Safety Profile of TiO2-Based Photocatalytic Nanofabrics for Indoor Formaldehyde Degradation
"> Figure 1
<p>Analysis of the properties of the TNPs. (<b>A</b>) TNPs was dispersed by ultrasonication for half an hour and the morphology of the TNPs was observed under a transmission electron microscope; (<b>B</b>) The crystalline structure of TNPs was analyzed by X-ray diffraction.</p> "> Figure 1 Cont.
<p>Analysis of the properties of the TNPs. (<b>A</b>) TNPs was dispersed by ultrasonication for half an hour and the morphology of the TNPs was observed under a transmission electron microscope; (<b>B</b>) The crystalline structure of TNPs was analyzed by X-ray diffraction.</p> "> Figure 2
<p>SEM image of unfunctionalized and TNP-functionalized polyester-cotton (65/35) silk.</p> "> Figure 3
<p>Degradation of formaldehyde by the 65/35 polyester/cotton TNP nanofabrics under UV radiation (<b>A</b>) and visible light (<b>B</b>). The error bars indicate the standard deviation value (SD) from average values of three independent measurements.</p> "> Figure 4
<p>Viability of HEK293 (<b>A</b>); HepG2 (<b>B</b>); and THP-1 (<b>C</b>) treated with TNP at indicated concentrations or silver nanoparticles (PVP-Ag, 50 μg/mL) for 24 h. Values are the means of at least three independent experiments ± SD.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of TNP (TiO2 Nanoparticle)
Physicochemical Property | Value |
---|---|
Diameter by TEM (nm) | 7.52 ± 1.5 |
Hydrodynamic diameter in water (nm) | 42.1 ± 7.4 |
Hydrodynamic diameter in 10% FBS (nm) | 97.3 ± 1.5 |
Zeta potential in water (mV) | +38.9 ± 1.7 |
Zeta potential in 10% FBS (mV) | −11.1 ± 0.4 |
2.2. TNP-Based Nanofabrics
2.3. Photocatalytic Degradation of Formaldehyde by Nanofabrics
2.4. TNPs Are Firmly Attached to Nanofabrics
Fabrics Sample | TNP Loading (mg/g) * | TNP Transfer |
---|---|---|
Polyester nanofabrics | 48.7 ± 0.89 | 1.11% |
Polyester nanofabrics After rubbing | 48.1 ± 0.33 | |
Polyester-cotton 65/35 nanofabrics | 76.3 ± 0.54 | 1.14% |
Polyester-cotton 65/35 nanofabrics After rubbing | 75.4 ± 0.85 |
2.5. Toxicity of Free TNPs to Human Cells
3. Experimental Section
3.1. Chemicals and Reagents
3.2. Preparation of TNPs and Nanofabrics
3.3. Characterization of TNP and Nanofabrics
3.4. Quantification of TNPs in Solution or Nanofabrics
3.5. Formaldehyde Degradation
3.6. Detachment Test
3.7. Cell Culture and Cytotoxicity Assays
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Thompson, C.M.; Stlbramaniam, R.P.; Grafstrom, R.C. Mechanistic and dose considerations for supporting adverse pulmonary physiology in response to formaldehyde. Toxicol. Appl. Pharmacol. 2008, 233, 355–359. [Google Scholar] [CrossRef] [PubMed]
- IARC. Monographs on the Evaluation of Carcinogenic Risks to Human. Volume 88 (2006): Formaldehyde, 2-Butoxyethanol and 1-Tert-Butoxypropan-2-ol. Available online: http://monographs.iarc.fr/ENG/Monographs/vol88/index.php (accessed on 31 October 2015).
- Report on Carcinogens, Thirteenth Edition. 2011. Available online: http://ntp.niehs.nih.gov/ntp/roc/content/profiles/formaldehyde.pdf (accessed on 31 October 2015).
- Zhang, L.W.; Fu, H.B.; Zhang, C.; Zhu, Y.F. Synthesis, characterization, and photocatalytic properties of InVO4 nanoparticles. J. Solid State Chem. 2006, 179, 804–811. [Google Scholar] [CrossRef]
- Peng, L.A.; Zhai, J.L.; Wang, D.J.; Zhang, Y.; Wang, P.; Zhao, Q.D.; Xie, T.F. Size- and photoelectric characteristics-dependent formaldehyde sensitivity of ZnO irradiated with UV light. Sens. Actuator B Chem. 2010, 148, 66–73. [Google Scholar] [CrossRef]
- Rezaee, A.; Rangkooy, H.; Khavanin, A.; Jafari, A.J. High photocatalytic decomposition of the air pollutant formaldehyde using nano-ZnO on bone char. Environ. Chem. Lett. 2014, 12, 353–357. [Google Scholar] [CrossRef]
- Soltani, R.D.C.; Rezaee, A.; Safari, M.; Khataee, A.R.; Karimi, B. Photocatalytic degradation of formaldehyde in aqueous solution using ZnO nanoparticles immobilized on glass plates. Desalin. Water Treat. 2015, 53, 1613–1620. [Google Scholar] [CrossRef]
- Wang, J.J.; Liu, X.N.; Li, R.H.; Qiao, P.S.; Xiao, L.P.; Fan, J. TiO2 nanoparticles with increased surface hydroxyl groups and their improved photocatalytic activity. Catal. Commun. 2012, 19, 96–99. [Google Scholar] [CrossRef]
- Shah, P.; Siddhapara, K.S.; Shah, D.V. Structural, optical, and photocatalytic properties of ZnS/alpha-Fe2O3 core shell nano particles. Russ. J. Gen. Chem. 2015, 85, 689–691. [Google Scholar] [CrossRef]
- Siwinska-Stefanska, K.; Ciesielczyk, F.; Jesionowski, T.; Sojka-Ledakowiez, J.; Lota, W.; Walawska, A. Evaluation of the Photocatalytic Properties of Textile Fabrics Modified with Titanium Dioxide of Anatase Structure. Fibres Text. East. Eur. 2011, 19, 76–83. [Google Scholar]
- Lee, K.; Lee, S. Multifunctionality of poly(vinyl alcohol) nanofiber webs containing titanium dioxide. J. Appl. Polym. Sci. 2012, 124, 4038–4046. [Google Scholar] [CrossRef]
- Liu, B.J.; Wang, Z.H.; Wang, H.L.; He, J.X.; Finish, T.; Minist Educ, K.L.S.; Technol, E.T. Preparation of Fe(III) and La(III) Co-Doped TiO2-Loaded Cotton Fabrics for Aas-Phase Photocatalytic Oxidation of Formaldehyde; China Textile & Apparel Press: Beijing, China, 2010; pp. 686–689. [Google Scholar]
- Pichat, P. A Brief Survey of the Potential Health Risks of TiO2 Particles and TiO2-Containing Photocatalytic or Non-Photocatalytic Materials. J. Adv. Oxid. Technol. 2010, 13, 238–246. [Google Scholar]
- Som, C.; Wick, P.; Krug, H.; Nowack, B. Environmental and health effects of nanomaterials in nanotextiles and facade coatings. Environ. Int. 2011, 37, 1131–1142. [Google Scholar] [CrossRef] [PubMed]
- Holden, P.A.; Nisbet, R.M.; Lenihan, H.S.; Miller, R.J.; Cherr, G.N.; Schimel, J.P.; Gardea-Torresdey, J.L.; Univ, C. Ecological Nanotoxicology: Integrating Nanomaterial Hazard Considerations Across the Subcellular, Population, Community, and Ecosystems Levels. Acc. Chem. Res. 2013, 46, 813–822. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.H.; Zhang, Y.; Zhang, J.P.; Mu, Q.X.; Zhang, W.D.; Butch, E.R.; Snyder, S.E.; Yan, B. Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility. Nat. Nanotechnol. 2010, 5, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.N.; Zhang, Q.; Mu, Q.X.; Bai, Y.H.; Li, L.W.; Zhou, H.Y.; Butch, E.R.; Powell, T.B.; Snyder, S.E.; Jiang, G.B.; et al. Steering Carbon Nanotubes to Scavenger Receptor Recognition by Nanotube Surface Chemistry Modification Partially Alleviates NF kappa B Activation and Reduces Its Immunotoxicity. ACS Nano 2011, 5, 4581–4591. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhang, Y.; Zhang, C.K.; Cui, X.H.; Zhai, S.M.; Liu, Y.; Li, C.L.; Zhu, H.; Qu, G.B.; Jiang, G.B.; et al. Tuning Cell Autophagy by Diversifying Carbon Nanotube Surface Chemistry. ACS Nano 2014, 8, 2087–2099. [Google Scholar] [CrossRef] [PubMed]
- Mu, Q.X.; Jiang, G.B.; Chen, L.X.; Zhou, H.Y.; Fourches, D.; Tropsha, A.; Yan, B. Chemical Basis of Interactions Between Engineered Nanoparticles and Biological Systems. Chem. Rev. 2014, 114, 7740–7781. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bai, Y.H.; Jia, J.B.; Gao, N.N.; Li, Y.; Zhang, R.N.; Jiang, G.B.; Yan, B. Perturbation of physiological systems by nanoparticles. Chem. Soc. Rev. 2014, 43, 3762–3809. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.K.; Zhai, S.M.; Wu, L.; Bai, Y.H.; Jia, J.B.; Zhang, Y.; Zhang, B.; Yan, B. Induction of Size-Dependent Breakdown of Blood-Milk Barrier in Lactating Mice by TiO2 Nanoparticles. PLoS ONE 2015, 10, e0122591. [Google Scholar] [CrossRef] [PubMed]
- Andersson-Willman, B.; Gehrmann, U.; Cansu, Z.; Buerki-Thurnherr, T.; Krug, H.F.; Gabrielsson, S.; Scheynius, A. Effects of subtoxic concentrations of TiO2 and ZnO nanoparticles on human lymphocytes, dendritic cells and exosome production. Toxicol. Appl. Pharmacol. 2012, 264, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Bregoli, L.; Chiarini, F.; Gambarelli, A.; Sighinolfi, G.; Gatti, A.M.; Santi, P.; Martelli, A.M.; Cocco, L. Toxicity of antimony trioxide nanoparticles on human hematopoietic progenitor cells and comparison to cell lines. Toxicology 2009, 262, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Tang, Y.; Yang, F.G.; Li, X.L.; Xu, S.; Fan, X.Y.; Huang, Y.Y.; Yang, Y.J. Cellular Toxicity of TiO2 Nanoparticles in Anatase and Rutile Crystal Phase. Biol. Trace Elem. Res. 2011, 141, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Crosera, M.; Prodi, A.; Mauro, M.; Pelin, M.; Florio, C.; Bellomo, F.; Adami, G.; Apostoli, P.; de Palma, G.; Bovenzi, M.; et al. Titanium Dioxide Nanoparticle Penetration into the Skin and Effects on HaCaT Cells. Int. J. Environ. Res. Public Health 2015, 12, 9282–9297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovanni, M.; Yue, J.; Zhang, L.; Xie, J.; Ong, C.N.; Leong, D.T. Pro-inflammatory responses of RAW264.7 macrophages when treated with ultralow concentrations of silver, titanium dioxide, and zinc oxide nanoparticles. J. Hazard. Mater. 2015, 297, 146–52. [Google Scholar] [CrossRef] [PubMed]
- The Project on Emerging Nanotechnologies. Available online: http://www.nanotechproject.org/cpi/products/ (accessed on 31 October 2015).
- Hsu, L.Y.; Chein, H.M. Evaluation of nanoparticle emission for TiO2 nanopowder coating materials. J. Nanopart. Res. 2007, 9, 157–163. [Google Scholar] [CrossRef]
- Foldbjerg, R.; Olesen, P.; Hougaard, M.; Dang, D.A.; Hoffmann, H.J.; Autrup, H. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol. Lett. 2009, 190, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Su, G.X.; Zhou, H.Y.; Mu, Q.X.; Zhang, Y.; Li, L.W.; Jiao, P.F.; Jiang, G.B.; Yan, B. Effective Surface Charge Density Determines the Electrostatic Attraction between Nanoparticles and Cells. J. Phys. Chem. C 2012, 116, 4993–4998. [Google Scholar] [CrossRef]
- Dong, Y.C.; Bai, Z.P.; Liu, R.H.; Zhu, T. Decomposition of indoor ammonia with TiO2-loaded cotton woven fabrics prepared by different textile finishing methods. Atmos. Environ. 2007, 41, 3182–3192. [Google Scholar] [CrossRef]
- Pichat, P. Some views about indoor air photocatalytic treatment using TiO2: Conceptualization of humidity effects, active oxygen species, problem of C1–C3 carbonyl pollutants. Appl. Catal. B Environ. 2010, 99, 428–434. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, G.; Xin, Y.; Jiang, X.; Dong, M.; Li, J.; Wang, P.; Zhai, S.; Dong, Y.; Jia, J.; Yan, B. Safety Profile of TiO2-Based Photocatalytic Nanofabrics for Indoor Formaldehyde Degradation. Int. J. Mol. Sci. 2015, 16, 27721-27729. https://doi.org/10.3390/ijms161126055
Cui G, Xin Y, Jiang X, Dong M, Li J, Wang P, Zhai S, Dong Y, Jia J, Yan B. Safety Profile of TiO2-Based Photocatalytic Nanofabrics for Indoor Formaldehyde Degradation. International Journal of Molecular Sciences. 2015; 16(11):27721-27729. https://doi.org/10.3390/ijms161126055
Chicago/Turabian StyleCui, Guixin, Yan Xin, Xin Jiang, Mengqi Dong, Junling Li, Peng Wang, Shumei Zhai, Yongchun Dong, Jianbo Jia, and Bing Yan. 2015. "Safety Profile of TiO2-Based Photocatalytic Nanofabrics for Indoor Formaldehyde Degradation" International Journal of Molecular Sciences 16, no. 11: 27721-27729. https://doi.org/10.3390/ijms161126055
APA StyleCui, G., Xin, Y., Jiang, X., Dong, M., Li, J., Wang, P., Zhai, S., Dong, Y., Jia, J., & Yan, B. (2015). Safety Profile of TiO2-Based Photocatalytic Nanofabrics for Indoor Formaldehyde Degradation. International Journal of Molecular Sciences, 16(11), 27721-27729. https://doi.org/10.3390/ijms161126055