Rapid and Accurate Detection of Plant miRNAs by Liquid Northern Hybridization
<p>Non-denaturing polyacrylamide gel electrophoresis of liquid Northern hybridization of Osa-miD156* probes with Osa-miD156 (negative image). Hybridization of Osa-miD156* probe with Osa-miR156 as molecular marker. (<b>a</b>) Hybridization of 10 pmol of Osa-miD156 with different amounts of Osa-miD156* probes. (<b>b</b>) Hybridization of 4 pmol/L of Osa-miD156* probes and 4 pmol/L of Osa-miD156 with different mismatched bases at 42 ºC, 57 ºC and 60 ºC. (<b>c</b>) Effects of different temperatures on hybridization of 4 pmol/L Osa-miD156* probes with 5 pmol/L of Osa-miD156. (<b>d</b>) The effect of hybridization times on hybridization between 4 pmol/L Osa-miD156* probes and 4 pmol/L Osa-miD156.</p> ">
<p>Liquid hybridization detection of miRNAs from different plant materials. Hybridization of Osa-miD156* probe with Osa-miR156 as molecular marker. (<b>a</b>) Detection of miR156 from rice seedlings in different hybridization buffers. (<b>b</b>) Detection of miR156 from several plant species in buffer 3. (<b>c</b>) Detection of miR156 from different rice tissues. (<b>d</b>) Detection of different miRNAs from rice seedlings. (<b>e</b>) Quantitative analysis of miR156 in rice seedlings by liquid Northern hybridization. Upper: image of miR156 from rice seedlings; lanes 1–8 represent 10 (Std1), 5 (Std2), 2.5 (Std3), 1.25 (Std4), 0.625 (Std5), 0.313 (Std6), 0.156 (Std7) and 0.078 (Std8) pmol, respectively, for creating the standard curve; Lane 9 is a small RNA sample we got from rice seedlings and used 1 ug miRNA (89.69 ng/μL). Lower: image is a quantification using a Bio-Rad gel imaging system.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sensitivity of Hybridization
2.2. Specificity of Hybridization
2.3. Screening of Hybridization Buffer
2.4. Quantitative Analysis of miRNA
2.5. Simultaneous Detection of Multiple miRNAs
3. Experimental Section
3.1. Plant Materials
3.2. Extraction of RNA
3.3. Synthesis of Oligonucleotides and Hybridization Probes
3.4. Liquid Northern Hybridization
3.5. Gel Electrophoresis and Detection of DNA-RNA and DNA-DNA Hybrids
3.6. Quantitative Analysis of miRNA in Rice Small RNA Sample
4. Conclusions
Acknowledgements
References
- Bartel, DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar]
- Lewis, BP; Burge, CB; Bartel, DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120, 15–20. [Google Scholar]
- Siomi, H; Siomi, MC. Expanding RNA physiology: microRNAs in a unicellular organism. Genes Dev 2007, 21, 1153–1156. [Google Scholar]
- Jones-Rhoades, MW; Bartel, DP; Bartel, B. MicroRNAs and their regulatory roles in plants. Annu. Rev. Plant Biol 2006, 57, 19–53. [Google Scholar]
- Mallory, AC; Vaucheret, H. Functions of microRNAs and related small RNAs in plants. Nat. Genet 2006, 38, S31–S36. [Google Scholar]
- Shukla, LI; Chinnusamy, V; Sunkar, R. The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochim. Biophys. Acta 2008, 1779, 743–748. [Google Scholar]
- Sunkar, R; Chinnusamy, V; Zhu, J; Zhu, JK. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 2007, 12, 301–309. [Google Scholar]
- Zhang, B; Pan, X; Cobb, GP; Anderson, TA. Plant microRNA: A small regulatory molecule with big impact. Dev. Biol 2006, 289, 3–16. [Google Scholar]
- Liu, D; Yu, D. MicroRNA (miR396) negatively regulates expression of ceramidase-like genes in Arabidopsis. Prog. Nat. Sci 2009, 19, 781–785. [Google Scholar]
- Griffiths-Jones, S. miRBase: The microRNA sequence database. Methods Mol. Biol 2006, 342, 129–138. [Google Scholar]
- Lee, Y; Jeon, K; Lee, JT; Kim, S; Kim, VN. MicroRNA maturation: Stepwise processing and subcellular localization. EMBO J 2002, 21, 4663–4670. [Google Scholar]
- Streit, S; Michalski, CW; Erkan, M; Kleeff, J; Friess, H. Northern blot analysis for detection and quantification of RNA in pancreatic cancer cells and tissues. Nat. Protoc 2009, 4, 37–43. [Google Scholar]
- Lee, RC; Feinbaum, RL; Ambros, V. The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75, 843–854. [Google Scholar]
- Reinhart, BJ; Weinstein, EG; Rhoades, MW; Bartel, B; Bartel, DP. MicroRNAs in plants. Genes Dev 2002, 16, 1616–1626. [Google Scholar]
- Lim, LP; Lau, NC; Weinstein, EG; Abdelhakim, A; Yekta, S; Rhoades, MW; Burge, CB; Bartel, DP. The microRNAs of Caenorhabditis elegans. Genes Dev 2003, 17, 991–1008. [Google Scholar]
- Allawi, HT; Dahlberg, JE; Olson, S; Lund, E; Olson, M; Ma, WP; Takova, T; Neri, BP; Lyamichev, VI. Quantitation of microRNAs using a modified invader assay. RNA 2004, 10, 1153–1161. [Google Scholar]
- Thompson, RC; Deo, M; Turner, DL. Analysis of microRNA expression by in situ hybridization with RNA oligonucleotide probe. Methods 2007, 43, 153–161. [Google Scholar]
- Thomas, PS. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc. Natl. Acad. Sci. USA 1980, 77, 5201–5205. [Google Scholar]
- Chun, J; Zheng, YF; Wang, SH; Chen, F. A RNA isolation method suitable for a wide range of materials. Prog. Biochem. Biophys 2008, 35, 591–597. [Google Scholar]
- Sunkar, R; Girke, T; Jain, PK; Zhu, JK. Cloning and characterization of microRNAs from rice. Plant Cell 2005, 17, 1397–1411. [Google Scholar]
- Sambrook, J; Russell, DW. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York, NY, USA, 2001. [Google Scholar]
- Kitaoka, M; Ichinose, H; Goto, M. Simultaneous visual detection of single-nucleotide variations in tuna DNA using DNA/RNA chimeric probes and ribonuclease A. Anal. Biochem 2009, 389, 6–11. [Google Scholar]
- Aravin, A; Gaidatzis, D; Pfeffer, S; Lagos-Quintana, M; Landgraf, P; Iovino, N; Morris, P; Brownstein, MJ; Kuramochi-Miyagawa, S; Nakano, T; Chien, M; Russo, JJ; Ju, J; Sheridan, R; Sander, C; Zavolan, M; Tuschl, T. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 2006, 442, 203–207. [Google Scholar]
- Borsani, O; Zhu, J; Verslues, PE; Sunkar, R; Zhu, JK. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 2005, 123, 1279–1291. [Google Scholar]
- Farazi, TA; Jurane, SA; Tuschl, T. The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development 2008, 135, 1201–1214. [Google Scholar]
- Girard, A; Sachidanandam, R; Hannon, GJ; Carmell, MA. A germline specific class of small RNAs binds mammalian Piwi proteins. Nature 2006, 442, 199–202. [Google Scholar]
- Lau, NC; Seto, AG; Kim, J; Kuramochi-Miyagawa, S; Nakano, T; Bartel, DP; Kingston, RE. Characterization of the piRNA complex from rat testes. Science 2006, 313, 363–367. [Google Scholar]
- Lu, C; Jeong, DH; Kulkarni, K; Pillay, M; Nobuta, K; German, R; Thatcher, SR; Maher, C; Zhang, L; Ware, D; Liu, B; Cao, X; Meyers, BC; Green, PJ. Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proc. Natl. Acad. Sci. USA 2008, 105, 4951–4956. [Google Scholar]
Names | Sequence (5prime;–3prime;) | Tm (°C) |
---|---|---|
Osa-miR156 | UGA CAG AAG AGA GUG AGC AC | 57.3 |
Osa-miD156* | (FITC)-A CGT GCT CAC TCT CTT CTG TCA | 60.3 |
Osa-miD156▴ | (FITC)-GT GCT CAC TCT CTT CTG TCA | 57.3 |
Osa-miD156 | TGA CAG AAG AGA GTG AGC AC | 57.3 |
Osa-miD156 (−) | TGA gAG AAG AGA GTG AGC AC | 55.4 |
Osa-miD156 (3−) | aGA CAG gAG gGA GTG AGC AC | 57.4 |
Osa-miD156 (5−) | aGA CAG gAG tGA GTc AGC gC | 59.5 |
Osa-miR167d | UGA AGC UGC CAG CAU GAU CUG | 59.8 |
Osa-miD167d* | (FITC)-AG CAG ATC ATG CTG GCA GCT TCA | 62.3 |
Osa-miR394 | UUG GCA UUC UGU CCA CCU CC | 59.4 |
Osa-miD394* | (FITC)-ATGG AGG TGG ACA GAA TGC CAA | 60.3 |
Osa-miR528 | UGG AAG GGG CAU GCA GAG GAG | 63.7 |
Osa-miD528d* | (FITC)-AA CTC CTC TGC ATG CCC CTT CCA | 64.0 |
Osa-miR445a | UAA AUU AGU GUA UAA ACA UCC GAU | 52.5 |
Osa-miR445* | (Cy3)-ATC GGA TGT TTA TAC ACT AAT TTA | 52.5 |
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wang, X.; Tong, Y.; Wang, S. Rapid and Accurate Detection of Plant miRNAs by Liquid Northern Hybridization. Int. J. Mol. Sci. 2010, 11, 3138-3148. https://doi.org/10.3390/ijms11093138
Wang X, Tong Y, Wang S. Rapid and Accurate Detection of Plant miRNAs by Liquid Northern Hybridization. International Journal of Molecular Sciences. 2010; 11(9):3138-3148. https://doi.org/10.3390/ijms11093138
Chicago/Turabian StyleWang, Xiaosu, Yongao Tong, and Shenghua Wang. 2010. "Rapid and Accurate Detection of Plant miRNAs by Liquid Northern Hybridization" International Journal of Molecular Sciences 11, no. 9: 3138-3148. https://doi.org/10.3390/ijms11093138
APA StyleWang, X., Tong, Y., & Wang, S. (2010). Rapid and Accurate Detection of Plant miRNAs by Liquid Northern Hybridization. International Journal of Molecular Sciences, 11(9), 3138-3148. https://doi.org/10.3390/ijms11093138