for genes associated with epithelial cell differentiation (GO:0030855, padj < 0.01). (<b>e</b>) Heatmap showing the RNA-Seq results for genes associated with intermediate filament organization (GO:0045109, padj < 0.01).</p> "> Figure 3
<p>Effect of everolimus treatment on proinflammatory cytokines. (<b>a</b>) Heatmap illustrating RNA-Seq differential expression for genes associated with inflammatory response (GO:0006954, padj < 0.05). GO enrichment analysis for biological processes. (<b>b</b>) Heatmap illustrating RNA-Seq differential expression data for genes associated with cytokine activity (GO:0005125, padj < 0.01). (<b>c</b>) Pathview image showing a selection of inflammation and cytokines (in tissue treated with 64 ng everolimus compared with untreated after 60 h) (green means downregulated and red means upregulated). (<a href="#app1-ijms-24-05058" class="html-app">Supplementary Figure S1</a> is the full figure.)</p> "> Figure 4
<p>Effect of everolimus treatment on glycolysis. (<b>a</b>) Heatmap illustrating RNA-Seq differential expression for genes associated with glycolytic process (GO:0006096, padj < 0.5). (<b>b</b>) Schematic representation of the glycolysis pathway with the genes that are significantly overexpressed in everolimus-treated cells compared with untreated tissue after 60 h indicated in green (and slightly upregulated in light green).</p> "> Figure 5
<p>Effect of everolimus treatment on cell cycle and autophagy. (<b>a</b>) Heatmap illustrating RNA-Seq differential expression for genes associated with mitotic cell cycle (GO:0000278, padj < 0.01). (<b>b</b>) Heatmap illustrating RNA-Seq differential expression for genes associated with autophagy (GO:0006914, padj < 0.01) after 60 h.</p> "> Figure 6
<p>Effect of everolimus treatment for 40 h. (<b>a</b>) Hematoxylin and eosin (H and E) staining of an oral mucosa model after 40 h. (<b>b</b>) H and E staining of an oral mucosa tissue model treated with 64 ng/mL everolimus for 40 h. The magnification factor for (<b>a</b>,<b>b</b>) was 40×. (<b>c</b>) GO enrichment analysis for biological processes of genes differentially expressed between untreated and tissue treated with 64 ng/mL everolimus for 40 h. Terms are ordered according to significance (<span class="html-italic">y</span>-axis) and the number of differentially expressed genes in each process is shown on the <span class="html-italic">x</span>-axis. (<b>d</b>) Heatmap illustrating RNA-Seq differential expression for genes associated with the sterol biosynthetic process (GO:0016126, padj < 0.05). (<b>e</b>) Schematic representation of the cholesterol synthesis pathway with the genes that are downregulated after 40 h of treatment with everolimus in (<b>d</b>) in red.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Histological Assessment of a 3D Oral Mucosal Tissue Model
2.2. Treatment with Everolimus for 60 h Affects Cornification
2.3. Treatment with Everolimus for 60 h Affects Proinflammatory Pathways
2.4. Treatment with Everolimus for 60 h Lowers Glycolysis in the Cells
2.5. Treatment with Everolimus for 60 h Affects Cell Cycle Control and Cell Division
2.6. Sterol Biosynthetic Process Affected after 40 h of Everolimus Treatment
3. Discussion
4. Materials and Methods
4.1. 3D Oral Tissue Model and Treatment
4.2. Microscopy
4.3. RNA Extraction
4.4. RNA-Seq Library Preparation
4.5. RNA-Seq Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sonis, S.T.; Fey, E.G. Oral complications of cancer therapy. Oncology 2002, 16, 680–686; discussion 686, 691–692, 695. [Google Scholar]
- Peterson, D.E.; O’Shaughnessy, J.A.; Rugo, H.S.; Elad, S.; Schubert, M.M.; Viet, C.T.; Campbell-Baird, C.; Hronek, J.; Seery, V.; Divers, J.; et al. Oral mucosal injury caused by mammalian target of rapamycin inhibitors: Emerging perspectives on pathobiology and impact on clinical practice. Cancer Med. 2016, 5, 1897–1907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonis, S.T. New thoughts on the initiation of mucositis. Oral Dis. 2010, 16, 597–600. [Google Scholar] [CrossRef] [PubMed]
- Martins, F.; de Oliveira, M.A.; Wang, Q.; Sonis, S.; Gallottini, M.; George, S.; Treister, N. A review of oral toxicity associated with mTOR inhibitor therapy in cancer patients. Oral. Oncol. 2013, 49, 293–298. [Google Scholar] [CrossRef]
- Lebwohl, D.; Anak, O.; Sahmoud, T.; Klimovsky, J.; Elmroth, I.; Haas, T.; Posluszny, J.; Saletan, S.; Berg, W. Development of everolimus, a novel oral mTOR inhibitor, across a spectrum of diseases. Ann. NY Acad. Sci. 2013, 1291, 14–32. [Google Scholar] [CrossRef]
- Lambros, M.P.; Parsa, C.; Mulamalla, H.; Orlando, R.; Lau, B.; Huang, Y.; Pon, D.; Chow, M. Identifying cell and molecular stress after radiation in a three-dimensional (3-D) model of oral mucositis. Biochem. Biophys. Res. Commun. 2011, 405, 102–106. [Google Scholar] [CrossRef]
- Lambros, M.P.; Kondapalli, L.; Parsa, C.; Mulamalla, H.C.; Orlando, R.; Pon, D.; Huang, Y.; Chow, M.S. Molecular signatures in the prevention of radiation damage by the synergistic effect of N-acetyl cysteine and qingre liyan decoction, a traditional chinese medicine, using a 3-dimensional cell culture model of oral mucositis. Evid. Based Complement. Altern. Med. Ecam 2015, 2015, 425760. [Google Scholar] [CrossRef]
- Cabral, A.; Voskamp, P.; Cleton-Jansen, A.M.; South, A.; Nizetic, D.; Backendorf, C. Structural organization and regulation of the small proline-rich family of cornified envelope precursors suggest a role in adaptive barrier function. J. Biol. Chem. 2001, 276, 19231–19237. [Google Scholar] [CrossRef] [Green Version]
- Shetty, S.; Gokul, S. Keratinization and its disorders. Oman Med. J. 2012, 27, 348–357. [Google Scholar] [CrossRef]
- Angel, P.; Szabowski, A.; Schorpp-Kistner, M. Function and regulation of AP-1 subunits in skin physiology and pathology. Oncogene 2001, 20, 2413–2423. [Google Scholar] [CrossRef] [Green Version]
- Sivendran, S.; Agarwal, N.; Gartrell, B.; Ying, J.; Boucher, K.M.; Choueiri, T.K.; Sonpavde, G.; Oh, W.K.; Galsky, M.D. Metabolic complications with the use of mTOR inhibitors for cancer therapy. Cancer Treat. Rev. 2014, 40, 190–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, K.; Imamura, C.K.; Hara, K.; Mochizuki, M.; Tanigawara, Y. Effect of everolimus on the glucose metabolic pathway in mouse skeletal muscle cells (C2C12). Metabolomics 2017, 13, 98. [Google Scholar] [CrossRef]
- Ho, M.; Thompson, B.; Fisk, J.N.; Nebert, D.W.; Bruford, E.A.; Vasiliou, V.; Bunick, C.G. Update of the keratin gene family: Evolution, tissue-specific expression patterns, and relevance to clinical disorders. Hum. Genom. 2022, 16, 1. [Google Scholar] [CrossRef]
- Chen, G.; Ding, X.F.; Bouamar, H.; Pressley, K.; Sun, L.Z. Everolimus induces G1 cell cycle arrest through autophagy-mediated protein degradation of cyclin D1 in breast cancer cells. Am. J. Physiol. Cell Physiol. 2019, 317, C244–C252. [Google Scholar] [CrossRef]
- Ding, J.; Swain, J.E.; Smith, G.D. Aurora kinase-A regulates microtubule organizing center (MTOC) localization, chromosome dynamics, and histone-H3 phosphorylation in mouse oocytes. Mol. Reprod Dev. 2011, 78, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Shahid, M.; Lee, M.Y.; Piplani, H.; Andres, A.M.; Zhou, B.; Yeon, A.; Kim, M.; Kim, H.L.; Kim, J. Centromere protein F (CENPF), a microtubule binding protein, modulates cancer metabolism by regulating pyruvate kinase M2 phosphorylation signaling. Cell Cycle 2018, 17, 2802–2818. [Google Scholar] [CrossRef] [Green Version]
- Huis In ’t Veld, P.J.; Jeganathan, S.; Petrovic, A.; Singh, P.; John, J.; Krenn, V.; Weissmann, F.; Bange, T.; Musacchio, A. Molecular basis of outer kinetochore assembly on CENP-T. Elife 2016, 5, e21007. [Google Scholar] [CrossRef] [PubMed]
- Ambrosio, S.; Majello, B. Autophagy Roles in Genome Maintenance. Cancers 2020, 12, 1793. [Google Scholar] [CrossRef] [PubMed]
- Dang, E.V.; Cyster, J.G. Loss of sterol metabolic homeostasis triggers inflammasomes—How and why. Curr. Opin. Immunol. 2019, 56, 1–9. [Google Scholar] [CrossRef]
- Sonis, S.T.; Elting, L.S.; Keefe, D.; Peterson, D.E.; Schubert, M.; Hauer-Jensen, M.; Bekele, B.N.; Raber-Durlacher, J.; Donnelly, J.P.; Rubenstein, E.B.; et al. Perspectives on cancer therapy-induced mucosal injury: Pathogenesis, measurement, epidemiology, and consequences for patients. Cancer 2004, 100, 1995–2025. [Google Scholar] [CrossRef]
- Rugo, H.S.; Seneviratne, L.; Beck, J.T.; Glaspy, J.A.; Peguero, J.A.; Pluard, T.J.; Dhillon, N.; Hwang, L.C.; Nangia, C.; Mayer, I.A.; et al. Prevention of everolimus-related stomatitis in women with hormone receptor-positive, HER2-negative metastatic breast cancer using dexamethasone mouthwash (SWISH): A single-arm, phase 2 trial. Lancet Oncol. 2017, 18, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Cooper, M.; Wiseman, A.C.; Zibari, G.; McCague, K.; Kim, Y.; Geissler, F.; Nashan, B. Wound events in kidney transplant patients receiving de novo everolimus: A pooled analysis of three randomized controlled trials. Clin. Transplant. 2013, 27, E625–E635. [Google Scholar] [CrossRef] [PubMed]
- Dutt, S.B.; Gonzales, J.; Boyett, M.; Costanzo, A.; Han, P.P.; Steinberg, S.; McKay, D.B.; Jameson, J.M. mTOR Inhibition by Everolimus Does Not Impair Closure of Punch Biopsy Wounds in Renal Transplant Patients. Transplant. Direct 2017, 3, e147. [Google Scholar] [CrossRef]
- Byles, V.; Covarrubias, A.J.; Ben-Sahra, I.; Lamming, D.W.; Sabatini, D.M.; Manning, B.D.; Horng, T. The TSC-mTOR pathway regulates macrophage polarization. Nat. Commun. 2013, 4, 2834. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Yang, T.; Li, L.; Sun, L.; Hou, Y.; Hu, X.; Zhang, L.; Tian, H.; Zhao, Q.; Peng, J.; et al. TSC1 controls macrophage polarization to prevent inflammatory disease. Nat. Commun. 2014, 5, 4696. [Google Scholar] [CrossRef] [Green Version]
- Marcais, A.; Cherfils-Vicini, J.; Viant, C.; Degouve, S.; Viel, S.; Fenis, A.; Rabilloud, J.; Mayol, K.; Tavares, A.; Bienvenu, J.; et al. The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells. Nat. Immunol. 2014, 15, 749–757. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Y.; Liu, R.; Ikenoue, T.; Guan, K.L.; Liu, Y.; Zheng, P. TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J. Exp. Med. 2008, 205, 2397–2408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pal, S.K.; He, M.; Tong, T.; Wu, H.; Liu, X.; Lau, C.; Wang, J.H.; Warden, C.; Wu, X.; Signoretti, S.; et al. RNA-seq reveals aurora kinase-driven mTOR pathway activation in patients with sarcomatoid metastatic renal cell carcinoma. Mol. Cancer Res. 2015, 13, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Donnella, H.J.; Webber, J.T.; Levin, R.S.; Camarda, R.; Momcilovic, O.; Bayani, N.; Shah, K.N.; Korkola, J.E.; Shokat, K.M.; Goga, A.; et al. Kinome rewiring reveals AURKA limits PI3K-pathway inhibitor efficacy in breast cancer. Nat. Chem. Biol. 2018, 14, 768–777. [Google Scholar] [CrossRef]
- Nguyen, H.; Sangha, S.; Pan, M.; Shin, D.H.; Park, H.; Mohammed, A.I.; Cirillo, N. Oxidative Stress and Chemoradiation-Induced Oral Mucositis: A Scoping Review of In Vitro, In Vivo and Clinical Studies. Int. J. Mol. Sci. 2022, 23, 4863. [Google Scholar] [CrossRef]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Carlson, M. GO.db: A Set of Annotation Maps Describing the Entire Gene Ontology. R Package Version 3.8.2. 2019. Available online: http://bioconductor.org/packages/release/data/annotation/html/GO.db.html (accessed on 11 July 2022).
- Luo, W.; Brouwer, C. Pathview: An R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 2013, 29, 1830–1831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Z.; Eils, R.; Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016, 32, 2847–2849. [Google Scholar] [CrossRef] [Green Version]
- Lamming, D.W. Inhibition of the Mechanistic Target of Rapamycin (mTOR)-Rapamycin and Beyond. Cold Spring Harb. Perspect Med. 2016, 6, a025924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lambros, M.; Moreno, J.; Fei, Q.; Parsa, C.; Orlando, R.; Van Haute, L. Transcriptome Sequencing Reveals the Mechanism behind Chemically Induced Oral Mucositis in a 3D Cell Culture Model. Int. J. Mol. Sci. 2023, 24, 5058. https://doi.org/10.3390/ijms24055058
Lambros M, Moreno J, Fei Q, Parsa C, Orlando R, Van Haute L. Transcriptome Sequencing Reveals the Mechanism behind Chemically Induced Oral Mucositis in a 3D Cell Culture Model. International Journal of Molecular Sciences. 2023; 24(5):5058. https://doi.org/10.3390/ijms24055058
Chicago/Turabian StyleLambros, Maria, Jonathan Moreno, Qinqin Fei, Cyrus Parsa, Robert Orlando, and Lindsey Van Haute. 2023. "Transcriptome Sequencing Reveals the Mechanism behind Chemically Induced Oral Mucositis in a 3D Cell Culture Model" International Journal of Molecular Sciences 24, no. 5: 5058. https://doi.org/10.3390/ijms24055058
APA StyleLambros, M., Moreno, J., Fei, Q., Parsa, C., Orlando, R., & Van Haute, L. (2023). Transcriptome Sequencing Reveals the Mechanism behind Chemically Induced Oral Mucositis in a 3D Cell Culture Model. International Journal of Molecular Sciences, 24(5), 5058. https://doi.org/10.3390/ijms24055058