Effects of Hydroxylated Polybrominated Diphenyl Ethers in Developing Zebrafish Are Indicative of Disruption of Oxidative Phosphorylation
"> Figure 1
<p>Developmental delay in zebrafish embryos exposed to 2′-OH-6′-Cl-BDE68. Images of 48 hpf old embryos exposed to different concentrations (<b>upper</b> row). The delayed embryos look like control embryos at 11 and 20 hpf (<b>lower</b> row). Magnification was 2×.</p> "> Figure 2
<p>Irreversible developmental delay in zebrafish embryos exposed to hydroxylated polybrominated diphenyl ethers. Development after exposure of zebrafish from 0 to 24 h (blue bars). The red bar presents the development from 24 to 48 hpf after the medium was replaced with clean medium. Concentrations are the LOECs (1 dpf) from <a href="#ijms-18-00970-t001" class="html-table">Table 1</a>. The error bars are the standard deviation over three replicates.</p> "> Figure 3
<p>Representative graph showing that hydroxylated polybrominated diphenyl ethers (OH-PBDEs) lead to increased oxygen consumption. Amount of oxygen per well (µM) during the first 24 h of development. Solvent control (DMSO), positive control (Carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) 0.5 µM) and six different OH-PBDEs at different exposure concentrations (Lowest Observed Effect Concentration (LOECs) for oxygen consumption in <a href="#ijms-18-00970-t001" class="html-table">Table 1</a>). The error bars present the standard deviation over 12 wells (<span class="html-italic">n</span> = 12).</p> "> Figure 4
<p>Effects on growth of zebrafish embryos exposed to a mixture of OH-PBDEs for 24 h. The concentrations of the test compounds in the mixture were modelled to represent levels found in Baltic blue mussels, and were tested as concentrated mixtures (10X and 100X) or diluted mixtures (10× and 100×). The error bars show the standard deviation over three replicates.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Developmental Toxicity Profile
2.2. Developmental Arrest and Delay
2.3. Oxygen Consumption
2.4. Mixtures
2.5. Actual Exposure Concentration
3. Discussion
3.1. Hydroxylated Polybrominated Diphenyl Ethers (OH-PBDEs) Developmental Toxicity
3.2. Hydroxylated Polybrominated Diphenyl Ethers (OH-PBDEs) Disrupt Oxidative Phosphorylation in Zebrafish Embryos
3.3. Mode of Action (MoA) of OH-PBDEs
3.4. Environmental Mixture Effects of OH-BDEs
4. Material and Methods
4.1. Chemicals
4.2. Zebrafish Toxicity Experiments
4.3. Oxygen Consumption Experiments
4.4. Measurement of 6-OH-BDE47 Exposure Concentration
4.4.1. Chemicals
4.4.2. Extraction and Derivatization
4.4.3. Instrumental Analysis
4.4.4. Quality Assurance/Quality Control
4.5. Data Analysis and Statistics
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Malmv, A. Brominated Natural Products at Different Trophic Levels in the Baltic Sea. Ph.D. Thesis, Stockholm University, Stockholm, Sweden, 1 January 2007. [Google Scholar]
- Malmberg, T.; Athanasiadou, M.; Marsh, G.; Brandt, I.; Bergman, A. Identification of hydroxylated polybrominated diphenyl ether metabolites in blood plasma from polybrominated diphenyl ether exposed rats. Environ. Sci. Technol. 2005, 39, 5342–5348. [Google Scholar] [CrossRef] [PubMed]
- Law, R.J.; Covaci, A.; Harrad, S.; Herzke, D.; Abdallahe, M.A.-E.; Fernie, K.; Toms, L.-M.L.; Takigami, H. Levels and trends of PBDEs and HBCDs in the global environment: Status at the end of 2012. Environ. Int. 2014, 65, 147–158. [Google Scholar] [CrossRef] [PubMed]
- De Wit, C.A.; Herzke, D.; Vorkamp, K. Brominated flame retardants in the arctic environment—Trends and new candidates. Sci. Total Environ. 2010, 408, 2885–2918. [Google Scholar] [CrossRef] [PubMed]
- Gribble, G.W. Naturally Occuring Organohalogen Compounds—A Comprehensive Update; Springer: New York, NY, USA, 2010. [Google Scholar]
- Ekdahl, A.; Pedersen, M.; Collen, J.; Abrahamsson, K. Production of halocarbons from seaweeds: An oxidative stress reaction? Sci. Mar. 1996, 60, 257–263. [Google Scholar]
- Dring, M.J. Stress resistance and disease resistance in seaweeds: The role of reactive oxygen metabolism. Adv. Bot. Res. 2005, 43, 175–207. [Google Scholar]
- Dahlgren, E.; Lindqvist, D.; Dahlgren, H.; Asplund, L.; Lehtil, K. Trophic transfer of naturally produced brominated aromatic compounds in a Baltic Sea food chain. Chemosphere 2016, 144, 1597–1604. [Google Scholar] [CrossRef] [PubMed]
- Asplund, L.; Kierkegaard, A.; Burreau, S.; Marsh, G.; Klasson-Wehler, E.; de Wit, C. P164 metabolism and distribution of 2,2′,4,4′-tetrabromo [14C] diphenyl ether in pike (Esox lucius) after dietary exposure. Organohalogen Compd. 2001, 52, 58–61. [Google Scholar]
- Van Boxtel, A.L.; Kamstra, J.H.; Cenijn, P.H.; Pieterse, B.; Wagner, M.J.; Antink, M.; Krab, K.; van der Burg, B.; Marsh, B.; Brouwer, A.; et al. Microarray analysis reveals a mechanism of phenolic polybrominated diphenylether toxicity in zebrafish. Environ. Sci. Technol. 2008, 42, 1773–1779. [Google Scholar] [CrossRef] [PubMed]
- Wen, Q.; Liu, H.L.; Zhu, Y.T.; Zheng, X.M.; Su, G.Y.; Zhang, X.W.; Yu, H.X.; Giesy, J.P.; Lam, M.H. Maternal transfer, distribution, and metabolism of BDE-47 and its related hydroxylated, methoxylated analogs in zebrafish (Danio rerio). Chemosphere 2015, 120, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Nyholm, J.R.; Norman, A.; Norrgren, L.; Haglund, P.; Andersson, P.L. Maternal transfer of brominated flame retardants in zebrafish (Danio rerio). Chemosphere 2008, 73, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Meerts, I.A.; Letcher, R.J.; Hoving, S.; Marsh, G.; Bergman, A.; Lemmen, J.G.; van der Burg, B.; Brouwer, A. In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PDBEs, and polybrominated bisphenol A compounds. Environ. Health Perspect. 2001, 109, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Wiseman, S.B.; Wan, Y.; Chang, H.; Zhang, X.; Hecker, M.; Jones, P.D.; Giesy, J.P. Polybrominated diphenyl ethers and their hydroxylated/methoxylated analogs: Environmental sources, metabolic relationships, and relative toxicities. Mar. Pollut. Bull. 2011, 63, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Legler, J.; Brouwer, A. Are brominated flame retardants endocrine disruptors? Environ. Int. 2003, 29, 879–885. [Google Scholar] [CrossRef]
- Legradi, J.; Dahlberg, A.K.; Cenijn, P.; Marsh, G.; Asplund, L.; Bergman, Å.; Legler, J. Disruption of oxidative phosphorylation (OXPHOS) by hydroxylated polybrominated diphenyl ethers (OH-PBDEs) present in the marine environment. Environ. Sci. Technol. 2014, 48, 14703–14711. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.H. Fish mitochondrial genomics: Sequence, inheritance and functional variation. J. Fish Biol. 2008, 72, 355–374. [Google Scholar] [CrossRef]
- Holcomb, M.; Cloud, J.G.; Woolsey, J.; Ingermann, R.L. Oxygen consumption in unfertilized salmonid eggs: An indicator of egg quality? Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2004, 138, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Mendelsohn, B.A.; Gitlin, J.D. Coordination of development and metabolism in the pre-midblastula transition zebrafish embryo. Dev. Dyn. 2008, 237, 1789–1798. [Google Scholar] [CrossRef] [PubMed]
- Lai, K.; Selinger, D.W.; Solomon, J.M.; Wu, H.; Schmitt, E.; Serluca, F.C.; Curtis, D.; Benson, J.D. Integrated compound pro fi ling screens identify the mitochondrial electron transport chain as the molecular target of the natural products manassantin, sesquicillin, and arctigenin. ACS Chem. Biol. 2013, 8, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Usenko, C.Y.; Hopkins, D.C.; Trumble, S.J.; Bruce, E.D. Hydroxylated PBDEs induce developmental arrest in zebrafish. Toxicol. Appl. Pharmacol. 2012, 262, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Löfstrand, K.; Liu, X.; Lindqvist, D.; Jensen, S.; Asplund, L. Seasonal variations of hydroxylated and methoxylated brominated diphenyl ethers in blue mussels from the Baltic Sea. Chemosphere 2011, 84, 527–532. [Google Scholar]
- Ren, X.-M.; Guo, L.-H.; Gao, Y.; Zhang, B.-T.; Wan, B. Hydroxylated polybrominated diphenyl ethers exhibit different activities on thyroid hormone receptors depending on their degree of bromination. Toxicol. Appl. Pharmacol. 2013, 268, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Macaulay, L.J.; Chen, A.; Rock, K.D.; Dishaw, L.V.; Dong, W.; Hinton, D.E.; Stapleton, H.M. Developmental toxicity of the PBDE metabolite 6-OH-BDE-47 in zebrafish and the potential role of thyroid receptor β. Aquat. Toxicol. 2015, 168, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Macaulay, L.J.; Kwok, K.W.; Hinton, D.E.; Ferguson, P.L.; Stapleton, H.M. The PBDE metabolite 6-OH-BDE 47 affects melanin pigmentation and THRβ MRNA expression in the eye of zebrafish embryos. Endocr. Disruptors 2014, 2, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Zhu, Y.; Liu, C.; Liu, H.; Giesy, J.P.; Hecker, M.; Lam, M.H.; Yu, H. Accumulation and biotransformation of BDE-47 by zebrafish larvae and teratogenicity and expression of genes along the hypothalamus—Pituitary—Thyroid Axis. Environ. Sci. Technol. 2012, 46, 12943–12951. [Google Scholar] [CrossRef] [PubMed]
- Hamers, T.; Kamstra, J.H.; Sonneveld, E.; Murk, A.J.; Visser, T.J.; van Velzen, M.J.; Brouwer, A.; Bergman, A. Biotransformation of brominated flame retardants into potentially endocrine-disrupting metabolites, with special attention to 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47). Mol. Nutr. Food Res. 2008, 52, 284–298. [Google Scholar] [CrossRef] [PubMed]
- Dahlberg, A.-K.; Bignert, A.; Legradi, J.; Legler, J.; Asplund, L. Anthropogenic and naturally produced brominated substances in Baltic herring (Clupea harengus membras) from two sites in the Baltic Sea. Chemosphere 2016, 144, 2408–2414. [Google Scholar] [CrossRef] [PubMed]
- Marsh, G.; Hu, J.; Jakobsson, E.; Rahm, S.; Bergman, A. Synthesis and characterization of 32 polybrominated diphenyl ethers. Environ. Sci. Technol. 1999, 33, 3033–3037. [Google Scholar] [CrossRef]
- Rydén, A.; Nestor, G.; Jakobsson, K.; Marsh, G. Synthesis and tentative identification of novel polybrominated diphenyl ether metabolites in human blood. Chemosphere 2012, 88, 1227–1234. [Google Scholar]
- Marsh, G.; Stenutz, R.; Bergman, Å. Synthesis of hydroxylated and methoxylated polybrominated diphenyl ethers—Natural products and potential polybrominated diphenyl ether metabolites. Eur. J. Org. Chem. 2003, 2003, 2566–2576. [Google Scholar] [CrossRef]
- OECD. Test No. 236: Fish Embryo Acute Toxicity (FET) Test; OECD Guidelines for the Testing of Chemicals Section 2; OECD: Paris, France, 2013; pp. 1–22. [Google Scholar]
- PreSense. Instruction Manual OxoPlate; PreSense: Regensburg, Germany, 2003. [Google Scholar]
- Jensen, S.; Lindqvist, D.; Asplund, L. Lipid extraction and determination of halogenated phenols and alkylphenols as their pentafluorobenzoyl derivatives in marine organisms. J. Agric. Food Chem. 2009, 57, 2009. [Google Scholar] [CrossRef] [PubMed]
- Marsh, E.; Bergman, G.; Bladh, Å.; Gillner, L.-G.; Jakobsson, M. Synthesis of p-hydroxybromodiphenyl ethers and binding to the thyroid receptor. Organohalogen Compd. 1998, 37, 305–308. [Google Scholar]
Developmental Delay | Malformations and Mortality | ||||
---|---|---|---|---|---|
24 hpf | 72 hpf/144 hpf | Significant Increase in Oxygen Consumption | |||
Compound | NOEC * | LOEC & | NOEC ** | LOEC && | LOEC † |
2′-OH-6′-Cl-BDE68 | 0.3 | 1.5 | 0.75 | 1 | 1.5 |
2-OH-BDE123 | 1.25 | 2 | 0.5 | 1 | 2.5 |
2′-OH-BDE28 | 5.25 | 6 | 2 | 3 | 6.5 |
2′-OH-BDE66 | 6 | 7 | 4 | 5 | 7.5 |
2′-OH-BDE68 | 0.5 | 1 | 0.4 | 0.6 | 1.75 |
3-OH-BDE153 | 3 | 3.5 | 0.5 | 1 | 4.75 |
3′-OH-BDE154 | 2 | 2.5 | 0.5 | 1 | 3.25 |
3-OH-BDE155 | 4 | 5 | 0.5 | 1 | 7 |
3-OH-BDE47 | 3.5 | 5 | 1 | 2 | 6.5 |
5-OH-BDE47 | 2 | 2.5 | 1 | 2 | 2.75 |
6-OH-5-Cl-BDE47 | 0.9 | 1.2 | 0.5 | 0.75 | 1.2 |
6-OH-BDE137 | 0.1 | 1.2 | 0.2 | 0.5 | 2 |
6-OH-BDE47 | 0.1 | 0.5 | 0.1 | 0.5 | 1 |
6′-OH-BDE49 | 0.05 | 0.75 | 0.1 | 0.5 | 2.5 |
6-OH-BDE85 | 0.5 | 1 | 0.5 | 0.75 | 1.25 |
6-OH-BDE90 | 0.25 | 2 | 0.5 | 1 | 2.5 |
6-OH-BDE99 | 0.5 | 1 | 0.5 | 1 | 2 |
All in µM | 144 hpf | Environmental Measured Fish Concentration | Margin of Exposure | |||
---|---|---|---|---|---|---|
Compound | NOEC | LOEC | Location: Askö | Location: Ängskärsklubb | Minimum | LOEC/Minimum |
2-OH-BDE123 | 0.5 | 1 | 0.002 | <LOD | 0.002 | 500 |
2′-OH-BDE68 | 0.4 | 0.6 | 0.01 | 0.007 | 0.01 | 60 |
6-OH-BDE137 | 0.2 | 0.5 | <LOD | <LOD | <LOD | not applicable |
6-OH-BDE47 | 0.1 | 0.5 | 0.2 | 0.2 | 0.2 | 3 |
6-OH-BDE90 | 0.5 | 1 | 0.001 | 0.002 | 0.001 | 1000 |
6-OH-BDE99 | 0.5 | 1 | 0.01 | 0.2 | 0.01 | 100 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Legradi, J.; Pomeren, M.V.; Dahlberg, A.-K.; Legler, J. Effects of Hydroxylated Polybrominated Diphenyl Ethers in Developing Zebrafish Are Indicative of Disruption of Oxidative Phosphorylation. Int. J. Mol. Sci. 2017, 18, 970. https://doi.org/10.3390/ijms18050970
Legradi J, Pomeren MV, Dahlberg A-K, Legler J. Effects of Hydroxylated Polybrominated Diphenyl Ethers in Developing Zebrafish Are Indicative of Disruption of Oxidative Phosphorylation. International Journal of Molecular Sciences. 2017; 18(5):970. https://doi.org/10.3390/ijms18050970
Chicago/Turabian StyleLegradi, Jessica, Marinda Van Pomeren, Anna-Karin Dahlberg, and Juliette Legler. 2017. "Effects of Hydroxylated Polybrominated Diphenyl Ethers in Developing Zebrafish Are Indicative of Disruption of Oxidative Phosphorylation" International Journal of Molecular Sciences 18, no. 5: 970. https://doi.org/10.3390/ijms18050970
APA StyleLegradi, J., Pomeren, M. V., Dahlberg, A.-K., & Legler, J. (2017). Effects of Hydroxylated Polybrominated Diphenyl Ethers in Developing Zebrafish Are Indicative of Disruption of Oxidative Phosphorylation. International Journal of Molecular Sciences, 18(5), 970. https://doi.org/10.3390/ijms18050970