An Adaptive Cutoff Frequency Selection Approach for Fast Fourier Transform Method and Its Application into Short-Term Traffic Flow Forecasting
<p>The structure of a sequential data assimilation (S-DA) system [<a href="#B64-ijgi-09-00731" class="html-bibr">64</a>].</p> "> Figure 2
<p>Relationships between computation amount and calculation points for discrete Fourier transform (DFT) and fast Fourier transform (FFT) methods.</p> "> Figure 3
<p>The original traffic flow sequence data.</p> "> Figure 4
<p>Noises separated from the traffic flow measurements using the FFT method: (<b>a</b>)–(<b>d</b>) noises separated under four different cutoff frequencies; (<b>e</b>)–(<b>h</b>) original data and rebuilt data with noises separated under four different cutoff frequencies.</p> "> Figure 5
<p>Flowchart of the adaptive cutoff frequency selection (A-CFS) algorithm.</p> "> Figure 6
<p>The traffic flow signals in the frequency domain after applying the FFT method.</p> "> Figure 7
<p>Study area: (<b>a</b>) paths near Birmingham; (<b>b</b>) part paths in Area I; (<b>c</b>) part paths in Area II; (<b>d</b>) part paths in Area III; (<b>e</b>) part paths in Area IV.</p> "> Figure 8
<p>Noise separated from the traffic flow measurement data using the discrete wavelet transform (DWT) method: (<b>a</b>)–(<b>d</b>) noises separated from <span class="html-italic">i</span>-level decompositions; (<b>e</b>)–(<b>h</b>) original data and approximated data from <span class="html-italic">i</span>-level decompositions.</p> "> Figure 9
<p>Decomposition of the original signal by the ensemble empirical mode decomposition (EEMD) method.</p> "> Figure 10
<p>Comparison of raw traffic flow data and reconstructed data from (<b>a</b>) IMF2 to Residuals; (<b>b</b>) IMF3 to Residuals; (<b>c</b>) IMF4 to Residuals; (<b>d</b>) IMF5 to Residuals.</p> "> Figure 11
<p>MAE and RMSE values for the cutoff frequencies from <span class="html-italic">low_fs</span> to <span class="html-italic">fs</span>: (<b>a</b>) values on a workday, Monday; (<b>b</b>) values on a non-workday, Saturday.</p> "> Figure 12
<p>Traffic flow forecasting results on Thursday of: (<b>a</b>) path 568(LM932); (<b>b</b>) path 2091(AL2670); (<b>c</b>) path 8655(LM168); (<b>d</b>) path 8314 (LM188).</p> "> Figure 13
<p>Traffic flow forecasting results on Sunday of: (<b>a</b>) path 568(LM932); (<b>b</b>) path 2091(AL2670); (<b>c</b>) path 8655(LM168); (<b>d</b>) path 8314 (LM188).</p> "> Figure 14
<p>Average MAE, RMSE, and MAPE values of <span class="html-italic">Models 1</span> and <span class="html-italic">2</span> from Monday to Sunday in (<b>a</b>) Area I; (<b>b</b>) Area II; (<b>c</b>) Area III; (<b>d</b>) Area IV.</p> ">
Abstract
:1. Introduction
2. Theoretical Background
2.1. Sequential Data Assimilation System for Short-Term Traffic Flow Forecasting
2.2. Fast Fourier Transform Method
3. Adaptive Cutoff Frequency Selection in Fast Fourier Transform Method
- (1)
- Collect traffic flow data T_F (n, m) from the same days (for instance, consecutive Mondays) during m consecutive weeks. The data length of each day is n. The maximum signal recognition frequency is mf. It can be calculated by based on the Nyquist sampling theorem, where is the known signal sampling frequency. As the signals beyond the maximum signal recognition frequency mf are distorted, it will not be considered further.
- (2)
- Get the median values of the traffic flow data Med_T_F (n, 1) from m days.
- (3)
- Obtain the frequency domain signal F_T_F (n, m) of the original traffic flow data T_F (n, m). The length of the signal in the time and frequency domain is the same.
- (4)
- Set the lower frequency low_f and the threshold value T from low_f to mf. The searching length is defined as and , where is the number of discrete frequency points in the frequency domain. The reason for setting the lower frequency is that useful information is mainly focused within a certain lower frequency range, as shown in Figure 6. It presents the traffic flow signals of path 568 (LM932), shown in Figure 3, in the frequency domain after applying the FFT method. The value of low_f is set to be 0.25 mf in further calculations.
- (5)
- Use the threshold value T to process the frequency-domain signal. The high-frequency noise whose frequency is higher than the threshold value T will be filtered out to obtain the de-noised frequency-domain signal.
- (6)
- Acquire the de-noised time-domain signal P_T_F (n, m) without noises using the inverse FFT method.
- (7)
- Calculate the quadratic sum values E2 (m, T) = (P_T_F (n, m)- Med_T_F (n, 1))2.
- (8)
- Find the smallest values E2 (m, T) of each traffic flow data and take these m corresponding T values as the proper cutoff frequency to remove noises of each traffic flow dataset.
4. Empirical Study Design
5. Results Analysis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dee, D. Simplification of the Kalman filter for meteorological data assimilation. Q. J. Roy Meteor. Soc. 1991, 117, 365–384. [Google Scholar] [CrossRef]
- Houser, P.; Shuttleworth, W.; Famiglietti, J.; Gupta, H.; Syed, K.; Goodrich, D. Integration of soil moisture remote sensing and hydrologic modeling using data assimilation. Water Resour. Res. 1989, 34, 3405–3420. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, D. An integrated approach to hydrologic data assimilation: Interpolation, smoothing, and filtering. Adv. Water Resour. 2002, 25, 1275–1286. [Google Scholar] [CrossRef]
- Brasseur, P. Ocean data assimilation using sequential methods based on the Kalman filter. In Ocean Weather Forecasting; Chassinget, E., Verron, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 271–361. [Google Scholar]
- Carrassi, A.; Vannitsem, S.; Nicolis, C. Model error and sequential data assimilation: A deterministic formulation. Q. J. Roy Meteor. Soc. 2008, 134, 1297–1313. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.; da Silva, A. Data assimilation in the presence of forecast bias. Q. J. Roy Meteor. Soc. 1998, 124, 269–295. [Google Scholar] [CrossRef]
- Hamill, T.; Whitaker, J. Accounting for the error due to unresolved scales in ensemble data assimilation: A comparison of different approaches. Mon. Weather Rev. 2005, 133, 3132–3147. [Google Scholar] [CrossRef]
- Houtekamer, P.; Herschel, L.; Mitchell, A. Model error representation in an operational ensemble kalman filter. Mon. Weather Rev. 2009, 137, 2126–2143. [Google Scholar] [CrossRef]
- Reichle, R. Data assimilation methods in the earth science. Adv. Water Resour. 2008, 31, 1411–1418. [Google Scholar] [CrossRef]
- Jin, S.; Wang, D.H.; Xu, C.; Ma, D. Short-term traffic safety forecasting using Gaussian mixture model and Kalman filter. J. Zhejiang Univ. Sci. A 2013, 4, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Huang, W.; Williams, B.M. Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification. Transp. Res. C-Emer. 2014, 43, 50–64. [Google Scholar] [CrossRef]
- Weng, X.X.; Tan, G.X.; Yao, S.S.; Huang, Z. Traffic flow characteristics and short-term prediction model of urban intersection. JTTE 2006, 6, 103–107. [Google Scholar]
- Qin, Z.H. The Urban Road Short-Term Traffic Flow Prediction Research. Appl. Mech. Mater. 2013, 423, 2954–2956. [Google Scholar] [CrossRef]
- Gong, Y.S.; Yi, Z. Research of Short-Term Traffic Volume Prediction Based on KALMAN Filtering. In Proceedings of the 2013 6th International Conference on Intelligent Networks and Intelligent Systems (ICINIS), Shenyang, China, 1–3 November 2013; pp. 99–102. [Google Scholar]
- Xu, Y.; Chen, H.; Kong, Q.; Zhai, X.; Liu, Y. Urban traffic flow prediction: A spatio-temporal variable selection-based approach. J. Adv. Transp. 2016, 50, 489–506. [Google Scholar] [CrossRef] [Green Version]
- Voort, M.V.D.; Dougherty, M.; Watson, S. Combining kohonen maps with arima time series models to forecast traffic flow. Transp. Res. C-Emer. 1996, 4, 307–318. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.L.; Demetsky, M.J. Traffic Flow Forecasting: Comparison of Modeling Approaches. J. Transp. Eng. 1997, 123, 261–266. [Google Scholar] [CrossRef]
- Smith, B.L.; Williams, B.M.; Oswald, R.K. Comparison of parametric and nonparametric models for traffic flow forecasting. Transp. Res. C-Emer. 2002, 10, 303–321. [Google Scholar] [CrossRef]
- Yin, H.; Wang, S.; Xu, J.; Wong, C.K. Urban traffic flow prediction using a fuzzy-neural approach. Transp. Res. C-Emer. 2002, 10, 85–98. [Google Scholar] [CrossRef]
- Stathopoulos, A.; Karlaftis, M.G. A multivariate state space approach for urban traffic flow modeling and prediction. Transp. Res. C-Emer. 2003, 11, 121–135. [Google Scholar] [CrossRef]
- Smith, P.J.; Thornhill, G.D.; Dance, S.L.; Lawless, A.S.; Mason, D.C.; Nichols, N.K. Data assimilation for state and parameter estimation: Application to morphodynamic modelling. Q. J. Roy Meteor. Soc. 2013, 139, 314–327. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, Y.; Ye, Z. Short-Term Traffic Volume Forecasting Using Kalman Filter with Discrete Wavelet Decomposition. Comput. Aided Civ. Inf. 2007, 22, 326–334. [Google Scholar] [CrossRef]
- Shen, G.J.; Kong, X.J.; Chen, X. Short-term Traffic Flow Intelligent Hybrid Forecasting Model and Its Application. Control Eng. Appl. Inf. 2011, 13, 65–73. [Google Scholar]
- Rakshit, S.; Ghosh, A.; Shankar, B.U. Fast mean filtering technique (FMFT). Pattern Recogn. 2007, 40, 890–897. [Google Scholar] [CrossRef]
- Kindermann, S.; Osher, S.; Jones, P.W. Deblurring and Denoising of Images by Nonlocal Functionals. Multiscale Model Sim. 2005, 4, 1091–1115. [Google Scholar] [CrossRef]
- Gupta, V.; Chaurasia, V.; Shandilya, M. Random-valued impulse noise removal using adaptive dual threshold median filter. J. Vis. Commun. Image R. 2015, 26, 296–304. [Google Scholar] [CrossRef]
- Xu, Y.; Weaver, J.B.; Healy, D.M.; Lu, J. Wavelet transform domain filters: A spatially selective noise filtration technique. IEEE T Image Process 1994, 3, 747–758. [Google Scholar]
- Zheng, T.; Girgis, A.A.; Makram, E.B. A hybrid wavelet-Kalman filter method for load forecasting. Electr. Power Syst. Res. 2000, 54, 11–17. [Google Scholar] [CrossRef]
- Madheswari, K.; Venkateswaran, N. Swarm Intelligence based Optimization in Thermal Image Fusion using Dual Tree Discrete Wavelet Transform. Quant. InfraRed Therm. J. 2015, 14, 1–20. [Google Scholar]
- Aravindan, T.E.; Seshasayanan, R. Medical image DENOISING scheme using discrete wavelet transform and optimization with different noises. Concurr. Comp. Pract. E 2019, 2019, 5540. [Google Scholar] [CrossRef]
- Strmbergsson, D.; Marklund, P.; Berglund, K.; Saari, J.; Thomson, A. Mother wavelet selection in the discrete wavelet transform for condition monitoring of wind turbine drivetrain bearings. Wind Energy 2019, 22, 1–12. [Google Scholar] [CrossRef]
- Enamamu, T.; Otebolaku, A.; Marchang, J.; Dany, J. Continuous m-Health Data Authentication Using Wavelet Decomposition for Feature Extraction. Sensors. 2020, 20, 5690. [Google Scholar] [CrossRef]
- He, M.; Nian, Y.; Xu, L.; Qiao, L.; Wang, W. Adaptive Separation of Respiratory and Heartbeat Signals among Multiple People Based on Empirical Wavelet Transform Using UWB Radar. Sensors 2020, 20, 4913. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.Y.; Cabatac, M.T.A.M. Fault Detection, Classification, and Location by Static Switch in Microgrids Using Wavelet Transform and Taguchi-Based Artificial Neural Network. IEEE Syst. J. 2020, 14, 2725–2735. [Google Scholar] [CrossRef]
- Kirar, B.S.; Agrawal, D.K.; Kirar, S. Glaucoma Detection Using Image Channels and Discrete Wavelet Transform. IETE J. Res. 2020, 2020, 1–8. [Google Scholar] [CrossRef]
- Lee, C.; Cheng, Y. Motor Fault Detection Using Wavelet Transform and Improved PSO-BP Neural Network. Processes 2020, 8, 1322. [Google Scholar] [CrossRef]
- Zhang, D.; Cai, C.; Chen, S.; Ling, L. An improved genetic algorithm for optimizing ensemble empirical mode decomposition method. J. Syst. Sci. Syst. Eng. 2019, 7, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Guan, B.; Wu, S.; Heravi, S. Optimal forecast combination based on ensemble empirical mode decomposition for agricultural commodity futures prices. J. Forecast. 2020, 3, 1–10. [Google Scholar] [CrossRef]
- Singh, G.; Kaur, M.; Singh, B. Detection of Epileptic Seizure EEG Signal Using Multiscale Entropies and Complete Ensemble Empirical Mode Decomposition. Wireless Pers. Commun. 2020, 2020, 1–20. [Google Scholar]
- Yang, Y.; Wang, J. Forecasting wavelet neural hybrid network with financial ensemble empirical mode decomposition and mcid evaluation. Expert Syst. Appl. 2020, 166, 1. [Google Scholar] [CrossRef]
- Alam, M.M.; Rehman, S.; Al-Hadhrami, L.M.; Meyer, J.P. Extraction of the inherent nature of wind speed using wavelets and FFT. Energy Sustain. Dev. 2014, 22, 34–47. [Google Scholar] [CrossRef] [Green Version]
- Kumara, U.; Ridder, K.D. GARCH modelling in association with FFT–ARIMA to forecast ozone episode. Atmos. Environ. 2010, 44, 4252–4265. [Google Scholar] [CrossRef]
- Li, L.; Cai, H.; Han, H.; Jiang, Q.; Ji, H. Adaptive short-time Fourier transform and synchrosqueezing transform for non-stationary signal separation. Signal Process. 2020, 166, 107231.1–107231.15. [Google Scholar] [CrossRef]
- Huang, N.E.; Wu, M.L.C.; Long, S.R.; Shen, S.S.P.; Qu, W.; Gloersen, P.; Fan, K.L. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. P Roy Soc. A Math Phys. 2003, 459, 2317–2345. [Google Scholar] [CrossRef]
- Gu, Y.S.; Wei, D.; Zhao, M.F. A New Intelligent Model for Short Time Traffic Flow Prediction via EMD and PSO–SVM. LNEE 2012, 113, 59–66. [Google Scholar]
- Cheng, C.; Wei, L.Y. A novel time-series model based on empirical mode decomposition for forecasting TAIEX. Econ. Model. 2014, 36, 136–141. [Google Scholar] [CrossRef]
- Ümit, C.B.; Şeyda, E. Improving forecasting accuracy of time series data using a new ARIMA-ANN hybrid method and empirical mode decomposition. Neurocomputing 2019, 361, 151–163. [Google Scholar]
- Cheng, L.; Bao, Y.; Tang, L.; Di, H. Very-short-term load forecasting based on empirical mode decomposition and deep neural network. IEEJ T Electr. Electr. 2020, 15, 1–7. [Google Scholar] [CrossRef]
- Qian, Y.; Yang, J.; Zhang, H.; Shen, C.; Wu, Y. An Hourly Prediction Model of Relativistic Electrons Based on Empirical Mode Decomposition. Space Weather. 2020, 18, 1–34. [Google Scholar] [CrossRef]
- Wang, Z.X.; Zhao, Y.F.; He, L.Y. Forecasting the monthly iron ore import of China using a model combining empirical mode decomposition, non-linear autoregressive neural network, and autoregressive integrated moving average. Appl. Soft Comput. 2020, 94, 1–11. [Google Scholar] [CrossRef]
- Ye, X.; Hu, Y.; Shen, J.; Feng, R.; Zhai, G. An improved empirical mode decomposition based on adaptive weighted rational quartic spline for rolling bearing fault diagnosis. IEEE Access 2020, 99, 1–11. [Google Scholar] [CrossRef]
- Chen, B.; Qin, Q.; Zhang, X.G. Image De-Noising in Mixed Noises Based on Wavelet Transform. Adv. Mater. 2012, 562–564, 1861–1865. [Google Scholar] [CrossRef]
- Aravindan, T.E.; Seshasayanan, R. Denoising Brain Images with the Aid of Discrete Wavelet Transform and Monarch Butterfly Optimization with Different Noises. J. Med. Syst 2018, 42, 207.1–207.13. [Google Scholar] [CrossRef] [PubMed]
- Vago, J.L.; Vermeulen, H.C.; Verga, A. Fast Fourier transform based image compression algorithm optimized for speckle interferometer measurements. J. Nanotechnol. Eng. Med. 1997, 5, 1343–1350. [Google Scholar] [CrossRef]
- Ganjali, M.R.; Faridbod, F.; Nasli-Esfahani, E.; Larijani, B.; Rashedi, H.; Norouzi, P. FFT Continuous Cyclic Voltammetry Triglyceride Dual Enzyme Biosensor Based on MWCNTs-CeO2. Int. J. Electrochem. Sci 2010, 5, 1422–1433. [Google Scholar]
- Zhao, Y.; Jia, X.; Zhang, Y.; Peng, X. Dynamic Analysis of an Offshore Platform with Compressor Packages-Application of the Substructure Method. J. Offshore Mech. Arct 2018, 140, 041303.1–041303.10. [Google Scholar] [CrossRef]
- Yu, B.; Gabriel, D.; Noble, L.; An, K.N. Estimate of the Optimum Cutoff Frequency for the Butterworth Low-Pass Digital Filter. J. Appl. Biomech. 1999, 15, 319–329. [Google Scholar] [CrossRef]
- Benson, R.F. Ordinary mode auroral kilometric radiation, with harmonics, observed by ISIS 1. Radio Sci. 2016, 19, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Nagano, A.; Komura, T.; Himeno, R.; Fukashiro, S. Optimal Digital Filter Cutoff Frequency of Jumping Kinematics Evaluated Through Computer Simulation. J. Sport Health Sci. 2003, 1, 196–201. [Google Scholar] [CrossRef]
- Burkhart, T.A.; Dunning, C.E.; Andrews, D.M. Determining the optimal system-specific cut-off frequencies for filtering in-vitro upper extremity impact force and acceleration data by residual analysis. J. Biomech. 2011, 44, 2728–2731. [Google Scholar] [CrossRef]
- Deng, Y.; He, G.; Kuppusamy, P.; Zweier, J.L. Deconvolution algorithm based on automatic cutoff frequency selection for EPR imaging. J. Magn. Reson. 2010, 50, 444–448. [Google Scholar] [CrossRef]
- Mahyari, A.G.; Yazdi, M. Fusion of panchromatic and multispectral images using temporal Fourier transform. IET Image Process 2010, 4, 255–260. [Google Scholar] [CrossRef]
- Li, D.; Zhang, J.; Yu, D.; Xu, R.; Lu, H.H.C.; Fernando, T. A Family of Binary Memristor-Based Low-Pass Filters With Controllable Cut-Off Frequency. IEEE Access 2020, 8, 60199–60209. [Google Scholar] [CrossRef]
- Evensen, G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res.-Ocean. 1994, 99, 10143–10162. [Google Scholar] [CrossRef]
- Bracewell, R.N. Fourier transform and its applications. IEEE T Power Electr. 2009, 11, 357. [Google Scholar] [CrossRef]
- Tyagi, T.; Sumathi, P. Comprehensive Performance Evaluation of Computationally Efficient Discrete Fourier Transforms for Frequency Estimation. IEEE T Instrum. Meas. 2020, 69, 2155–2163. [Google Scholar] [CrossRef]
- Pang, H.S.; Lim, J.S.; Lee, S. Discrete Fourier transform-based method for analysis of a vibrato tone. J. New Music Res. 2020, 4, 1–13. [Google Scholar]
- Nam, S.R.; Kang, S.H.; Kang, S.H. Real-Time Estimation of Power System Frequency Using a Three-Level Discrete Fourier Transform Method. Energies 2014, 8, 79–93. [Google Scholar] [CrossRef]
- Shlyakhtenko, P.; Kofnov, O. Double Two-Dimensional Discrete Fast Fourier Transform for Determining of Geometrical Parameters of Fibers and Textiles. Fibers 2013, 1, 36–46. [Google Scholar] [CrossRef]
- Wood, G.A. Data smoothing and differentiation procedures in biomechanics. Exerc. Sport Sci. Rev. 1982, 10, 308–362. [Google Scholar] [CrossRef]
- Guo, J.; Williams, B.; Smith, B. Data Collection Time Intervals for Stochastic Short-Term Traffic Flow Forecasting. Transp. Res. Rec. 2007, 2024, 18–26. [Google Scholar] [CrossRef]
- Hou, X.Y.; Wang, Y.S.; Hu, S.Y. Short-term Traffic Flow Forecasting based on Two-tier K-nearest Neighbor Algorithm. Procedia Soc. Behav. Sci. 2013, 96, 2529–2536. [Google Scholar]
- Yang, H. Empirical Mode Decomposition and Its Application in Water Acoustics Signal Processing. Ph.D. Thesis, Northwestern Polytechnical University, Xi’an, China, 2015. [Google Scholar]
Dataset | S1 | S2 | S3 | S4 |
Raw Data | F | A2 | E | |
Model H | Model 1 | Model 2 | Model 3 | Model 4 |
Day | Monday | Saturday |
Cutoff frequency | 0.000179 | 0.000145 |
Thursday | Sunday | ||||||
---|---|---|---|---|---|---|---|
MAE | RMSE | MAPE | MAE | RMSE | MAPE | ||
path 568 (LM932) | Model 1 | 68.77 | 94.60 | 7.54 | 50.89 | 61.30 | 8.42 |
Model 2 | 56.20* | 73.64 * | 6.41 * | 37.78 * | 46.57 * | 6.48 * | |
Model 3 | 59.12 | 76.37 | 6.66 | 41.77 | 52.34 | 7.00 | |
Model 4 | 57.21 | 75.49 | 6.49 | 38.05 | 47.09 | 6.56 | |
path 2091 (AL2670) | Model 1 | 31.36 | 42.62 | 10.53 | 16.32 | 20.81 | 10.87 |
Model 2 | 27.98 * | 38.47 * | 9.27* | 12.06 * | 15.40 * | 8.86 * | |
Model 3 | 30.17 | 39.64 | 10.02 | 12.60 | 16.05 | 9.14 | |
Model 4 | 29.27 | 39.90 | 9.63 | 12.38 | 15.52 | 8.97 | |
path 8655 (LM168) | Model 1 | 86.37 | 117.07 | 9.22 | 56.81 | 87.37 | 7.79 |
Model 2 | 62.31 * | 78.94 * | 6.72 * | 44.23 * | 60.94 * | 6.24 * | |
Model 3 | 67.78 | 91.24 | 7.36 | 47.79 | 70.10 | 6.63 | |
Model 4 | 65.88 | 87.31 | 7.10 | 44.84 | 63.00 | 6.50 | |
path 8314 (LM188) | Model 1 | 80.85 | 104.48 | 7.45 | 55.87 | 72.53 | 6.77 |
Model 2 | 64.56 * | 89.30 * | 6.04 * | 44.42 * | 55.23 * | 5.88 * | |
Model 3 | 71.46 | 99.14 | 6.56 | 48.92 | 64.08 | 6.21 | |
Model 4 | 66.91 | 92.70 | 6.21 | 46.56 | 56.49 | 6.12 |
MAE | RMSE | MAPE | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 1 | Model 2 | Model 3 | Model 4 | Model 1 | Model 2 | Model 3 | Model 4 | ||
Area I | Mon. | 33.91 | 33.01 * | 34.48 | 33.16 | 48.71 | 47.71 * | 49.82 | 48.00 | 5.74 | 5.66 * | 6.03 | 5.71 |
Tues. | 44.80 | 42.65 * | 43.80 | 42.87 | 62.87 | 57.67 * | 61.09 | 57.90 | 7.08 | 6.80 * | 7.05 | 6.82 | |
Wed. | 43.28 | 40.25 * | 40.65 | 40.33 | 58.19 | 54.39 * | 54.59 | 54.45 | 6.66 | 6.27 * | 6.42 | 6.35 | |
Thur. | 38.58 | 36.10 * | 36.64 | 37.68 | 52.78 | 48.58 * | 50.92 | 50.34 | 5.82 | 5.61 * | 5.81 | 5.78 | |
Fri. | 42.06 | 36.11 * | 38.32 | 36.39 | 54.14 | 46.64 * | 49.75 | 47.27 | 5.90 | 5.34 * | 5.71 | 5.38 | |
Sat. | 33.19 | 30.01 * | 32.08 | 31.56 | 42.69 | 36.70 * | 40.27 | 37.31 | 6.52 | 6.21 * | 6.46 | 6.25 | |
Sun. | 27.13 | 23.96 * | 25.00 | 24.16 | 33.89 | 29.59 * | 30.96 | 29.66 | 6.48 | 5.86 * | 6.08 | 5.98 | |
Mean | 37.56 | 34.59 * | 35.85 | 35.16 | 50.47 | 45.89 * | 48.20 | 46.42 | 6.31 | 5.96 * | 6.22 | 6.04 | |
Area II | Mon. | 58.91 | 46.10 * | 47.51 | 47.04 | 78.89 | 62.64 * | 64.66 | 63.36 | 10.18 | 7.82 * | 7.93 | 7.93 |
Tues. | 62.47 | 54.89 * | 54.93 | 55.65 | 87.66 | 76.74 * | 78.02 | 77.69 | 10.75 | 9.21 * | 9.34 | 9.36 | |
Wed. | 59.55 | 51.46 * | 52.62 | 51.87 | 79.87 | 70.24 * | 72.63 | 70.74 | 9.62 | 8.38 * | 8.50 | 8.44 | |
Thur. | 71.93 | 57.72 * | 59.82 | 59.95 | 95.76 | 75.38 * | 81.03 | 78.39 | 11.18 | 9.25 * | 9.42 | 9.31 | |
Fri. | 53.44 | 44.68 * | 46.47 | 44.82 | 69.35 | 58.21 * | 60.40 | 58.31 | 8.69 | 7.28 * | 7.65 | 7.32 | |
Sat. | 30.18 | 24.07 * | 24.77 | 24.75 | 37.33 | 29.45 * | 30.70 | 30.14 | 8.88 | 6.70 * | 6.81 | 6.76 | |
Sun. | 36.02 | 27.56 * | 28.40 | 27.62 | 45.68 | 33.54 * | 34.60 | 33.71 | 9.68 | 7.54 * | 7.88 | 7.57 | |
Mean | 53.21 | 43.78 * | 44.93 | 44.53 | 70.65 | 58.03 * | 60.29 | 58.91 | 9.85 | 8.03 * | 8.22 | 8.10 | |
Area III | Mon. | 81.00 | 55.78 * | 69.34 | 58.31 | 131.82 | 90.20 * | 117.88 | 91.11 | 13.47 | 9.77 * | 11.47 | 9.95 |
Tues. | 64.97 | 46.94 * | 53.44 | 48.58 | 100.76 | 67.74 * | 84.26 | 70.10 | 11.31 | 8.28 * | 9.14 | 8.33 | |
Wed. | 56.67 | 42.77 * | 45.62 | 43.13 | 73.06 | 55.24 * | 60.14 | 57.29 | 9.55 | 7.22 * | 7.46 | 7.27 | |
Thur. | 71.58 | 51.01 * | 55.96 | 53.19 | 101.73 | 70.61 * | 81.62 | 73.61 | 11.47 | 8.22 * | 8.99 | 8.49 | |
Fri. | 69.34 | 48.44 * | 51.46 | 49.60 | 97.22 | 63.93 * | 76.17 | 68.16 | 10.68 | 7.44 * | 8.27 | 7.57 | |
Sat. | 33.81 | 24.18 * | 27.13 | 24.81 | 41.71 | 29.36 * | 32.83 | 29.70 | 9.73 | 6.73 * | 7.21 | 6.90 | |
Sun. | 47.99 | 34.32 * | 38.55 | 36.23 | 74.82 | 49.20 * | 60.75 | 52.12 | 10.74 | 7.52 * | 8.31 | 8.01 | |
Mean | 60.77 | 43.35 * | 48.79 | 44.84 | 88.73 | 60.90 * | 73.38 | 63.16 | 10.99 | 7.88 * | 8.69 | 8.07 | |
Area IV | Mon. | 54.16 | 43.41 * | 44.06 | 44.25 | 72.35 | 60.22 * | 62.38 | 61.60 | 9.82 | 7.85 * | 7.99 | 7.93 |
Tues. | 50.79 | 40.63 * | 41.47 | 40.74 | 68.39 | 57.58 * | 61.15 | 58.66 | 9.78 | 7.49 * | 7.78 | 7.83 | |
Wed. | 64.36 | 52.46 * | 54.69 | 52.98 | 98.81 | 74.96 * | 83.71 | 79.51 | 12.29 | 9.76 * | 10.23 | 9.81 | |
Thur. | 53.37 | 41.53 * | 43.96 | 42.15 | 70.03 | 57.37 * | 61.87 | 59.27 | 9.24 | 7.19 * | 7.43 | 7.34 | |
Fri. | 49.39 | 39.29 * | 40.07 | 39.87 | 65.48 | 52.86 * | 56.10 | 53.75 | 7.95 | 6.23 * | 6.26 | 6.46 | |
Sat. | 33.44 | 25.86 * | 26.66 | 26.16 | 41.66 | 31.76 * | 33.26 | 32.08 | 8.51 | 6.78 * | 7.07 | 6.90 | |
Sun. | 32.80 | 27.16 * | 28.82 | 27.43 | 43.78 | 34.40 * | 37.50 | 35.04 | 8.29 | 7.04 * | 7.40 | 7.16 | |
Mean | 48.33 | 38.62 * | 39.96 | 39.08 | 65.79 | 52.74 * | 56.57 | 54.27 | 9.41 | 7.48 * | 7.74 | 7.63 |
MAE | RMSE | MAPE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 1 | Model 2 | Model 3 | Model 4 | Model 1 | Model 2 | Model 3 | Model 4 | |
Mon. | 39.40 | 32.25 * | 33.71 | 33.56 | 53.62 | 44.57 * | 47.39 | 45.48 | 10.91 | 8.89 * | 9.08 | 8.95 |
Tues. | 39.71 | 33.44 * | 34.30 | 35.53 | 53.70 | 45.93 * | 47.68 | 46.29 | 10.93 | 9.08 * | 9.18 | 9.15 |
Wed. | 40.98 | 34.19 * | 35.08 | 34.96 | 55.50 | 46.86 * | 48.76 | 47.29 | 10.80 | 8.94 * | 9.23 | 9.07 |
Thur. | 41.85 | 34.22 * | 35.63 | 34.46 | 56.28 | 46.19 * | 48.91 | 47.22 | 10.67 | 8.92 * | 9.19 | 9.12 |
Fri. | 40.53 | 31.50 * | 33.18 | 32.81 | 53.58 | 42.27 * | 45.29 | 43.97 | 9.97 | 7.97 * | 8.39 | 8.16 |
Sat. | 26.97 | 21.11 * | 21.71 | 22.15 | 34.83 | 26.68 * | 28.16 | 28.88 | 10.45 | 8.12 * | 8.23 | 8.28 |
Sun. | 26.68 | 20.80 * | 21.47 | 22.71 | 35.84 | 27.24 * | 29.14 | 28.31 | 11.74 | 9.31 * | 9.72 | 9.97 |
Mean | 36.59 | 29.64 * | 30.73 | 30.88 | 49.05 | 39.97 * | 42.19 | 41.06 | 10.78 | 8.75 * | 9.00 | 8.96 |
MAE | RMSE | MAPE | |||||||
---|---|---|---|---|---|---|---|---|---|
Model 1 | Model 3 | Model 4 | Model 1 | Model 3 | Model 4 | Model 1 | Model 3 | Model 4 | |
Mon. | 18.15 | 4.33 | 3.90 | 16.88 | 5.95 | 2.00 | 18.52 | 2.09 | 0.67 |
Tues. | 15.79 | 2.51 | 5.88 | 14.47 | 3.67 | 0.78 | 16.93 | 1.09 | 0.77 |
Wed. | 16.57 | 2.54 | 2.20 | 15.57 | 3.90 | 0.91 | 17.22 | 3.14 | 1.43 |
Thur. | 18.23 | 3.96 | 0.70 | 17.93 | 5.56 | 2.18 | 16.40 | 2.94 | 2.19 |
Fri. | 22.28 | 5.06 | 3.99 | 21.11 | 6.67 | 3.87 | 20.06 | 5.01 | 2.33 |
Sat. | 21.73 | 2.76 | 4.70 | 23.40 | 5.26 | 7.62 | 22.30 | 1.34 | 1.93 |
Sun. | 22.04 | 3.12 | 8.41 | 24.00 | 6.52 | 3.78 | 20.70 | 4.22 | 6.62 |
Mean | 19.26 | 3.47 | 4.25 | 19.05 | 5.36 | 3.02 | 18.88 | 2.83 | 2.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Shi, W.; Liu, X.; Li, Z. An Adaptive Cutoff Frequency Selection Approach for Fast Fourier Transform Method and Its Application into Short-Term Traffic Flow Forecasting. ISPRS Int. J. Geo-Inf. 2020, 9, 731. https://doi.org/10.3390/ijgi9120731
Wang R, Shi W, Liu X, Li Z. An Adaptive Cutoff Frequency Selection Approach for Fast Fourier Transform Method and Its Application into Short-Term Traffic Flow Forecasting. ISPRS International Journal of Geo-Information. 2020; 9(12):731. https://doi.org/10.3390/ijgi9120731
Chicago/Turabian StyleWang, Runjie, Wenzhong Shi, Xianglei Liu, and Zhiyuan Li. 2020. "An Adaptive Cutoff Frequency Selection Approach for Fast Fourier Transform Method and Its Application into Short-Term Traffic Flow Forecasting" ISPRS International Journal of Geo-Information 9, no. 12: 731. https://doi.org/10.3390/ijgi9120731
APA StyleWang, R., Shi, W., Liu, X., & Li, Z. (2020). An Adaptive Cutoff Frequency Selection Approach for Fast Fourier Transform Method and Its Application into Short-Term Traffic Flow Forecasting. ISPRS International Journal of Geo-Information, 9(12), 731. https://doi.org/10.3390/ijgi9120731