A Comprehensive Review on the Biological, Agricultural and Pharmaceutical Properties of Secondary Metabolites Based-Plant Origin
Abstract
:1. Introduction
2. Natural Products—Historical Overview
3. Uses of Plant Natural Products
3.1. Nutritional Uses and Food Industry
3.2. Cosmetic Uses
3.3. Medical/Pharmaceutical Uses
3.4. Agricultural Uses
3.4.1. Plant Protection
3.4.2. Plant Growth-Promoting Effect
4. Classification of Plant Metabolites
4.1. Primary Metabolites
4.2. Secondary Metabolites
4.2.1. Terpenoids
4.2.2. Phenolic Compounds
Class | Plant Source | Activity | Examples | References |
---|---|---|---|---|
Flavonols | Onion, red wine, olive oil, berries and grapefruit | Antimutagenic and antiviral | Quercetin, Kaempferol, Myricetin, Galangin, Isorhamnetin, Rhamnazin. | [112,113,114] |
Flavones | Fruit skins, red wine, buckwheat, red pepper and tomato skin | Antimutagenic, antiviral and anti-inflammatory | Luteolin, Apigenin, Tangeritin. | [112,114] |
Flavanones | Citrus fruits, grapefruits, lemons and oranges | Antimutagenic and antibacterial | Hesperetin, Naringenin, Eriodictyol, Homoeriodictyol. | [112,114,116] |
Anthocyanidins | Cherry, raspberry and strawberry | Important plant pigments with several health benefits, such as protecting the body against a number of oxidant agents | Cyanidin, Delphinidin, Pelargonidin, Peonidin. | [113,118] |
Isoflavones | Soybean | Antimutagenic and antibacterial | Daidzein, Genistein, Glycitein. | [112,114] |
4.2.3. Nitrogen-Containing Compounds
5. Biological Activity of Plant SMs
5.1. Antimicrobial
5.2. Antioxidant
Class | Plant Source | Function | Examples | References |
---|---|---|---|---|
Carotenoids | Carrot, pumpkins, winter squash, sweet potato |
| Lycopene, alpha carotene, beta carotene, zeaxanthin. | [145,151] |
Polyphenols | Berries, herbs and spices, cocoa, nuts, vegetables | Play diverse roles in the ecology of plants, such as releasing growth hormones such as auxin, prevention of microbial infections, Signaling molecules in ripening and other growth processes) | Flavonoids, tannic acid, ellagitannin, catechin. | [152,153] |
Vitamin C | vegetables, berries, citrus fruits | Plays a role in controlling infections and healing wounds and is a powerful antioxidant. | [145,154] | |
Vitamin E | Oilseed, palm oil, nuts, eggs, dairy products, whole grains, vegetables, cereals, margarine, etc. | Used in skincare and wound-treatment products, but no clinical evidence. | [146,155] |
5.3. Pharmacological Activity
5.3.1. Antibiotic
5.3.2. Antiviral
5.3.3. Anti-Inflammatory
5.3.4. Anticancer
6. Metabolomics: Technology Development and Experimental Approaches
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhat, S.V.; Nagasampagi, B.A.; Sivakumar, M. Chemistry of Natural Product; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2005; p. 823. ISBN 8173194815. [Google Scholar]
- Finar, I.L. Stereochemistry and the Chemistry of Natural Product, 5th ed.; Pearson Education Ltd.: Patparganj Delhi, India, 2006; Volume 2, p. 942. [Google Scholar]
- Nakanishi, K. An historical perspective of natural products chemistry. Comp. Nat. Prod. Chem. 1999, 8, 21–48. [Google Scholar]
- Taiz, L.; Zeiger, E. Plant Physiology, 3rd ed.; Sinauer Association Inc.: Sunderland, CA, USA, 2005; p. 690. [Google Scholar]
- Wink, M. Plant Breeding: Importance of plant secondary metabolite for protection against pathogen and herbivores. Theor. Appl. Gene. 1998, 75, 225–233. [Google Scholar] [CrossRef]
- Weinberg, E.D. Secondary Metabolism: Raison d’etre. Perspect. Biol. Med. 1971, 14, 565–577. [Google Scholar] [CrossRef] [PubMed]
- Thrane, U. Development in the Taxonomy of Fusarium Species Based on Secondary Metabolites. In Fusarium: Paul, E. Nelson Memorial Symposium; Summerell, B.A., Ed.; APS Press: St.Paul, MI, USA, 2001; pp. 29–49. [Google Scholar]
- Pichersky, E.; Noel, J.; Dudareva, N. Biosynthesis of plant volatiles: Nature’sdiversity and ingenuity. Science 2006, 311, 808–811. [Google Scholar] [CrossRef]
- Hill, A.F. Economic Botany. A Textbook of Useful Plant and Plant Products, 2nd ed.; MC-Graw-Hill Book Company Inc.: New York, NY, USA, 1952; 743p. [Google Scholar]
- Okwu, D.E. Flavorings properties of species on cassava. Afr. J. Root Tuber Crops 1999, 3, 19–21. [Google Scholar]
- Okada, T.; Afendi, F.M.; Altaf-Ul-Amin, M.; Takahashi, H.; Nakamura, K.; Kanaya, S. Metabolomics of Medicinal Plants: The Importance of Multivariate Analysis of Analytical Chemistry Data. Curr. Comput. Aided Drug Des. 2010, 6, 179–196. [Google Scholar] [CrossRef] [PubMed]
- Balunas, M.J.; Kinghorn, A.D. Drug Discovery from Medicinal Plants. Life Sci. 2005, 78, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Samuni-Blank, M.; Izhaki, I.; Dearing, M.D.; Gerchman, Y.; Trabelcy, B.; Lotan, A.; Karasov, W.H.; Arad, Z. Intraspecific Directed Deterrence by the Mustard Oil Bomb in a Desert Plant. Curr. Biol. 2012, 22, 1218–1220. [Google Scholar] [CrossRef]
- Savithramma, N.; Rao, M.L.; Suhrulatha, D. Screening of Medicinal Plants for Secondary Metabolites. Middle-East J. Sci. Res. 2011, 8, 579–584. [Google Scholar]
- Balandrin, M.F.; Klocke, J.A.; Wurtele, E.S.; Bollinger, W.H. Natural plant chemicals: Source of industrial and Medicinal material. Science 1985, 228, 1154–1160. [Google Scholar] [CrossRef]
- Fraenkel, G.S. The Raison d’Être of Secondary Plant Substances These Odd Chemicals Arose as a Means of Protecting Plants from Insects and Now Guide Insects to Food. Science 1959, 129, 1466–1470. [Google Scholar] [CrossRef] [PubMed]
- Samuelsson, G. Drugs of Natural Origin: A Textbook of Pharmacognosy, 4th revised ed.; Swedish Pharmaceutical Press: Stockholm, Sweden, 1999. [Google Scholar]
- Natural Products Isolation; Satyajit, D.S.; Zahid, L.; Alexander, I.G. (Eds.) Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Cannell, R.J.P. How to Approach the Isolation of a Natural Product. In Natural Products Isolation, 1st ed.; Cannell, R.J.P., Ed.; Humana Press: Totowa, NJ, USA, 1998; pp. 1–51. [Google Scholar]
- Jones, M.E. Albrecht Kossel, a biographical sketch. Yale J. Biol. Med. 1953, 26, 80–97. [Google Scholar] [PubMed]
- Bourgaud, F.; Gravot, A.; Milesi, S.; Gontier, E. Production of plant secondary metabolites: A historical perspective. Plant Sci. 2001, 161, 839–851. [Google Scholar] [CrossRef]
- Tan, C.H.; Rasool, S.; Johnston, G.A. Contact Dermatitis: Allergic and Irritant. Clin. Dermatol. 2014, 32, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Conti, B.; Flamini, G.; Cioni, P.L.; Ceccarini, L.; Macchia, M.; Benelli, G. Mosquitocidal Essental Oils: Are They Safe against Non-target Aquatic Organisms? Parasitol. Res. 2014, 113, 251–259. [Google Scholar] [CrossRef]
- Kim, J.B.; Yu, J.H.; Ko, E.; Lee, K.W.; Song, A.K.; Park, S.Y.; Shin, I.; Han, W.; Noh, D.Y. The Alkaloid Berberine Inhibits the Growth of Anoikis-resistant MCF-7 and MDA-MB-231 Breast Cancer Cell Lines by Inducing Cell Cycle Arrest. Phytomedicine 2010, 1, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Zha, W.; Liang, G.; Xiao, J.; Studer, E.J.; Hylemon, P.B., Jr.; Pandak, W.M.; Wang, G.; Li, X.; Zhou, H. Berberine Inhibits HIV Protease Inhibitor-Induced Inflammatory Response by Modulating ER Stress Signaling Pathways in Murine Macrophages. PLoS ONE 2010, 5, e9069. [Google Scholar] [CrossRef]
- Jaco, E.J. Natural Products-Based Drug Discovery: Some Bottlenecks and Considerations. Curr. Sci. 2009, 96, 753–754. [Google Scholar]
- Zhong, J.J. Biochemical engineering of the production of plant-specific secondary metabolites by cell cultures. Adv. Biochem. Eng. Biotechnol. 2001, 72, 1–26. [Google Scholar]
- Memelink, J.; Kijne, J.W.; van der Heijden, R.; Verpoorte, R. Genetic modification of plant secondary metabolite pathways using transcriptional regulators. Adv. Biochem. Eng. Biotechnol. 2001, 72, 103–125. [Google Scholar]
- Verpoorte, R.; Memelink, J. Engineering secondary metabolite production in plants. Curr. Opin. Biotechnol. 2002, 13, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, R.; Rana, C.S. Plant secondary metabolites: A review. Int. J. Eng. Res. Gen. Sci. 2015, 3, 661–670. [Google Scholar]
- Banerjee, J.; Singh, R.; Vijayaraghavan, R.; MacFarlane, D.; Patti, A.; Arora, A. Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food Chem 2017, 225, 10–22. [Google Scholar] [CrossRef]
- Young, V.R. Adult amino acid requirements: The case for a major revision in current recommendations. J. Nutr. 1994, 124, 1517S–1523S. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Luo, J.; Wang, S. The Diversity of Nutritional Metabolites: Origin, Dissection, and Application in Crop Breeding. Front. Plant Sci. 2019, 16, 1028. [Google Scholar] [CrossRef]
- Paine, J.A.; Shipton, C.A.; Chaggar, S.; Howells, R.M.; Kennedy, M.J.; Vernon, G. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat. Biotechnol. 2005, 23, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Appleby, P.N.; Key, T.J.; Bradbury, K.E. Fruit, vegetable, and fiber intake in relation to cancer risk: Findings from the European prospective investigation into cancer and nutrition (EPIC). Am. J. Clin. Nutr. 2014, 100, 394S–398S. [Google Scholar]
- Wang, S.; Moustaid-Moussa, N.; Chen, L.; Mo, H.; Shastri, A.; Su, R. Novel insights of dietary polyphenols and obesity. J. Nutr. Biochem. 2014, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Talal, A.; Feda, M.N. Plants Used in Cosmetics. Phytother. Res. 2003, 17, 987–1000. [Google Scholar]
- Aikawa, Y. Topical preparations containing mango seed kernel oils. Jpn. Kokai Tokkyo Koho. 2002, 5, JP20002322074. [Google Scholar]
- Vranić, E.; Lacević, A.; Mehmedagić, A.; Uzunović, A. Formulation ingredients for toothpastes and mouthwashes. Bosn. J. Basic Med. Sci. 2004, 4, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghamdi, M.S. The anti-inflammatory, analgesic and antipyretic activity of Nigella sativa. J. Ethnopharmacol. 2001, 76, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Mouhssen, L. The Success of Natural Products in Drug Discovery. Pharmacol. Pharmacy. 2013, 4, 17–31. [Google Scholar]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 2007, 70, 461–477. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.M.; Danishefsky, S.J. Small molecule natural products in the discovery of therapeutic agents: The synthesis connection. J. Org. Chem. 2007, 71, 8329–8351. [Google Scholar] [CrossRef]
- Lahlou, M. Screening of Natural Products for Drug Discovery. Expert Opin. Drug Discov. 2007, 2, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, S.; Demain, A.L. Secondary Metabolites; American Society of Plant Physiologists: Derwood, MD, USA, 2000. [Google Scholar]
- Phillipson, J.D. Phytochemistry and medicinal plants. Phytochem 2001, 56, 237–243. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef]
- Kumar, N.; Karambir, R.K. A comparative analysis of pmx, cx and ox crossover operators for solving traveling salesman problem. Int. J. Latest Res. Sci. Technol. 2012, 1, 98–101. [Google Scholar]
- Rates, S.M.K. Review: Plants as source of drugs. Toxicon 2001, 3, 603–613. [Google Scholar] [CrossRef]
- Seca, A.; Pinto, D. Plant Secondary Metabolites as Anticancer Agents: Successes in Clinical Trials and Therapeutic Application. Int. J. Mol. Sci. 2018, 19, 263. [Google Scholar] [CrossRef] [PubMed]
- Elshafie, H.S.; Armentano, M.F.; Carmosino, M.; Bufo, S.A.; De Feo, V.; Camele, I. Cytotoxic activity of Origanum vulgare L. on Hepatocellular carcinoma cell line HepG2 and evaluation of its biological activity. Molecules 2017, 22, 1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Twaij, B.M.; Hasan, M.N. Bioactive Secondary Metabolites from Plant Sources: Types, Synthesis, and Their Therapeutic Uses. Int. J. Plant Biol. 2022, 13, 4–14. [Google Scholar] [CrossRef]
- Sinno, M.; Ranesi, M.; Di Lelio, I.; Iacomino, G.; Becchimanzi, A.; Barra, E.; Molisso, D.; Pennacchio, F.; Digilio, M.C.; Vitale, S.; et al. Selection of Endophytic Beauveria bassiana as a Dual Biocontrol Agent of Tomato Pathogens and Pests. Pathogens 2021, 10, 1242. [Google Scholar] [CrossRef] [PubMed]
- Elshafie, H.S.; Camele, I. Rhizospheric Actinomycetes Revealed Antifungal and Plant-Growth-Promoting Activities under Controlled Environment. Plants 2022, 11, 1872. [Google Scholar] [CrossRef]
- Della Pepa, T.; Elshafie, H.S.; Capasso, R.; De Feo, V.; Camele, I.; Nazzaro, F.; Scognamiglio, M.R.; Caputo, L. Antimicrobial and phytotoxic activity of Origanum heracleoticum and O. majorana essential oils growing in Cilento (Southern Italy). Molecules 2019, 24, 2576. [Google Scholar] [CrossRef]
- Gruľová, D.; Caputo, L.; Elshafie, H.S.; Baranová, B.; De Martino, L.; Sedlák, V.; Camele, I.; De Feo, V. Thymol Chemotype Origanum vulgare L. Essential Oil as a Potential Selective Bio-Based Herbicide on Monocot Plant Species. Molecules 2020, 25, 595. [Google Scholar] [CrossRef]
- Camele, I.; Grul’ová, D.; Elshafie, H.S. Chemical Composition and Antimicrobial Properties of Mentha piperita cv. ‘Kristinka’ Essential Oil. Plants 2021, 10, 1567. [Google Scholar] [CrossRef]
- Harput, U.S. Radical scavenging effects of different Veronica species. Records Nat. Prod. 2011, 5, 100. [Google Scholar]
- Ciocan, I.D.; Bara, I. Plant products and antimicrobial agents. An. Ştiinţifice Ale Univ. Alexandru Ioan Cuza 2007, 8, 151–156. [Google Scholar]
- Biopesticides Use and Delivery; Hall, F.R.; Menn, J.J. (Eds.) Humana Press: Totowa, NJ, USA, 1999; pp. 1–626. [Google Scholar]
- Mancini, E.; Camele, I.; Elshafie, H.S.; DeMartino, L.; Pellegrino, C.; Grulova, D.; De Feo, V. Chemical Composition and Biological Activity of the Essential Oil of Origanum vulgare ssp. Hirtum from Different Areas in the Southern Apennines (Italy). Chem. Biodiver. 2014, 11, 639–651. [Google Scholar] [CrossRef] [PubMed]
- Elshafie, H.S.; Mancini, E.; Camele, I.; Martino, L.D.; De Feo, V. In vivo antifungal activity of two essential oils from Mediterranean plants against postharvest brown rot disease of peach fruit. Indus. Crops Prod. 2015, 66, 11–15. [Google Scholar] [CrossRef]
- Rasmann, S.; Köllner, T.G.; Degenhardt, J.; Hiltpold, I.; Toepfer, S.; Kuhlmann, U. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 2005, 434, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Ensley, S.M. Pyrethrins, and pyrethroids. In Veterinary Toxicology, 3rd ed.; Ramesh, C., Gupta, R.C., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 515–520. [Google Scholar]
- Teale, W.D.; Paponov, I.A.; Palme, K. Auxin in action: Signalling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell Biol. 2006, 7, 847–859. [Google Scholar] [CrossRef] [PubMed]
- Jamwal, K.; Bhattacharya, S.; Puri, S. Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. J. Appl. Res. Med. Arom. Plants. 2018, 9, 26–38. [Google Scholar] [CrossRef]
- Basra, A. Plant Growth Regulators in Agriculture and Horticulture: Their Role and Commercial Uses; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Aftab, T.; Khan, M.M.; Idrees, M.; Naeem, M.; Singh, M.; Ram, M. Stimulation of crop productivity, photosynthesis and artemisinin production in Artemisia annua L. by triacontanol and gibberellic acid application. J. Plant Interact. 2010, 1, 273–281. [Google Scholar] [CrossRef]
- Naeem, M.; Khan, M.M.A.; Idrees, M.; Aftab, T. Triacontanol-mediated regulation of growth yield, physiological activities and active constituents of Mentha arvensis L. Plant Growth Reg. 2011, 65, 195–206. [Google Scholar] [CrossRef]
- Andreo-Jimenez, B.; Ruyter-Spira, C.; Bouwmeester, H.J.; Lopez-Raez, J.A. Ecological relevance of strigolactones in nutrient uptake and other abiotic stresses, and in plant-microbe interactions below-ground. Plant Soil 2015, 394, 1–19. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernández-Ruiz, J. The physiological function of melatonin in plants. Plant Signal Behav. 2006, 1, 89–95. [Google Scholar] [CrossRef]
- David, L.; Kang, J.; Chen, S. Targeted Metabolomics of Plant Hormones and Redox Metabolites in Stomatal Immunity. In Jasmonate in Plant Biology. Methods in Molecular Biology; Champion, A., Laplaze, L., Eds.; Humana: New York, NY, USA, 2020; Volume 2085. [Google Scholar]
- Verma, V.; Ravindran, P.; Kumar, P.P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016, 16, 86. [Google Scholar] [CrossRef]
- Smolander, A.; Kanerva, S.; Adamczyk, B.; Kitunen, V. Nitrogen transformations in boreal forest soils—Does composition of plant secondary compounds give any explanations? Plant Soil 2012, 350, 1–26. [Google Scholar] [CrossRef]
- Patwardhan, B.; Vaidhya, A.D.B.; Chorghade, M. Ayurveda and Natural products drug discovery. Curr. Sci. 2004, 86, 789–799. [Google Scholar]
- Secondary Metabolites in Soil Ecology. In Secondary Metabolites in Soil Ecology; Karlovsky, P. (Ed.) Springer: Berlin/Heidelberg, Germany, 2008; Volume 14, pp. 1–19. [Google Scholar]
- Rogers, K. The Components of Life: From Nucleic Acids to Carbohydrates, 1st ed.; Britannica Educational Publishing; Rosen Educational Services: New York, NY, USA, 2011; ISBN 978–1-61530–324–3. [Google Scholar]
- Boal, D. Mechanics of the Cell, 4th ed.; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Cox, D.L.; Nelson, M.M. Lehninger Principles of Biochemistry, 6th ed.; W.H. Freeman: New York, NY, USA, 2013; ISBN 978–1-4641–0962–1. [Google Scholar]
- Wang, W.; Wang, S.X.; Guan, H.S. The antiviral activities and mechanisms of marine polysaccharides: An overview. Mar. Drugs 2012, 10, 2795–2816. [Google Scholar] [CrossRef] [PubMed]
- Sitaramayya, A. Introduction to Cellular Signal Transduction; Birkhäuser: Boston, MA, USA, 1999. [Google Scholar]
- Hussein, R.A.; El-Anssary, A.A. Plants Secondary Metabolites: The Key Drivers of the Pharmacological Actions of Medicinal Plants. In Herbal Medicine; IntechOpen: London, UK, 2018. [Google Scholar]
- Hoffmann, D. Medical Herbalism: The Science and Practice of Herbal Medicine; Healing Arts Press: Rochester, NY, USA, 2003; ISBN 978–089281749–8. [Google Scholar]
- Gershenzon, J.; Croteau, R. Terpenoid in Herbivores: Their interaction with Secondary Plant Metabolite: The Chemical Participant, 2nd ed.; Academic Press: San Diego, CA, USA, 2012; Volume 1, p. 409. [Google Scholar]
- Kessler, A.; Baldwin, I.T. Defensive function of herbivore Induced plant volatile emission in nature. Science 2001, 29, 2141–2144. [Google Scholar] [CrossRef] [PubMed]
- Breitmaier, E. Hemi- and Monoterpenes. In Terpenes: Flavors, Fragrances, Pharmaca, Pheromones; John Wiley and Sons: Hoboken, NJ, USA, 2006; pp. 10–23. [Google Scholar]
- Zárybnický, T.; Boušová, I.; Ambrož, M.; Skálová, L. Hepatotoxicity of monoterpenes and sesquiterpenes. Arch. Toxicol. 2018, 92, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Davis, E.M.; Croteau, R. Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. Top. Curr. Chem. 2000, 209, 53–95. [Google Scholar]
- Xu, X.; van Lammeren, A.A.; Vermeer, E.; Vreugdenhil, D. The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiol. 1998, 117, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Devrnja, N.; Milutinovic, M.; Savic, J. When Scent Becomes a Weapon—Plant Essential Oils as Potent Bioinsecticides. Sustainability 2022, 14, 6847. [Google Scholar] [CrossRef]
- Runyoro, D.; Ngassapa, O.; Vagionas, K.; Aligiannis, N.; Graikou, K.; Chinou, I. Chemical composition and antimicrobial activity of the essential oils of four ocimum species growing in Tanzania. Food Chem. 2010, 119, 311–316. [Google Scholar] [CrossRef]
- Girola, N.; Figueiredo, C.R.; Farias, C.F.; Azevedo, R.A.; Ferreira, A.K.; Teixeira, S.F.; Capello, T.M.; Martins, E.G.; Matsuo, A.L.; Travassos, L.R.; et al. Camphene isolated from essential oil of Piper cernuum (Piperaceae) induces intrinsic apoptosis in melanoma cells and displays antitumor activity in vivo. Biochem. Biophys. Res. Commun. 2015, 467, 928–934. [Google Scholar] [CrossRef]
- Hachlafi, N.; Aanniz, T.; Menyiy, N.; Baaboua, A.; Omari, N.; Balahbib, A.; Shariati, M.A.; Zengin, G.; Fikri-Benbrahim, K.; Bouyahya, A. In vitro and in Vivo biological investigations of camphene and its mechanism insights: A review. Food Rev. Int. 2021, 37, 1–28. [Google Scholar] [CrossRef]
- Young, W.K.; Ji, K.M.; Young, C.B.; Yeon, B.D.; Seong, K.L.; Seul, M.C.; Duck, S.L.; Myung, C.C.; Kyungsil, Y.; Hyung, S.K. Safety evaluation and risk assessment of d-limonene. J. Toxicol. Environ. Health Part B 2013, 6, 17–38. [Google Scholar]
- Anis, B.H.; Mohamed, T.; Riadh, B.M.; Raoudha, M.J.; Mohamed, D.; Samir, J. Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia siliqua essential oil with preservative effects against Listeria inoculated in minced beef meat. Int. J. Food Microbiol. 2011, 148, 66–72. [Google Scholar]
- Rivas da Silva, A.C.; Lopes, P.M.; Barros de Azevedo, M.M.; Costa, D.C.; Alviano, C.S.; Alviano, D.S. Biological activities of α-pinene and β-pinene enantiomers. Molecules 2012, 25, 6305–6316. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.Y.; Tang, F.D.; Mao, G.G.; Bian, R.L. Effect of alpha-pinene on nuclear translocation of NF-kappa B in THP-1 cells. Acta Pharmacol. Sin. 2004, 25, 480–484. [Google Scholar] [PubMed]
- Tlak Gajger, I.; Dar, S.A. Plant Allelochemicals as Sources of Insecticides. Insects 2021, 12, 189. [Google Scholar] [CrossRef]
- Ejelonu, O.C.; Elekofehinti, O.O.; Adanlawo, I.G. Tithonia diversifolia saponin-blood lipid interaction and its influence on immune system of normal wistar rats. Biomed. Pharmacother. 2017, 87, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Elekofehinti, O.O. Saponins: Anti-diabetic principles from medicinal plants—A review. Pathophysiol 2015, 22, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Falk, K.; Rotzschke, O.; Stevanovic, S.; Jung, G.; Rammenseet, H.G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 1991, 351, 290–296. [Google Scholar] [CrossRef]
- Shu, H.; Chen, H.; Wang, X.; Hu, Y.; Yun, Y.; Zhong, Q.; Chen, W.; Chen, W. Antimicrobial activity and proposed action mechanism of 3-carene against brochothrix thermosphacta and Pseudomonas fluorescens. Molecules 2019, 6, 3246. [Google Scholar] [CrossRef]
- Davin, L.B.; Lewis, N.G. Lignin and lignan biochemical pathways in plants: An unprecedented discovery in phenolic coupling. Acad. Bras. Cienc. Suppl. 1995, 3, 363–378. [Google Scholar]
- Hättenschwiler, S.; Vitousek, P.M. The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol. Evol. 2000, 15, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Kondo, T.; Yoshida, K.; Kawai, T.; Tamura, H.; Goto, T. Structural basis of blue colour development in flower petal from Commelina communis. Nature 2012, 358, 515–518. [Google Scholar]
- Muniyandi, K.; George, E.; Sathyanarayanan, S.; George, B.P.; Abrahamse, H.; Thamburaj, S.; Thangaraj, P. Phenolics, tannins, flavonoids and anthocyanins contents influenced antioxidant and anticancer activities of Rubus fruits from Western Ghats, India. Food Sci. Hum. Well. 2019, 8, 73–81. [Google Scholar] [CrossRef]
- Evans, W.C. Pharmacognosy, 16th ed.; Edinburgh London New York Philadelphia St Louis Sydney Toronto; Elsevier Health Sciences: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Samanta, A.; Das, G.; Das, S.K. Roles of flavonoids in plants. Int. J. Pharm. Sci. Tech. 2011, 6, 12–35. [Google Scholar]
- Liu, C.W.; Murray, J.D. The Role of Flavonoids in Nodulation Host-Range Specificity: An Update. Plants 2016, 11, 33. [Google Scholar] [CrossRef]
- Pezzuto, J.M. Grapes and human health: A perspective. J. Agric. Food Chem. 2008, 56, 6777–6784. [Google Scholar] [CrossRef] [PubMed]
- de Souza Farias, S.A.; da Costa, K.S.; Martins, J.B. Analysis of conformational, structural, magnetic, and electronic properties related to antioxidant activity: Revisiting flavan, anthocyanidin, flavanone, flavonol, isoflavone, flavone, and flavan-3-ol. ACS Omega 2021, 6, 8908–8918. [Google Scholar] [CrossRef]
- Edenharder, R.; Von, I.P.; Rauscher, R. Antimutagenic effects of flavonoids, chalcones and structurally related compounds on the activity of 2-amino-3-methylimidazo [4,5-f]quinoline (IQ) and other heterocyclic amine mutagens from cooked food. Mutat. Res. 1993, 287, 261–274. [Google Scholar] [CrossRef]
- Stewart, A.J.; Bozonnet, S.; Mullen, W.; Jenkins, G.I.; Lean, M.E.; Crozier, A. Occurrence of flavonols in tomatoes and tomato-based products. J. Agric. Food Chem. 2000, 48, 2663–2669. [Google Scholar] [CrossRef]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Mouffouk, C.; Mouffouk, S.; Mouffouk, S.; Hambaba, L.; Haba, H. Flavonols as potential antiviral drugs targeting SARS-CoV-2 proteases (3CLpro and PLpro), spike protein, RNA-dependent RNA polymerase (RdRp) and angiotensin-converting enzyme II receptor (ACE2). Eur. J. Pharmacol. 2021, 891, 173759. [Google Scholar] [CrossRef]
- Miyake, Y.; Shimoi, K.; Kumazawa, S.; Yamamoto, K.; Kinae, N.; Osawa, T. Identification and antioxidant activity of flavonoid metabolites in plasma and urine of eriocitrin-treated rats. J. Agric. Food Chem. 2000, 48, 3217–3224. [Google Scholar] [CrossRef] [PubMed]
- August, P.M.; dos Santos, B.G. Naringin and naringenin in neuroprotection and oxidative stress. In Oxidative Stress and Dietary Antioxidants in Neurological Diseases; Colin, R.M., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 309–323. [Google Scholar]
- Kong, J.M.; Chia, L.S.; Goh, N.K.; Chia, T.F.; Brouillard, R. Analysis and biological activities of anthocyanins. Phyto. Chem. 2003, 64, 923–933. [Google Scholar] [CrossRef]
- Del Cueto, J.; Ionescu, I.A.; Picmanová, M.; Gericke, O.; Motawia, M.S.; Olsen, C.E.; Campoy, J.A.; Dicenta, F.; Møller, B.L.; Sánchez-Pérez, R. Cyanogenic Glucosides and Derivatives in Almond and Sweet Cherry Flower Buds from Dormancy to Flowering. Front. Plant Sci. 2017, 8, 800. [Google Scholar] [CrossRef] [PubMed]
- Sinatra, R.; Jahr, J.; Watkins-Pitchford, J. The Essence of Analgesia and Analgesics; Cambridge University Press: Cambridge, UK, 2010; pp. 82–90. ISBN 978–1139491983. [Google Scholar]
- Dewey, W. Morphine. xPharm: The Comprehensive Pharmacology Reference; Elsevier: Amsterdam, The Netherlands, 2007; pp. 1–6. [Google Scholar]
- Willcox, M. Traditional Medicinal Plants and Malaria; CRC Press: Boca Raton, FL, USA, 2004; p. 231. [Google Scholar]
- World Health Organization. World Health Organization Model List of Essential Medicines: 22nd List; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Bagch, D.; Preuss, H.G. Obesity Epidemiology, Pathophysiology, and Prevention, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2013; p. 692. [Google Scholar]
- Rorabaugh, B. Ephedrine. In xPharm: The Comprehensive Pharmacology Reference; Elsevier: Amsterdam, The Netherlands, 2007; pp. 1–6. [Google Scholar]
- Kittakoop, P.; Mahidol, C.; Ruchirawat, S. Alkaloids as important scaffolds in therapeutic drugs for the treatments of cancer, tuberculosis, and smoking cessation. Curr. Top. Med. Chem. 2014, 14, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Alvandi, F.; Kwitkowski, V.E.; Ko, C.W.; Rothmann, M.D.; Ricci, S.; Saber, H.; Ghosh, D.; Brown, J.; Pfeiler, E.; Chikhale, E.; et al. Food and drug administration approval summary: Omacetaxine mepesuccinate as treatment for chronic myeloid leukemia. Oncologist 2014, 19, 94–99. [Google Scholar] [CrossRef]
- Al-Rashed, S.; Baker, A.; Ahmad, S.S.; Syed, A.; Bahkali, A.H.; Elgorban, A.M.; Khan, M.S. Vincamine, a safe natural alkaloid, represents a novel anticancer agent. Bioorg. Chem. 2021, 107, 104626. [Google Scholar] [CrossRef]
- Abernethy, A.; Yiannas, F. Statement on warning for women of childbearing age about possible safety risks of dietary supplements containing vinpocetine. In FDA Statement, USA; 2019. Available online: https://www.fda.gov/news-events/press-announcements/statement-warning-women-childbearing-age-about-possible-safety-risks-dietary-supplements-containing (accessed on 18 January 2023).
- Cushnie, T.P.; Cushnie, B.; Lamb, A.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents 2014, 44, 377–386. [Google Scholar] [CrossRef]
- He, N.; Wang, P.; Wang, P.; Ma, C.; Kang, W. Antibacterial mechanism of chelerythrine isolated from root of Toddalia asiatica (Linn) Lam. BMC Complement Altern. Med. 2018, 18, 261. [Google Scholar] [CrossRef]
- Qiu, S.; Sun, H.; Zhang, A.H.; Xu, H.Y.; Yan, G.L.; Han, Y.; Wang, X.J. Natural alkaloids: Basic aspects, biological roles, and future perspectives. Chin. J. Nat. Med. 2014, 12, 401–406. [Google Scholar] [CrossRef]
- Aires, A.; Mota, V.; Saavedra, M.; Rosa, E.; Bennett, R. The antimicrobial effects of glucosinolates and their respective enzymatic hydrolysis products on bacteria isolated from the human intestinal tract. J. Appl. Microbiol. 2009, 106, 2086. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, B.K.; Valdramidis, V.P.; O’Donnell, C.P.; Muthukumarappan, K.; Bourke, P.; Cullen, P. Application of natural antimicrobials for food preservation. J. Agric. Food Chem. 2009, 57, 5987. [Google Scholar] [CrossRef] [PubMed]
- Shan, B.; Cai, Y.Z.; Brooks, J.D.; Corke, H. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int. J. Food Microbiol. 2007, 117, 112. [Google Scholar] [CrossRef] [PubMed]
- Hafidh, R.R.; Abdulamir, A.S.; Vern, L.S.; Bakar, F.A.; Abas, F.; Jahanshiri, F. Inhibition of Growth of Highly Resistant Bacterial and Fungal Pathogens by a Natural Product. Open Microbiol. J. 2011, 5, 96–106. [Google Scholar] [CrossRef]
- Gutierrez, J.; Barry-Ryan, C.; Bourke, P. The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. Int. J. Food Microbiol. 2008, 124, 91–97. [Google Scholar] [CrossRef]
- Lopes-Lutz, D.; Alviano, D.S.; Alviano, C.S.; Kolodziejczyk, P.P. Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils. Phyto.Chem. 2008, 69, 1732–1738. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Mancini, E.; Sakr, S.; De Martino, L.; Mattia, C.A.; De Feo, V.; Camele, I. Antifungal activity of some constituents of Origanum vulgare L. essential oil against postharvest disease of peach fruit. J. Med Food. 2015, 18, 929–934. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Sakr, S.; Mang, S.M.; De Feo, V.; Camele, I. Antimicrobial activity and chemical composition of three essential oils extracted from Mediterranean aromatic plants. J. Med. Food. 2016, 19, 1096–1103. [Google Scholar] [CrossRef]
- Camele, I.; Elshafie, H.S.; Caputo, L.; Sakr, S.H.; De Feo, V. Bacillus mojavensis: Biofilm formation and biochemical investigation of its bioactive metabolites. J. Biol. Res. 2019, 92, 39–45. [Google Scholar] [CrossRef]
- Poljsak, B.; Kovač, V.; Milisav, I. Food Processing and Health. Antioxidants 2021, 10, 433. [Google Scholar] [CrossRef] [PubMed]
- Dimitrios, B. Sources of natural phenolic antioxidants. Trends Food Sci. Technol. 2006, 17, 505–512. [Google Scholar] [CrossRef]
- Jiang, J.; Xiong, Y.L. Natural antioxidants as food and feed additives to promote health benefits and quality of meat products: A review. Meat Sci. 2016, 120, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Halvorsen, B.L.; Holte, K.; Myhrstad, M.C.W.; Barikmo, I.; Hvattum, E.; Remberg, S.F.; Wold, A.-B.; Haffner, K.; Baugerød, H.; Andersen, L.F. A Systematic Screening of Total Antioxidants in Dietary Plants. J. Nutr. 2002, 132, 461–471. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Caputo, L.; De Martino, L.; Sakr, S.H.; De Feo, V.; Camele, I. Study of Bio-Pharmaceutical and Antimicrobial Properties of Pomegranate (Punica granatum L.) Leathery Exocarp Extract. Plants 2021, 10, 153. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Becker, E.M.; Andersen, M.L.; Skibsted, L.H. Green tea extract as food antioxidant. Synergism and antagonism with α-tocopherol in vegetable oils and their colloidal systems. Food Chem. 2012, 135, 2195–2202. [Google Scholar] [CrossRef]
- Traber, M.G.; Stevens, J.F. Vitamin C and E: Beneficial effects from a mechanistic perspective. Free Radic. Biol. Med. 2011, 51, 1000–1013. [Google Scholar] [CrossRef]
- Embuscado, M.E. Spices and herbs: Natural sources of antioxidants—A mini review. J. Funct. Foods. 2015, 18, 811–819. [Google Scholar] [CrossRef]
- Tajkarimi, M.; Ibrahim, S.; Cliver, D. Antimicrobial herb and spice compounds in food. Food Control 2010, 21, 1199–1218. [Google Scholar] [CrossRef]
- Ruth, F. Abscisic Acid Synthesis and Response. Arab. Book Am. Soc. Plant Biol. 2013, 11, e0166. [Google Scholar]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Amer. J. Clin. Nut. 2004, 79, 727–747. [Google Scholar] [CrossRef]
- Lattanzio, V.; Lattanzino, V.M.T.; Cardinali, A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochem. Advan. Res. 2006, 23–67. [Google Scholar]
- Rosenbaum, C.C.; O’Mathúna, D.P.; Chavez, M.; Shields, K. Antioxidants and antiinflammatory dietary supplements for osteoarthritis and rheumatoid arthritis. Altern. Ther. Health Med. 2010, 16, 32–40. [Google Scholar]
- Panin, G.; Strumia, R.; Ursini, F. Topical alpha-tocopherol acetate in the bulk phase: Eight years of experience in skin treatment. Ann. N. Y. Acad. Sci. 2004, 1031, 443–447. [Google Scholar] [CrossRef]
- Robbel, L.; Marahiel, M.A. Daptomycin, a bacterial lipopeptide synthesized by a nonribosomal machinery. J. Biol. Chem. 2010, 285, 27501–27508. [Google Scholar] [CrossRef] [PubMed]
- Shashank, K.; Abhay, K.P. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 162750. [Google Scholar]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- El Sayed, K.A. Natural Products as Antiviral Agents. Stud. Nat. Prod. Chem. 2000, 24, 473–572. [Google Scholar]
- Clark, A.M. Natural Products as a Resource for New Drugs. Pharm. Res. 1996, 13, 1133–1141. [Google Scholar] [CrossRef]
- Shu, Y.Z. Recent Natural Products Based Drug Development: A Pharamaceutical Industry Perspective. J. Nat. Prod. 1998, 61, 1053–1071. [Google Scholar] [CrossRef]
- Vlietinck, A.J.; De Bruyne, T.; Vanden Berghe, D.A. Plant Substances as Antiviral Agents. Curr. Org. Chem. 1997, 1, 307–344. [Google Scholar] [CrossRef]
- Vanden Berghe, D.A.; Vlietinck, A.J.; Van Hoof, L. Plant Substances as Antiviral Agents. Bull. Inst. Pasteur. 1986, 84, 101–147. [Google Scholar]
- Mona, G.; Sina, O.; Mohammad, B.O. Review of anti-inflammatory herbal medicines. Adv. Pharmacol. Sci. 2016, 2016, 9130979. [Google Scholar]
- Sammar, M.; Abu-Farich, B.; Rayan, I.; Falah, M.; Rayan, A. Correlation between cytotoxicity in cancer cells and free radical-scavenging 48.de Mejia EG, Dia VP. The role of nutraceutical proteins and peptides in apoptosis, angiogenesis, and metastasis of cancer cells. Cancer Metastasis Rev. 2010, 29, 511–528. [Google Scholar]
- Beg, S.; Swain, S.; Hasan, H.; Abul Barkat, M.; Hussain, S. Systematic review of herbals as potential anti-inflammatory agents: Recent advances, current clinical status and future perspectives. Pharmacogn. Rev. 2011, 5, 120–137. [Google Scholar] [CrossRef] [PubMed]
- Aswad, M.; Rayan, M.; Abu-Lafi, S. Nature is the best source of anti-inflammatory drugs: Indexing natural products for their anti-inflammatory bioactivity. J. Inflamm. Res. 2018, 67, 67–75. [Google Scholar] [CrossRef]
- Block, K.I.; Gyllenhaal, C.; Lowe, L. Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin. Cancer Biol. 2015, 35, S276–S304. [Google Scholar] [CrossRef]
- Huang, M.; Lu, J.J.; Ding, J. Natural products in cancer therapy: Past, present and future. Nat. Prod. Bioprospect. 2021, 11, 5–13. [Google Scholar] [CrossRef]
- Dionysia, T.; Işıl, T.; Gökhan, K.; Gökay, M.B.; Vaso, Z.; Athanasia, P. Mining natural products with anticancer biological activity through a systems biology approach. Oxidative Med. Cell. Longev. 2021, 2021, 9993518. [Google Scholar]
- Sumner, L.W.; Mendes, P.; Dixon, R.A. Plant metabolomics: Largescale phytochemistry in the functional genomics era. Phyto. Chem. 2003, 62, 817–836. [Google Scholar]
- Dunn, W.B.; Ellis, D.I. Metabolomics: Current analytical platforms and methodologies. Trends Anal. Chem. 2005, 24, 285–294. [Google Scholar]
- Nicholson, J.K.; Lindon, J.C.; Holmes, E. “Metabonomics”: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999, 29, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.A.; Perez de Souza, L.; Serag, A.; Fernie, A.R.; Farag, M.A.; Ezzat, S.M.; Alseekh, S. Metabolomics in the Context of Plant Natural Products Research: From Sample Preparation to Metabolite Analysis. Metabolites 2020, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Pauling, L.; Robinson, A.B.; Teranishi, R.; Cary, P. Quantitative analysis of urine vapor and breath by gas–liquid partition chromatography. Proc. Natl. Acad Sci. USA 1971, 68, 2374–2376. [Google Scholar] [CrossRef]
- Horning, E.C.; Horning, M.G. Metabolic profiles: Gas-phase methods for analysis of metabolites. Clin. Chem. 1971, 17, 802–809. [Google Scholar] [CrossRef]
Compound | Plant Source | Activity | References |
---|---|---|---|
Azadirachtin | Seeds of the neem tree (Azadirachta indica) | Insecticidal. Azadirachtin considered the active component in many pesticides, including TreeAzin, AzaMax, AzaSol and Terramera Cirkil. | [90] |
Bornyl acetate (ester) | Many plant EOs such as cedars, hemlocks, pines and spruces. | Antibacterial | [91] |
Camphene (bicyclic monoterpene), | Minor constituent of many aromatic EOs such as camphor, citronella and ginger EOs. Major constituents of thymus, oregano and sage EOs. | Antibacterial and anticancer. Used in pulmonary disease. | [92,93] |
Limonene (cyclic momoterpene) | Main component of citrus fruit peels oil | Antibacterial, antifungal and food preservation. | [94,97] |
α-Pinene (unsaturated bicyclic monoterpene) | Many coniferous trees. | Antimicrobial, antioxidant, anti-inflammatory and anti-carcinogenic. | [96,97,98] |
Saponins (triterpene glycosides) | Allium species (onion, garlic), asparagus, oats, spinach, sugar beet, tea and sweet potato. | Hypolipidemic, it can reduce cholesterol and lipoprotein levels. Anti-diabetic and anti-carcinogenic. | [99,100] |
3-Carene (bicyclic monoterpene) | Rosemary, citrus, basil, cedar, pine and cannabis | Antimicrobial effect against some food-borne pathogenic bacteria. Used also as food additive. | [101,102] |
Compound | Plant Source | Activity | References |
---|---|---|---|
Morphine | Papaver somniferum | Analgesic | [44,120,121] |
Quinine | Remijia sp. | Antimalarial (Antimicobial) | [122] |
Ephedrine | Ephedra sp. | Antiasthma (Anti-inflammatory) | [124] |
Homoharringtonine | Cephalotaxus fortunei | Anticancer activity | [126,127] |
Vincamine | Vinca minor | Vasodilatory | [128] |
Chelerythrine | Chelidonium majus | Antibacterial (Antimicrobial) | [130,131] |
Piperine | Fruits of Piper longum and Piper officinarum | Antihyperglycemic | [132] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elshafie, H.S.; Camele, I.; Mohamed, A.A. A Comprehensive Review on the Biological, Agricultural and Pharmaceutical Properties of Secondary Metabolites Based-Plant Origin. Int. J. Mol. Sci. 2023, 24, 3266. https://doi.org/10.3390/ijms24043266
Elshafie HS, Camele I, Mohamed AA. A Comprehensive Review on the Biological, Agricultural and Pharmaceutical Properties of Secondary Metabolites Based-Plant Origin. International Journal of Molecular Sciences. 2023; 24(4):3266. https://doi.org/10.3390/ijms24043266
Chicago/Turabian StyleElshafie, Hazem S., Ippolito Camele, and Amira A. Mohamed. 2023. "A Comprehensive Review on the Biological, Agricultural and Pharmaceutical Properties of Secondary Metabolites Based-Plant Origin" International Journal of Molecular Sciences 24, no. 4: 3266. https://doi.org/10.3390/ijms24043266
APA StyleElshafie, H. S., Camele, I., & Mohamed, A. A. (2023). A Comprehensive Review on the Biological, Agricultural and Pharmaceutical Properties of Secondary Metabolites Based-Plant Origin. International Journal of Molecular Sciences, 24(4), 3266. https://doi.org/10.3390/ijms24043266