Exploring the Attractiveness of Residential Areas for Human Activities Based on Shared E-Bike Trajectory Data
<p>Study area and trajectory data. Part <b>A</b> shows the study area in Tengzhou, and the green dots indicate the trajectory data for the shared e-bikes. Part <b>B</b> shows the location of Tengzhou City in Shandong Province. Part <b>C</b> shows the spatial pattern of the trajectory data in Tengzhou. Part <b>D</b> illustrates the attributes of raw trajectory GPS points.</p> "> Figure 2
<p>The overall workflow of the study.</p> "> Figure 3
<p>Hourly distribution of e-bikes daily usage. (<b>A</b>) Hourly distribution of e-bike daily usage from Monday to Sunday. (<b>B</b>) Hourly distribution of e-bike average daily usage on weekdays and weekends.</p> "> Figure 4
<p>Variation curve between the components and the Bayesian information criterion (BIC) value. The <span class="html-italic">x</span>-axis is the number of Gaussian components, labeled n_components. The <span class="html-italic">y</span>-axis is the BIC value corresponding to different components.</p> "> Figure 5
<p>Distribution of the origin points during morning rush hours. Part <b>A</b> shows the discrete distribution of the origin points of trips in the morning rush hour period. Part <b>B</b> is the simulation results of the Gaussian mixture model (GMM). <span class="html-italic">A</span> to <span class="html-italic">N</span> denote Gaussian components with different shapes, reflecting the nonuniform point density.</p> "> Figure 6
<p>Distribution of the points of interest (POIs) data and hot spots at different levels.</p> "> Figure 7
<p>Quantitative analysis of POI and activity intensity data. Part <b>A</b> shows the pixels with a low activity intensity (close to zero) and large number of POIs. Part <b>B</b> highlights the pixels with a high activity intensity and few POIs.</p> "> Figure 8
<p>Statistical results for hotspot activities in different interval values. (<b>A</b>) Statistical results of POI count for different hotspot activity values. (<b>B</b>) Statistical results of the raw pixel count for different hotspot activity values. Note: The pie chart shows the proportions of POI data and raw pixels corresponding to hotspot activity value in three different ranges.</p> "> Figure 9
<p>Delineated results of residential areas based on the Commuting Activity and Residential Area (CARA) model.</p> "> Figure 10
<p>Hot spot results for different data sets. (<b>A</b>) Detected result of hot spots for the data set in the evening rush period. (<b>B</b>) Detected result of hot spots for the data set in the morning–evening rush period.</p> "> Figure 11
<p>Diverse locations of hot spots in the evening peak period. The green circles indicate the hot spots associated with residential areas, the red circles indicate the hot spots associated with shopping malls, and the prink circle indicate the hot spots associated with entertainment.</p> ">
Abstract
:1. Introduction
2. Related Works
3. Materials and Methods
3.1. Study Area and Dataset
3.2. Methodology
3.2.1. Gaussian Mixture Model
3.2.2. Bayesian Information Criterion
4. Results
4.1. Temporal Mobility Pattern of Shared E-Bikes
4.2. Hot Spot Detection Based on the Gaussian Mixture Model
4.3. CARA Model Construction
5. Discussion
5.1. Delineated Result of Urban Residential Areas and Evaluation
5.2. Influencing Factors for the CARA Model
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yuan, J.; Zheng, Y.; Xie, X. Discovering Regions of Different Functions in a City Using Human Mobility and POIs. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, Beijing, China, 12–16 August 2012. [Google Scholar]
- Liu, X.; Kang, C.; Gong, L.; Liu, Y. Incorporating spatial interaction patterns in classifying and understanding urban land use. Int. J. Geogr. Inf. Sci. 2016, 30, 334–350. [Google Scholar] [CrossRef]
- Pan, G.; Qi, G.; Zhang, W.; Li, S.; Wu, Z.; Yang, L.T. Trace analysis and mining for smart cities:Issues, methods, and application. IEEE Commun. Mag. 2013, 51, 120–126. [Google Scholar] [CrossRef]
- Mou, N.; Zhang, H.; Chen, J.; Zhang, L.; Dai, H. A Review on the Application Research of Trajectory Data Mining in Urban Cities. J. Geo-Inf. Sci. 2015, 17, 1136–1142. [Google Scholar] [CrossRef]
- Reades, J.; Calabrese, F.; Ratti, C. Eigenplaces: Analysing cities using the space-time structure of the mobile phone network. Environ. Plan. B Plan. Des. 2009, 36, 824–836. [Google Scholar] [CrossRef] [Green Version]
- Calabrese, F.; Reades, J.; Reades, J. Eigenplaces: Segmenting Space through Digital Signatures. IEEE Pervasive Comput. 2010, 9, 78–84. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.; Xiao, Y.; Gao, S. Urban land uses and traffic ‘source-sink areas’: Evidence from GPS-enabled taxi data in Shanghai. Landsc. Urban Plan. 2012, 106, 73–87. [Google Scholar] [CrossRef]
- Pan, G.; Qi, G.; Wu, Z.; Zhang, D.; Li, S. Land-Use Classification Using Taxi GPS Trace. IEEE Trans. Intell. Transp. Syst. 2013, 14, 113–123. [Google Scholar] [CrossRef]
- Xu, H.; Ying, J. Recognizing Social Function of Urban Regions by Using Data of Public Bicycle Systems. Chin. J. Electron. 2019, 28, 13–20. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, S.; Gong, L.; Zhi, Y. Social Sensing:A New Approach to Understanding Our Socioeconomic Environments. Ann. Assoc. Am. Geogr. 2015, 105, 512–530. [Google Scholar] [CrossRef]
- Zhou, T.; Liu, X.; Qian, Z.; Chen, H.; Tao, F. Automatic Identification of the Social Functions of Areas of Interest (AOIs) Using the Standard Hour-Day-Spectrum Approach. ISPRS Int. J. Geo-Inf. 2020, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- Inagaki, T.; Mimura, Y.; Ando, R. An Analysis on Excursion Characteristics of Electric Assist Bicycles by Travel Behavioral Comparison Based on Trajectory Data. In Proceedings of the 2012 15th International IEEE Conference on Intelligent Transportation Systems, ITSC 2012, Anchorage, AK, USA, 16–19 September 2012; pp. 433–437. [Google Scholar]
- Plazier, P.A.; Weitkamp, G.; van den Berg, A.E. “Cycling was never so easy!” An analysis of e-bike commuters’ motives, travel behaviour and experiences using GPS-tracking and interviews. J. Transp. Geogr. 2017, 65, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Lopez, A.J.; Astegiano, P.; Gautama, S.; Ochoa, D.; Tampère, C.M.J.; Beckx, C. Unveiling E-Bike Potential for Commuting Trips from GPS Traces. ISPRS Int. J. Geo-Inf. 2017, 6, 190. [Google Scholar] [CrossRef] [Green Version]
- Campbell, A.A.; Cherry, C.R.; Ryerson, M.S.; Yang, X. Factors influencing the choice of shared bicycles and shared electric bikes in Beijing. Transp. Res. Part C Emerg. Technol. 2016, 67, 399–414. [Google Scholar] [CrossRef] [Green Version]
- Edge, S.; Dean, J.; Cuomo, M.; Keshav, S. Exploring e-bikes as a mode of sustainable transport: A temporal qualitative study of the perspectives of a sample of novice riders in a Canadian city. Can. Geogr. 2018, 62, 384–397. [Google Scholar] [CrossRef]
- Meixuan, D. Factors Affecting E-bike Mode Choice in a Medium-sized Chinese City. Am. J. Transp. Logist. 2018, 1, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Cherry, C.R.; Weinert, J.X.; Xinmiao, Y. Comparative environmental impacts of electric bikes in China. Transp. Res. Part D 2009, 14, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Li, Q.; Zhang, Y. Urban Residential Land Suitability Analysis Combining Remote Sensing and Social Sensing Data: A Case Study in Beijing, China. Sustainability 2019, 11, 2255. [Google Scholar] [CrossRef] [Green Version]
- Antipova, A.; Wang, F.; Wilmot, C. Urban land uses, socio-demographic attributes and commuting: A multilevel modeling approach. Appl. Geogr. 2011, 31, 1010–1018. [Google Scholar] [CrossRef]
- Yue, Y.; Lan, T.; Yeh, A.G.O.; Li, Q.-Q. Zooming into individuals to understand the collective: A review of trajectory-based travel behaviour studies. Travel Behav. Soc. 2014, 1, 69–78. [Google Scholar] [CrossRef]
- Maat, K.; Wee, B.V.; Stead, D. Land use and travel behaviour: Expected effects from the perspective of utility theory and activity-based theories. Environ. Plan. B Plan. Des. 2005, 32, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Andrade, R.; Alves, A.; Bento, C. POI Mining for Land Use Classification: A Case Study. ISPRS Int. J. Geo-Inf. 2020, 9, 493. [Google Scholar] [CrossRef]
- Jiang, S.; Alves, A.; Rodrigues, F.; Ferreira, J., Jr.; Pereira, F.C. Mining point-of-interest data from social networks for urban land use classification and disaggregation. Comput. Environ. Urban Syst. 2015, 53, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wang, R.; Chen, B.; Hou, Y.; Qu, D. Dynamic Identification of Urban Functional Areas and Visual Analysis of Time-varying Patterns Based on Trajectory Data and POIs. J. Comput.-Aided Des. Comput. Graph. 2018, 30, 1728–1740. [Google Scholar] [CrossRef]
- Spaccapietra, S.; Parent, C.; Damiani, M.L.; Macedo, J.A.D.; Porto, F.; Vangenot, C. A conceptual view on trajectories. Data Knowl. Eng. 2008, 65, 126–146. [Google Scholar] [CrossRef] [Green Version]
- Mazimpaka, J.; Timpf, S. Exploring the Potential of Combining Taxi GPS and Flickr Data for Discovering Functional Regions. In AGILE 2015; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Qian, Z.; Liu, X.; Tao, F.; Zhou, T. Identification of Urban Functional Areas by Coupling Satellite Images and Taxi GPS Trajectories. Remote Sens. 2020, 12, 2449. [Google Scholar] [CrossRef]
- Yuan, N.J.; Zheng, Y.; Xie, X.; Wang, Y.; Zheng, K.; Xiong, H. Discovering Urban Functional Zones Using Latent Activity Trajectories. IEEE Trans. Knowl. Data Eng. 2015, 27, 712–725. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, S.; Xue, G.; Gong, D. Soft Sensor with Deep Learning for Functional Region Detection in Urban Environments. Senors 2020, 20, 3348. [Google Scholar] [CrossRef]
- Gao, Q.; Fu, J.; Yu, Y.; Tang, X. Identification of urban regions’functions in Chengdu, China, based on vehicle trajectory data. PLoS ONE 2019, 14, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Pei, T.; Sobolevsky, S.; Shaw, S.-L.; Zhou, C. A new insight into land use classification based on aggregated mobile phone data. Int. J. Geogr. Inf. Sci. 2014, 28, 1988–2007. [Google Scholar] [CrossRef] [Green Version]
- Boarnet, M.; Crane, R. The influence of land use on travel behavior: Specification and estimation strategies. Transp. Res. Part A Policy Pract. 2001, 35, 823–845. [Google Scholar] [CrossRef]
- Gao, S.; Janowicz, K.; Couclelis, H. Extracting urban functional regions from points of interest and human activities on location-based social networks. Trans. GIS 2017, 21, 446–467. [Google Scholar] [CrossRef]
- Terroso-Saenz, F.; Muñoz, A. Land use discovery based on Volunteer Geographic Information classification. Expert Syst. Appl. 2020, 140, 112892–112906. [Google Scholar] [CrossRef]
- Hong, J.; Shen, Q.; Zhang, L. How do built-environment factors affect travel behavior? A spatial analysis at different geographic scales. Transportation 2014, 41, 419–440. [Google Scholar] [CrossRef]
- Handy, S.; Cao, X.; Mokhtarian, P.L. Self-Selection in the Relationship between the Built Environment and Walking. J. Am. Plan. Assoc. 2006, 72, 55–74. [Google Scholar] [CrossRef]
- Faghih-Imani, A.; Eluru, N.; El-Geneidy, A.M.; Rabbat, M.; Haq, U. How land-use and urban form impact bicycle flows: Evidence from the bicycle-sharing system (BIXI) in Montreal. J. Transp. Geogr. 2014, 41, 306–314. [Google Scholar] [CrossRef]
- El-Ass, W.; Mahmoud, M.S.; Habib, K.N. Effects of built environment and weather on bike sharing demand: A station level analysis of commercial bike sharing in Toronto. Transportation 2015, 44, 589–613. [Google Scholar] [CrossRef]
- Fishman, E.; Wei, H. Bikeshare: A Review of Recent Literature. Urban Transp. China 2016, 36, 92–113. [Google Scholar] [CrossRef]
- Ji, Z.; Huang, Y.; Xia, Y.; Zheng, Y. A robust modified Gaussian mixture model with rough set for image segmentation. Neurocomputing 2017, 266, 550–565. [Google Scholar] [CrossRef]
- Shi, X.; Li, Y.; Zhao, Q. Flexible Hierarchical Gaussian Mixture Model for High-Resolution Remote Sensing Image Segmentation. Remote Sens. 2020, 12, 1219. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Chau, K. A new image thresholding method based on Gaussian mixture model. Appl. Math. Comput. 2008, 205, 899–907. [Google Scholar] [CrossRef] [Green Version]
- Mehrjou, A.; Hosseini, R.; Araabi, B.N. Improved Bayesian information criterion for mixture model selection. Pattern Recognit. Lett. 2016, 69, 22–27. [Google Scholar] [CrossRef]
- Schwarz, G.E. Estimating the Dimension of a Model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, Y.; Liang, D. A novel method for image segmentation based on the BIC. J. Liaoning Tech. Univ. (Nat. Sci.) 2016, 35, 1359–1362. [Google Scholar] [CrossRef]
- Cheng, X.; Li, C.; Du, W.; Shen, J.; Dai, Z. Trip Extraction of Shared Electric Bikes Based on Multi-Rule-Constrained Homomorphic Linear Clustering Algorithm. ISPRS Int. J. Geo-Inf. 2019, 8, 526. [Google Scholar] [CrossRef] [Green Version]
- Chainey, S.; Reid, S.; Stuart, N. When is a hotspot a hotspot? A procedure for creating statistically robust hotspot maps of crime. In Socio-Economic Applications of Geographic Information Science; Kidner, D., Higgs, G., White, S., Eds.; Taylor and Francis: London, UK, 2002; pp. 22–36. [Google Scholar]
- Borruso, G.; Porceddu, A. A. A Tale of Two Cities: Density Analysis of CBD on Two Midsize Urban Areas in Northeastern Italy. In Geocomputation and Urban Planning; Murgante, B., Borruso, G., Lapucci, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 37–56. [Google Scholar] [CrossRef]
- He, Q.; He, W.; Song, Y.; Wu, J.; Yin, C.; Mou, Y. The impact of urban growth patterns on urban vitality in newly built-up areas based on an association rules analysis using geographical ‘big data’. Land Use Policy 2018, 78, 726–738. [Google Scholar] [CrossRef]
- Xia, Z.; Li, H.; Chen, Y.; Liao, W. Identify and Delimitate Urban Hotspot Areas Using a Network-Based Spatiotemporal Field Clustering Method. ISPRS Int. J. Geo-Inf. 2019, 8, 344. [Google Scholar] [CrossRef] [Green Version]
- Maantay, J.A.; Maroko, A.R.; Herrmann, C. Mapping Population Distribution in the Urban Environment: The Cadastral-based Expert Dasymetric System (CEDS). Cartogr. Geogr. Inf. Sci. 2007, 34, 77–102. [Google Scholar] [CrossRef]
Hot spots | Morning | Evening | Morning and Evening |
---|---|---|---|
Residential areas | 29 | 28 | 30 |
Shopping malls | 0 | 4 | 3 |
Entertainment venues | 0 | 1 | 1 |
Villages | 3 | 3 | 4 |
Residential relevance (%) | 90.6 | 77.8 | 78.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, X.; Du, W.; Li, C.; Yang, L.; Xu, L. Exploring the Attractiveness of Residential Areas for Human Activities Based on Shared E-Bike Trajectory Data. ISPRS Int. J. Geo-Inf. 2020, 9, 742. https://doi.org/10.3390/ijgi9120742
Cheng X, Du W, Li C, Yang L, Xu L. Exploring the Attractiveness of Residential Areas for Human Activities Based on Shared E-Bike Trajectory Data. ISPRS International Journal of Geo-Information. 2020; 9(12):742. https://doi.org/10.3390/ijgi9120742
Chicago/Turabian StyleCheng, Xiaoqian, Weibing Du, Chengming Li, Leiku Yang, and Linjuan Xu. 2020. "Exploring the Attractiveness of Residential Areas for Human Activities Based on Shared E-Bike Trajectory Data" ISPRS International Journal of Geo-Information 9, no. 12: 742. https://doi.org/10.3390/ijgi9120742
APA StyleCheng, X., Du, W., Li, C., Yang, L., & Xu, L. (2020). Exploring the Attractiveness of Residential Areas for Human Activities Based on Shared E-Bike Trajectory Data. ISPRS International Journal of Geo-Information, 9(12), 742. https://doi.org/10.3390/ijgi9120742