Genotyping Test with Clinical Factors: Better Management of Acute Postoperative Pain?
"> Figure 1
<p>Doses of morphine at 24 h based on genotype distribution for both <span class="html-italic">OPRM1</span> and <span class="html-italic">ABCB1</span> SNPs. Morphine dose requirements according to the genotypes for the two SNPs <span class="html-italic">OPRM1</span> c.118A>G and <span class="html-italic">ABCB1</span> c.3435C>T. Due to the small number of 118GG patients, the results are grouped by G allele (the patients carrying at least one G allele). o Outliers or doses values that extend more than 1.5 box-lengths from the edge of the box; <b>*</b> Extreme values or doses values that extend 3 box-lengths from the edge of the box.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Patients Population
Characteristics of the Subjects (N = 95) | N |
---|---|
Women | 57 (60.0%) |
Type of surgery | |
Urogynaecology N (%) | 45 (47.4%) |
Orthopaedic N (%) | 38 (40.0%) |
Gastroenterology N (%) | 12 (12.6%) |
Mean ± SD | |
Age (years) | 51.1 ± 14.0 |
Weight (Kg) | 75.6 ± 14.7 |
Height (cm) | 166.8 ± 7.8 |
Creatinine clearance (mL/min) | 67.6 ± 22.1 |
Dose of Fentanyl (microg) | 280.0 ± 92.2 |
Urogynaecology | 268.0 ± 81.5 |
Orthopaedic | 298.5 ± 98.1 |
Gastroenterology | 270.8 ± 109.7 |
Duration of operation (min) | 216.7 ± 119.1 |
Urogynaecology | 201.2 ± 108.4 |
Orthopaedic | 213.9 ± 117.1 |
Gastroenterology | 283.3 ± 149.5 |
VAS | |
24 h at rest | 0.98 ± 1.4 |
48 h at rest | 0.59 ± 1.2 |
24 h on movement | 1.95 ± 1.7 |
48 h on movement | 1.29 ± 1.4 |
2.2. Genotype and Allele Distribution
Gene | dbSNP | Genotype Frequencies a | Allelic Frequencies a | p b | |||
---|---|---|---|---|---|---|---|
OPRM1 | rs1799971 | AA | AG | GG | A | G | |
Lebanese patients n = 96 (Current study) | 76 (79.2) | 18 (18.8) | 2 (2.1) | 0.89 | 0.11 | – | |
European HapMap n = 113 | 80 (70.8) | 31 (27.4) | 2 (1.8) | 0.84 | 0.16 | 0.336 | |
Japanese HapMap n = 86 | 29 (33.7) | 34 (39.5) | 23 (26.7) | 0.53 | 0.47 | 0.0001 * | |
Chinese HapMap n = 43 | 18 (41.9) | 19 (44.2) | 6 (14) | 0.64 | 0.36 | 0.0001 * | |
Sub-Saharan African HapMap n = 60 | 60 (100) | 0 (0) | 0 (0) | 1 | 0 | 0.0008 * | |
ABCB1 | rs1045642 | CC | CT | TT | C | T | |
Lebanese patients n = 96 (Current study) | 34 (35.4) | 38 (39.6) | 24 (25) | 0.55 | 0.44 | – | |
European HapMap n = 113 | 17 (15) | 63 (55.8) | 33 (29.2) | 0.43 | 0.57 | 0.0025 * | |
Japanese HapMap n = 86 | 22 (25.6) | 49 (57) | 15 (17.4) | 0.54 | 0.46 | 0.063 | |
Chinese HapMap n = 42 | 16 (38.1) | 17 (40.5) | 9 (21.4) | 0.58 | 0.42 | 0.895 | |
Sub-Saharan African HapMap n = 113 | 89 (78.8) | 23 (20.4) | 1 (0.8) | 0.89 | 0.11 | 0.0001 * |
2.3. Variables Associated with Morphine Doses
Characteristics of the Subjects | Dose of Morphine at 24 h (mg) | ||
---|---|---|---|
Dose ≤ 41 mg (n = 48) | Dose > 41 mg (n = 47) | p | |
Age (years) Mean ± SD | 54.6 ± 13.8 | 47.4 ± 13.4 | 0.012 * |
Female N (%) | 29 (60.4%) | 28 (59.6%) | 1.000 |
Weight (Kg) Mean ± SD | 72.6 ± 13.1 | 78.6 ± 15.8 | 0.045 |
Height (cm) Mean ± SD | 166.2 ± 7.9 | 167.4 ± 7.8 | 0.440 |
Type of surgery | |||
Urogynecology N (%) | 27 (56.2%) | 18 (38.3%) | 0.176 |
Orthopedic N (%) | 15 (31.2%) | 23 (48.9%) | |
Gastroenterology N (%) | 6 (12.5%) | 6 (12.8%) | |
Dose of Fentanyl (microg) Mean ± SD | 270.1 ± 101.3 | 290.7 ± 81.1 | 0.295 |
Duration of operation (mn)/Mean ± SD | 239.6 ± 125.5 | 193.3 ± 108.7 | 0.058 |
ABCB1 c.3435C>T | |||
CC | 12 (25.0%) | 21 (44.7%) | 0.004 |
CT | 17 (35.4%) | 21 (44.7%) | |
TT | 19 (39.6%) | 5 (10.6%) | |
OPRM1 c.118A>G | |||
AA | 43 (89.6%) | 33 (70.2%) | 0.018 |
AG and GG | 5 (10.4%) | 14 (29.8%) |
Characteristics of the Subjects | B a | S.E. b | Sig. c | OR d | 95.0% CI for OR | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Age | −0.048 | 0.019 | 0.011 f | 0.953 | 0.918 | 0.989 |
Weight | 0.042 | 0.019 | 0.025 | 1.042 | 1.005 | 1.081 |
Type of surgery | −0.114 | 0.367 | 0.756 | 0.892 | 0.434 | 1.833 |
Duration of operation | −0.005 | 0.002 | 0.030 | 0.995 | 0.990 | 0.999 |
ABCB1 (TT Reference e) | 0.012 | |||||
ABCB1 (CC) | 1.954 | 0.683 | 0.004 | 7.060 | 1.850 | 26.943 |
ABCB1 (CT) | 1.719 | 0.682 | 0.012 | 5.579 | 1.465 | 21.236 |
OPRM1 (AA Reference e) | ||||||
OPRM1 groups (AG/GG) | 1.394 | 0.671 | 0.038 | 4.031 | 1.083 | 15.013 |
2.4. Association to Side Effects and Visual Analog Scale (VAS) Scores
2.5. Discussion
3. Experimental Section
3.1. Study Design and Patients
3.2. Genotyping
3.3. Data and Statistical Analysis
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pyati, S.; Gan, T.J. Perioperative pain management. CNS Drugs 2007, 21, 185–211. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.L.; Raja, S.N. Treatment of acute postoperative pain. Lancet 2011, 377, 2215–2225. [Google Scholar] [CrossRef] [PubMed]
- Droney, J.; Riley, J. Recent advances in the use of opioids for cancer pain. J. Pain Res. 2009, 2, 135–155. [Google Scholar] [CrossRef] [PubMed]
- Hajj, A.; Khabbaz, L.; Laplanche, J.L.; Peoc’h, K. Pharmacogenetics of opiates in clinical practice: The visible tip of the iceberg. Pharmacogenomics 2013, 14, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Angst, M.S.; Phillips, N.G.; Drover, D.R.; Tingle, M.; Galinkin, J.L.; Christians, U.; Swan, G.E.; Lazzeroni, L.C.; Clark, J.D. Opioid pharmacogenomics using a twin study paradigm: Methods and procedures for determining familial aggregation and heritability. Twin Res. Hum. Genet. 2010, 13, 412–425. [Google Scholar] [CrossRef] [PubMed]
- Matthes, H.W.; Maldonado, R.; Simonin, F.; Valverde, O.; Slowe, S.; Kitchen, I.; Befort, K.; Dierich, A.; Le Meur, M.; Dolle, P.; et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 1996, 383, 819–823. [Google Scholar] [CrossRef] [PubMed]
- Ravindranathan, A.; Joslyn, G.; Robertson, M.; Schuckit, M.A.; Whistler, J.L.; White, R.L. Functional characterization of human variants of the mu-opioid receptor gene. Proc. Natl. Acad. Sci. USA 2009, 106, 10811–10816. [Google Scholar] [CrossRef] [PubMed]
- Kreek, M.J.; Bart, G.; Lilly, C.; LaForge, K.S.; Nielsen, D.A. Pharmacogenetics and human molecular genetics of opiate and cocaine addictions and their treatments. Pharmacol. Rev. 2005, 57, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Bond, C.; LaForge, K.S.; Tian, M.; Melia, D.; Zhang, S.; Borg, L.; Gong, J.; Schluger, J.; Strong, J.A.; Leal, S.M.; et al. Single-nucleotide polymorphism in the human mu opioid receptor gene alters β-endorphin binding and activity: Possible implications for opiate addiction. Proc. Natl. Acad. Sci. USA 1998, 95, 9608–9613. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, D.; Johnson, A.D.; Papp, A.C.; Sadee, W. Allelic expression imbalance of human mu opioid receptor (OPRM1) caused by variant a118g. J. Biol. Chem. 2005, 280, 32618–32624. [Google Scholar] [CrossRef] [PubMed]
- Mashayekhi, S.O.; Sattari, M.R.; Routledge, P.A. Evidence of active transport involvement in morphine transport via MDCKII and MDCK-PGP cell lines. Res. Pharm. Sci. 2010, 5, 99–106. [Google Scholar] [PubMed]
- Tournier, N.; Chevillard, L.; Megarbane, B.; Pirnay, S.; Scherrmann, J.M.; Decleves, X. Interaction of drugs of abuse and maintenance treatments with human p-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2). Int. J. Neuropsychopharmacol. 2010, 13, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Wandel, C.; Kim, R.; Wood, M.; Wood, A. Interaction of morphine, fentanyl, sufentanil, alfentanil, and loperamide with the efflux drug transporter p-glycoprotein. Anesthesiology 2002, 96, 913–920. [Google Scholar] [CrossRef] [PubMed]
- Hoffmeyer, S.; Burk, O.; von Richter, O.; Arnold, H.P.; Brockmoller, J.; Johne, A.; Cascorbi, I.; Gerloff, T.; Roots, I.; Eichelbaum, M.; et al. Functional polymorphisms of the human multidrug-resistance gene: Multiple sequence variations and correlation of one allele with p-glycoprotein expression and activity in vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 3473–3478. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Johnson, A.D.; Papp, A.C.; Kroetz, D.L.; Sadee, W. Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mrna stability. Pharmacogenet. Genomics 2005, 15, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Aubrun, F.; Salvi, N.; Coriat, P.; Riou, B. Sex- and age-related differences in morphine requirements for postoperative pain relief. Anesthesiology 2005, 103, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Coulbault, L.; Beaussier, M.; Verstuyft, C.; Weickmans, H.; Dubert, L.; Tregouet, D.; Descot, C.; Parc, Y.; Lienhart, A.; Jaillon, P.; et al. Environmental and genetic factors associated with morphine response in the postoperative period. Clin. Pharmacol. Ther. 2006, 79, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Dahmani, S.; Dupont, H.; Mantz, J.; Desmonts, J.M.; Keita, H. Predictive factors of early morphine requirements in the post-anaesthesia care unit (PACU). Br. J. Anaesth. 2001, 87, 385–389. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. Available online: http://www.Ncbi.Nlm.Nih.Gov/snp/?Term=rs1045642 (accessed on 12 December 2014).
- National Center for Biotechnology Information. Available online: http://www.Ncbi.Nlm.Nih.Gov/snp/?Term=rs1799971 (accessed on 12 December 2014).
- Choiniere, M.; Rittenhouse, B.E.; Perreault, S.; Chartrand, D.; Rousseau, P.; Smith, B.; Pepler, C. Efficacy and costs of patient-controlled analgesia versus regularly administered intramuscular opioid therapy. Anesthesiology 1998, 89, 1377–1388. [Google Scholar] [CrossRef] [PubMed]
- Grass, J.A. Patient-controlled analgesia. Anesth. Analg. 2005, 101, S44–S61. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, K.A.; Grond, S.; Freier, J.; Zech, D. Postoperative pain management and respiratory depression after thoracotomy: A comparison of intramuscular piritramide and intravenous patient-controlled analgesia using fentanyl or buprenorphine. J. Clin. Anesth. 1991, 3, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Macintyre, P.E.; Jarvis, D.A. Age is the best predictor of postoperative morphine requirements. Pain 1996, 64, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Sia, A.T.; Lim, Y.; Lim, E.C.; Goh, R.W.; Law, H.Y.; Landau, R.; Teo, Y.Y.; Tan, E.C. A118g single nucleotide polymorphism of human mu-opioid receptor gene influences pain perception and patient-controlled intravenous morphine consumption after intrathecal morphine for postcesarean analgesia. Anesthesiology 2008, 109, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Zalloua, P.A.; Xue, Y.; Khalife, J.; Makhoul, N.; Debiane, L.; Platt, D.E.; Royyuru, A.K.; Herrera, R.J.; Hernanz, D.F.; Blue-Smith, J.; et al. Y-chromosomal diversity in lebanon is structured by recent historical events. Am. J. Hum. Genet. 2008, 82, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Kroslak, T.; Laforge, K.S.; Gianotti, R.J.; Ho, A.; Nielsen, D.A.; Kreek, M.J. The single nucleotide polymorphism a118g alters functional properties of the human mu opioid receptor. J. Neurochem. 2007, 103, 77–87. [Google Scholar] [PubMed]
- Lotsch, J.; Skarke, C.; Grosch, S.; Darimont, J.; Schmidt, H.; Geisslinger, G. The polymorphism a118g of the human mu-opioid receptor gene decreases the pupil constrictory effect of morphine-6-glucuronide but not that of morphine. Pharmacogenetics 2002, 12, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Lotsch, J.; Zimmermann, M.; Darimont, J.; Marx, C.; Dudziak, R.; Skarke, C.; Geisslinger, G. Does the a118g polymorphism at the mu-opioid receptor gene protect against morphine-6-glucuronide toxicity? Anesthesiology 2002, 97, 814–819. [Google Scholar] [CrossRef] [PubMed]
- Finco, G.; Pintor, M.; Sanna, D.; Orru, G.; Musu, M.; de Conno, F.; Marchi, A.; Paribello, F.; D’Aloja, E. Is target opioid therapy within sight? Minerva Anestesiol. 2012, 78, 462–472. [Google Scholar] [PubMed]
- Chou, W.Y.; Wang, C.H.; Liu, P.H.; Liu, C.C.; Tseng, C.C.; Jawan, B. Human opioid receptor a118g polymorphism affects intravenous patient-controlled analgesia morphine consumption after total abdominal hysterectomy. Anesthesiology 2006, 105, 334–337. [Google Scholar] [CrossRef] [PubMed]
- Chou, W.Y.; Yang, L.C.; Lu, H.F.; Ko, J.Y.; Wang, C.H.; Lin, S.H.; Lee, T.H.; Concejero, A.; Hsu, C.J. Association of mu-opioid receptor gene polymorphism (a118g) with variations in morphine consumption for analgesia after total knee arthroplasty. Acta Anaesthesiol. Scand. 2006, 50, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Hayashida, M.; Nagashima, M.; Satoh, Y.; Katoh, R.; Tagami, M.; Ide, S.; Kasai, S.; Nishizawa, D.; Ogai, Y.; Hasegawa, J.; et al. Analgesic requirements after major abdominal surgery are associated with OPRM1 gene polymorphism genotype and haplotype. Pharmacogenomics 2008, 9, 1605–1616. [Google Scholar] [CrossRef] [PubMed]
- Campa, D.; Gioia, A.; Tomei, A.; Poli, P.; Barale, R. Association of ABCB1/MDR1 and OPRM1 gene polymorphisms with morphine pain relief. Clin. Pharmacol. Ther. 2008, 83, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Meineke, I.; Freudenthaler, S.; Hofmann, U.; Schaeffeler, E.; Mikus, G.; Schwab, M.; Prange, H.W.; Gleiter, C.H.; Brockmoller, J. Pharmacokinetic modelling of morphine, morphine-3-glucuronide and morphine-6-glucuronide in plasma and cerebrospinal fluid of neurosurgical patients after short-term infusion of morphine. Br. J. Clin. Pharmacol. 2002, 54, 592–603. [Google Scholar] [PubMed]
- Reyes-Gibby, C.C.; Shete, S.; Rakvag, T.; Bhat, S.V.; Skorpen, F.; Bruera, E.; Kaasa, S.; Klepstad, P. Exploring joint effects of genes and the clinical efficacy of morphine for cancer pain: OPRM1 and COMT gene. Pain 2007, 130, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Lotsch, J.; von Hentig, N.; Freynhagen, R.; Griessinger, N.; Zimmermann, M.; Doehring, A.; Rohrbacher, M.; Sittl, R.; Geisslinger, G. Cross-sectional analysis of the influence of currently known pharmacogenetic modulators on opioid therapy in outpatient pain centers. Pharmacogenet. Genomics 2009, 19, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Grosch, S.; Niederberger, E.; Lotsch, J.; Skarke, C.; Geisslinger, G. A rapid screening method for a single nucleotide polymorphism (SNP) in the human mor gene. Br. J. Clin. Pharmacol. 2001, 52, 711–714. [Google Scholar] [CrossRef] [PubMed]
- Nauck, M.; Stein, U.; von Karger, S.; Marz, W.; Wieland, H. Rapid detection of the C3435T polymorphism of multidrug resistance gene 1 using fluorogenic hybridization probes. Clin. Chem. 2000, 46, 1995–1997. [Google Scholar] [PubMed]
- Tabachnick, B.; Fidell, L. Using Multivariate Statistics, 4th ed.; Allyn and Bacon: Needham Heights, MA, USA, 2001. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hajj, A.; Peoc'h, K.; Laplanche, J.-L.; Jabbour, H.; Naccache, N.; Zeid, H.A.; Yazbeck, P.; Khabbaz, L.R. Genotyping Test with Clinical Factors: Better Management of Acute Postoperative Pain? Int. J. Mol. Sci. 2015, 16, 6298-6311. https://doi.org/10.3390/ijms16036298
Hajj A, Peoc'h K, Laplanche J-L, Jabbour H, Naccache N, Zeid HA, Yazbeck P, Khabbaz LR. Genotyping Test with Clinical Factors: Better Management of Acute Postoperative Pain? International Journal of Molecular Sciences. 2015; 16(3):6298-6311. https://doi.org/10.3390/ijms16036298
Chicago/Turabian StyleHajj, Aline, Katell Peoc'h, Jean-Louis Laplanche, Hicham Jabbour, Nicole Naccache, Hicham Abou Zeid, Patricia Yazbeck, and Lydia Rabbaa Khabbaz. 2015. "Genotyping Test with Clinical Factors: Better Management of Acute Postoperative Pain?" International Journal of Molecular Sciences 16, no. 3: 6298-6311. https://doi.org/10.3390/ijms16036298
APA StyleHajj, A., Peoc'h, K., Laplanche, J.-L., Jabbour, H., Naccache, N., Zeid, H. A., Yazbeck, P., & Khabbaz, L. R. (2015). Genotyping Test with Clinical Factors: Better Management of Acute Postoperative Pain? International Journal of Molecular Sciences, 16(3), 6298-6311. https://doi.org/10.3390/ijms16036298